Charakterisierung von Phasenübergängen in flüssigem Kohlenstoff mit Röntgenthomsenstreuung

Charakterisierung von Phasenübergängen in flüssigem Kohlenstoff mit Röntgenthomsenstreuung

Mit Experimenten an der GSI und weiteren Internationalen Laserlaboren wie dem RAL

Promotion

Die vorliegende Arbeit befasst sich mit der experimentellen Erzeugung und Untersuchung von warmer dichter Materie, d. h. dem Übergangsbereich zwischen Festkörpern und dichten Plasmen. Dieser stellt für theoretische Modelle eine große Herausforderung dar und ist gleichzeitig experimentell schwer zugänglich. Die Physik warmer dichter Materie ist von entscheidender Bedeutung für die Trägheitsfusion und die Beschreibung des Inneren von großen Planeten. Um verschiedene theoretische Modellierungen dieses Gebietes zu testen, sind experimentelle Daten zwingend erforderlich. Im Rahmen dieser Arbeit wurde das Verhalten von Kohlenstoff bei einem Druck um 100 GPa und einer Temperatur um 8000 K untersucht. Theoretische Modelle vermuten in diesem Bereich einen fest-flüssig Phasenübergang. Dieser konnte durch die in dieser Arbeit beschriebenen Experimente erstmals im Labor charakterisiert werden. Der zu vermessende Materiezustand wurde durch lasergetriebene Schockkompression von Graphit der Ausgangsdichte 1.84 g/cm³ erzeugt. Dazu wurde das Lasersystem nhelix am GSI Helmholtzzentrum für Schwerionenforschung verwendet. Über Messung von Schock- und Teilchengeschwindigkeit konnten Dichte und Druck innerhalb der Schockwelle bestimmt werden. Die Kohlenstoffproben wurden auf 3.9+/-0.2 g/cm³, d.h. etwa das Zweifache der ursprünglichen Dichte, komprimiert und Drücke von 80 GPa bis 170 GPa erzeugt. Dies ist in sehr guter Übereinstimmung mit ein- bzw. zweidimensionalen Hydrodynamik-Simulationen, die mit den Paketen HELIOS bzw. MULTI2D durchgeführt wurden. Für die Untersuchung der mikroskopischen Struktur der verdichteten Kohlenstoffproben wurde intensive gepulste Röntgenstrahlung eingesetzt, die mit dem Lasersystem PHELIX durch das Bestrahlen von Titanfolien erzeugt wurde. Der verwendete Titan-Helium-alpha Übergang, der in eine emittierte Photonenenergie von 4.75 keV resultiert, konnte mit hoher Effizienz angeregt werden. Ein Anteil der Laserenergie von ~0.5% wurde in Röntgenstrahlung dieses Übergangs konvertiert. Die spektral aufgelöste Messung der gestreuten Strahlung ermöglicht die Bestimmung der Korrelationen der Kohlenstoffatome über den Strukturfaktor. Bei den speziell ausgesuchten Streuwinkeln 105° und 126° ändert sich der Strukturfaktor und damit auch der Streuwirkungsquerschnitt innerhalb des Phasenübergangs um einen Faktor zwei. Diese Änderung konnte im Rahmen dieser Arbeit experimentell nachgewiesen werden. Absolute Werte für den Strukturfaktor wurden durch die Bestimmung der Verhältnisse der Intensitäten von elastisch und inelastisch gestreuter Röntgenstrahlung ermittelt. Für eine Dichte von 3.9+/-0.2 g/cm³ und einen Druck von 145+/-17 GPa wurde in der Schockwelle die Existenz einer flüssigen Phase experimentell nachgewiesen. Bei einem niedrigeren Druck von 86+/-11 GPa und ebenfalls einer Dichte von 3.9+/-0.2 g/cm3 wurde ein Zustand sehr nahe der Schmelzlinie erzeugt, der gerade noch flüssig ist. Dies ist in sehr guter Übereinstimmung mit ab-initio-Simulationen, mit denen Strukturfaktoren für diese Parameter berechnet wurden. Somit wurde im Rahmen dieser Arbeit ein experimenteller Weg aufgezeigt, Phasenübergänge in warmer dichter Materie zu charakterisieren und erstmals die Erzeugung von flüssigem Kohlenstoff durch Schockkomprimierung von Graphit direkt beobachtet.

Publikationen