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Abstract
In the framework of this master thesis data from proton and electron scattering experiments on the nuclei92Zr and 94Mo were
analyzed. The extracted cross sections and form factors were compared to predictions of the Quasi-Particle Phonon Model (QPM).
Due to the different isospin sensitivity of both probes the proton as well as the neutron matrix elements of the QPM wave functions
could be tested.

The central result of this work is the observation of a new experimental signature for a one-phonon quadrupole mixed-symmetric
state. The new signature is based on a reduction of the mattertransition radius of the mixed-symmetry state compared to all other
2+ states. The matter transition radii of all quadrupole states up to 4 MeV in94Mo were obtained from the proton scattering cross
sections. The matter transition radius of the quadrupole mixed-symmetry state is found to be - by far - the smallest. Thisproperty
is directly connected to its isovector nature and can therefore be used to identify mixed-symmetry states independently of B(M1)-
values used so far. A similar analysis is performed for92Zr. The difference of the charge transition radii between the symmetric and
the mixed-symmetric state is extracted from electron scattering data in92Zr. Both radii have a very similar size.

A simple model is developed to study the influence of the GiantQuadrupole Resonance on effective forces used in the Interacting
Boson Model 2 and on the formation mechanism of mixed-symmetry states in general. Conclusions on the evolution of mixed-
symmetry states are drawn for the Mo-chain using this simplemodel. The M1-strength between the symmetric and mixed-symmetric
quadrupole states is found to be inverserly proportional tothe square of the deformation parameter. This is the opposite to the
behaviour known from the scissors mode.
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Zusammenfassung
Im Rahmen dieser Masterarbeit wurden Daten von Proton- und Elektronenstreuexperimenten an92Zr und94Mo analysiert. Die ge-
messenen Wirkungsquerschnitte und Formfaktoren wurden mit Vorhersagen des Quasi-Particle Phonon Models (QPM) verglichen.
Auf Grund der unterschiedlichen Sensitivität beider Proben in Bezug auf den Isospinfreiheitsgrad konnten sowohl die Protonen- als
auch die Neutronenübergangsmatrixelemente der QPM-Wellenfunktionen zum Grundzustand getestet werden.

Das zentrale Ergebnis dieser Arbeit ist neue Signatur für die Identifikation eines gemischt-symmetrischen Zustandes.Dazu
wurden die Massenübergangsradien aller 2+ Zustände in94Mo bis 4 MeV untersucht. Der Massenübergangsradius des gemischt-
symmetrischen Zustands ist mit Abstand am kleinsten. DieseEigenschaft ist auf seinen isovektoriellen Charakter zurückzuführen
und kann in Zukunft als Identifikationsmerkmal für einen gemischt-symmetrischen Zustand verwendet werden. Eine ähnliche Ana-
lyse wurde für92Zr vorgenommen. Der Unterschied der Übergangsladungsradien des symmetrischen und gemischt-symmetrischen
Zustandes in92Zr wurde mit Hilfe von Elektronenstreudaten untersucht. Beide Radien sind im Rahmen experimenteller Fehler
gleich groß.

Im Rahmen dieser Arbeit wurde ein einfaches Modell entwickelt um den Einfluß der Quadrupol Riesenresonanz auf effekti-
ve Kräft im Interacting Boson Model 2 zu untersuchen. Das Modell liefert zusätzlich ein einfaches Bild für den Formationsme-
chanismus von gemischt-symmetrischen Zuständen in Atomkernen. Des Weiteren wurden einige systematische Untersuchungen
der Eigenschaften gemischt-symmetrischer Zustände vorgenommen. Die B(M1)-Stärke zwischen dem symmetrischen und dem
gemischt-symmetrischen Zustand fällt linear mit dem Quadrat des Deformationsparameters ab. Dies ist das gegenteilige Verhalten,
welches von der Scherenmode bekannt ist.
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1 Introduction
The atomic nucleus is a finite, complex, fermionic many-bodysystem with well-defined proton and neutron numbers. Although
its size is negligible - the radii of the whole atom and its nucleus differ by four to five orders of magnitude - the atomic nucleus
is responsible for 99% of the visible matter in the universe. Obtaining a describtion of its properties and understanding the forces
between its constituents - starting from the fundamental theory of the strong interaction: Quantum Chromodynamics (QCD) - is the
key point of nuclear structure research.

To reach this target one has to face several complicated challenges. It would be favourable to achieve a description of nuclei in
terms of the fundamental degrees of freedom in QCD: Quarks and Gluons. Unfortunately nuclear structure phenomena take place
in the low energy sector of QCD, therefore perturbative methods are ruled out. Lattice-QCD exhibits the only way to perform
calculations in this energy regime. Since these calculations require enormous computational resources they just start to become
feasible and predictive for mesons and baryons. Describinga complex many-body system like the nucleus is - even for the deuteron
- illusory. One has to apply a different strategy in order to link nuclei with QCD. The most consistent way is given by Chiral Effective
Field Theory (EFT) [Wei79,Leu94].

Figure 1.1: Shown is an overview about the theoretical strategies how to tackle the nuclear many body-problem. The upper part
describes how to build the bridge between QCD and nuclear structure and the lower part discusses phenomenological
approaches.

In this approach protons, neutrons and pions form the effective degrees of freedom and it is possible to construct a nucleon-
nucleon potential whose properties are directly related toQCD. From the points made before it becomes clear that the nuclear force
is only an effective one very similar to the van der Waals interaction between neutral atoms. In the last years large progress has
been achieved in this field and nowadays such potentials are available fitting the scattering phase shifts until the cut off parameter
used in the EFT [Epl09]. Very often more phenomenological potentials are used like the Argonne V18 [Wir98] and CD-Bonn
potentials [Mac01].

1



Even given a suitable nucleon-nucleon potential calculating the properties of nuclei is not straight forward. One aimsto stay as
close as possible to anab initio treatment of the nuclear many-body problem -i.e. solving the non-relativistic Schrödinger or the
relativistic Dirac equation without approximations. The most commonab initio approaches are the Greens Function Monte Carlo
technique (GFM) [Piep03] and the no-core shell model [Nav03]. Both methods are in principle able to start with a bare nucleon-
nucleon potential and achieve a successful description of many properties of light nuclei. Since their computational demand increases
exponentially with increasing nucleon numbers these programs can be carried out only for the lightest nuclei (A®12). Therefore it
is necessary to truncate the model space in order to tackle heavier nucleii.e. the Schrödinger equation is solved only approximately.
These simplified model spaces are not capable to describe short range correlations induced by the nuclear force namely central and
tensor correlations. Hence the bare nucleon-nucleon interaction has to be renormalized for transforming the eigenvalue problem
in the full space to an equivalent one in the much smaller model space. This can be done by the Brueckner G-matrix [Day67] or
similarity transformations like Vlow−k (SRG) [Bog03] or UCOM [Fel98,Nef03]. Many approximate methods have been developed
in the past. Well known examples are Hartree-Fock (HF), Hartree-Fock-Bogoliubov (HFB) or the conventional shell modelwith
a core. At the moment more refined methods are under development approximating the Schrödinger equation on a much more
controlled way than the three examples mentioned before. Promising examples are the coupled cluster method [Kow04] and the
no-core shell model with an importance truncation [Rot07] developed by R. Roth and co-workers.

The previous sections describe the way how the nuclear many-body problem should be tackled to stay on a fundamental level.
However there exist a large number of phenomenological models which has proven to be successful in interpreting nuclearspectra,
transition strengths and in classifying excitation modes.Famous examples are algebraic approaches like the Interacting Boson
Model [Ari75,Ari78,Ari77] which uses different degrees offreedom namely bosons and geometrical models which treat the nucleus
as a geometric entity [Boh75]. Both models are assumed to account for simple, collective excitations like vibrations inspherical
nuclei or rotations in deformed nuclei. In addition many microscopic approaches use a purely phenomenological interaction e.g. the
Quasi-Particle Phonon Model (QPM) [Sol92, Ber99] or the shell-model with a simpleδ- function as interaction. With increasing
computational capabilities and the advances in constructing effective interactions, phenomenological approaches become more and
more replaced by microscopic treatments starting from a realistic nucleon-nucleon potential. Figure 1.1 summarizes the different
theoretical strategies how to improve our understanding ofnuclear structure.

For testing and improving nuclear models a large amount of experimental data is essential. Especially experiments and observa-
bles are needed which give new insights in the nature of the effective nuclear force. In general a very promising way to investigate
the properties of a quantum system is bringing it to extreme conditions [NuP04] be it- in the case of nuclei- the proton to neutron
ratio, isospin or binding energy. This will amplify or suppress certain parts of the nuclear interaction allowing to investigate these
specific parts in detail. Radioactive beam physics constitutes an excellent way to achieve this for nuclei. Although radioactive beams
are not available since two decades, this modern and experimentally very demanding branch of nuclear physics caused thediscovery
of many new structural phenomena like halo nuclei [Tan85], neutron skins or proton-neutron pairing. Describing and understanding
these is a very challenging task for theory and indeed many models - accounting for the properties of stable nuclei successfully -
have serious problems when extrapolated to exotic nuclei. An example which nicely illustrates the points mentioned above is the
monopole tensor force whose important role in the evolutionof shells has been stressed by Otsukaet al. [Ots01] recently. In stable
nuclei its influence is somehow covered, however in exotic nuclei this part of the nuclear hamiltonian changes and causesnew magic
numbers very different from those found in stable nuclei. Inthe next years one can expect great improvements in nuclear structure
physics induced by radioactive beam facilities like FAIR, RIKEN, TRIUMPF and REX-ISOLDE.

Shell effects and single-particle degrees of freedom dominate the structure of low-lying states in magic or semi-magicnuclei.
If just a few valence nucleons are added so that both types - protons and neutrons - are present, one observes the fascinating
structural evolution of nuclei. First - in nearly sphericalnuclei - a vibrator structure develops, forming multipletsof collective states
which can be reasonably approximated by the harmonic oscillator. Adding more and more valence nucleons the nucleus starts to
deform. Finally, when the critical point is reached, it undergoes a shape phase transition - a highly interesting and extensively
studied phenomena in nuclei [Iac00, Iac98]. The proton-neutron interaction - being responsible for configuration mixing [Sha53]
- is the driving force behind this key point of nuclear structure research. Its importance has been first recognized by Shalit and
Goldhaber [Sha53] in 1953 and repeatedly stressed by many others like Talmi [Tal62], Federman and Pittel [Fed78] or veryrecently
Otsukaet al. [Ots01]. Phenomenologically, the strength of the proton-neutron interaction has been codified in the NπNν -scheme by
Casten [Cas85].

Clearly, experimental observables which are sensitive to this key ingredient of nuclear structure physics are extremely valuable
for understanding and investigating the nuclear-many bodyproblem. In 1984 Iachello [Iac84] predicted a new class of low-lying
isovector collective states in the framework of the interacting-boson model 2 (IBM-2) [Ari77]. These so called ’mixed-symmetry
states’ (MSS) exhibit the intriguing property of being non-symmetric with respect to the proton-neutron degree of freedom. This
feature makes them very different from other low-lying collective states being symmetric. The first known example - and maybe the
most famous one - was the 1+ scissors mode discovered by Richter and his group in the heavy deformed nucleus156Gd [Boh84].
This pioneering key experiment of mixed-symmetry researchhas been performed at the S-DALINAC in electron scattering.So
far a large amount of data on this mode has been accumulated. Even in weakly collective nuclei a 1+ mixed-symmetry state
is known [Pie99, Pie20]. It is important to note that only valence nucleons contribute to this excitation in sharp contrast to the

2



2
+

mixed-symmetry state

this work N=50

N=28

N=20

Z=50

N=82

Z=28

Z=20

Figure 1.2: Section of the nuclei chart. Marked are the nuclei where a 2+ mixed-symmetry state has been identified on the basis of
absolute transition strength. No examples are known in the A ≈ 200 region.

properties of an other isovector mode: The Giant Dipole Resonance (GDR). The GDR is mainly formed by 1ħhω excitation [Wou87]
i.e. nucleons are excited above closed shells resulting in a muchhigher excitation energy than the scissors mode.

The focus of this thesis is on an other kind of mixed-symmetrystates. In 1984 Hamilton [Ham84] suggested the first exampleof
a weakly collective 2+ mixed-symmetry state in vibrational nuclei based on the analysis of E2/M1 multipole mixing ratios. Its main
experimental signature is a strong B(M1)-strength to the 2+

1 and a weakly collective B(E2)-strength to the ground state [Pie08]. In
general detecting a transition between two excited states exhibits a challenging task and requires the combination of complementary
experimental techniques. Hence the knowledge about this mode stayed sparse in the 1980s and 1990s. There were only a few
examples based on absolute transition strength reported inRefs. [Lie88, Ver88, Van95, Gar96, Wie97, Faz92]. In the late 1990s
the situation changed with the improvement of several experimental techniques which allows to determine the decay pattern of
states far off the yrast band [Pie98a, Pie99]. The prime example of 2+ mixed-symmetry states was identified by Pietrallaet al. in
94Mo [Pie99]. Not only the B(M1)-strength is very large in thisnucleus - indicating a very ’clean’ mixed-symmetry state - but also
a multiphonon structure has been observed [Pie99,Pie20] which is formed by the symmetric and the mixed-symmetric 2+ phonons.
This observation proves that both phonons can be consideredas building blocks of collective nuclear structure in nearly spherical
nuclei. Nowadays a large amount of data about this excitation mode is available [Pie08] as shown in Fig. 1.2. All of them are
located near closed shells. Unfortunately no example in radioactive nuclei has been identified so far. This can be tracedback to the
difficulties in measuring the B(M1)-strength in radioactive nuclei.

As stressed by Heyde and Sau [Hey86] the properties of 2+ mixed-symmetry states are directly sensitive to the effective proton-
neutron interaction. Near closed shells one observes a highly exciting phenomenon: The structure of both 2+ phonons contains -
besides a collective part - large single particle contributions [Iac06, Iud08]. This opens up the opportunity to study in detail the
interplay between collective and single particle degrees of freedom when going from spherical to more collective nuclei driven by
the proton-neutron interaction. Since usually only two large single particle components - one proton and one neutron - are present,
one can draw conclusions about shell structure and the strength of the proton-neutron interaction investigating the configuration
mixing between these large components. The B(M1)-strengthbetween the MSS and 2+1 state and the g-factors of both states are
excellent experimental observables for measuring the degree of mixing. This is highlighted by comparing the 2+1 state and MSS
structures in92Zr and94Mo. Since92Zr lies at a proton subshell gap (Fig. 1.4) the proton two-quasiparticle state is located at much
higher energy causing a drastically larger energy difference between the lowest proton and neutron two-quasiparticleconfigurations
than in94Mo. As a result the proton-neutron interaction mediates in92Zr a smaller configuration mixing than in94Mo resulting in a
smaller B(M1)-strength and a negative g-factor of the 2+

1 state [Fra03, Fra05]. Clearly, 2+ mixed-symmetry states constitute a very
fine probe for exploring nuclear structure, sensitive to tiny shell effects and the detailed strength of the proton-neutron interaction.
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Figure 1.3: The B(M1)-strength of the scissors mode in the rare-earth region exhibits a smooth dependence on the P-factor indicating
that the properties of the scissors mode are mainly determined by an interplay between the integrated pairing and proton-
neutron force in the valence space.
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Figure 1.4: Shown is the shell structure for 92Zr (a). Since Z = 40 is a subshell gap the lowest proton two-quasiparticle state is at much
higher energy than the lowest neutron two-quasiparticle state resulting in weak configuration mixing with α≫ β (b).

In heavy-mass, deformed nuclei - the regime of the scissors mode - the situation is different. Configuration mixing and the proton-
neutron interaction become so pronounced that many thousand quasiparticle states contribute to collective excitations washing out
completely shell effects and influences of specific quasiparticle states. Investigations as in92Zr and94Mo are therefore prohibited.
Figure 1.3 displays the summed B(M1)-strength of the scissors mode in the rare earth region over P = (NπNν )/(Nπ+Nν ) with
Nπ (Nν ) being the number of valence protons (neutrons). The P-factor [Cas87] is believed to reveal qualitatively the competition
between theintegrated pairing force (∼ Nπ+Nν ) and theintegrated proton-neutron interaction (∼ NπNν ) in thevalence space. The
B(M1)-strength depends smoothly on this quantity indicating that the properties of the scissor mode are mainly determined by an
interplay between these two integral quantities. One can take the 2+ mixed-symmetry state as very fine probe of nuclear structure
being sensitive to the details while the scissors mode is a crude probe being sensitive to overall properties of nuclei.

The typical strategy how to learn more about the nucleus and its constituents is to make use of external fields and to analyse the
response. In order to obtain complementary experimental informations about the nature of an excitation mode it is important to use
different probes interacting strongly, electromagnetically or weakly. So far gamma spectroscopy has been the main experimental
technique for investigating the properties of 2+ mixed-symmetry states. This method gives access to absolute electromagnetic
transition strengthsi.e. only the structure of the proton wavefunction is tested. This work investigates the 2+ mixed-symmetry states
in 92Zr and94Mo in electron - and proton scattering. Since protons interact at medium energies isoscalarly [Fra85] with the nucleus
a detailed test of the neutron wavefunction is possible. In addition energy and momentum transfers are decoupled in proton - and
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electron scattering experiments allowing to explore nuclear structure at different momentum transfers which is impossible in gamma
spectroscopy.

Collective vibrations are not limited to the atomic nucleusalone. They constitute a general feature of other quantum systems.
The two fluid character of nuclei is the basic necessity for forming mixed-symmetry states. Thus it is not surprising to find mixed-
symmetry states in other two fluid quantum systems as well. For example analogue scissors-mode states have been found in trapped
Bose-Einstein Condensates [Gue99, Mar00] and metallic clusters [Nes99]. Since the investigated features of nuclei - collective
vibrations and mixed-symmetry states - are widespread phenomena in physics this work should be of rather broad interest.

This thesis is organized as follows. The next chapter gives abrief summary of the nuclear structure models used in this work:
the IBM and the QPM. The experimental setup and data taking conditions are described in Chapter 3. The next chapter discusses
data analysing methods and presents measured cross sections for proton and electron scattering at92Zr and94Mo. Spin and parity
quantum numbers of the various states are assigned using thecollective model. The extracted isoscalar B(E2)- and B(E4)-strengths
distributions are compared to QPM calculations. Chapter 5 presents a new signature for identifying a mixed-symmetry state indepen-
dently of M1-matrixelements. Moreover a simple picture is discussed about the microscopic origin of the effective proton-neutron
interaction used the IBM-2. The simple picture allows to introduce a ’3-state model’ which explains the properties of MSS in the
N=50 region. The results of this thesis are summarized in Chapter 6 and an outlook for future applications is given.

5



2 Theoretical descriptions
This chapter gives an outline about the nuclear structure models used in this thesis. The first one is the Interacting Boson Model 2
(IBM-2) introduced by Arima and Iachello in 1984. It starts from a purely phenomenological ansatz using bosons as effective degrees
of freedom. Typically, this approach is the first choice whenmixed-symmetry states are discussed in literature. In heavy deformed
nuclei - the region of the scissors mode - the IBM-2 works verywell achieving an excellent description of a large number ofnuclear
properties. However near closed shells -e.g. in 92Zr and94Mo - where shell effects become important and only a few bosons are
present, the IBM-2 - obscuring any shell structure - is not the best choice. Therefore in this thesis it is used for classifying nuclear
excitations and defining the experimental signatures of mixed-symmetry states. This will be done in the first part of thischapter.

In the second part the focus is on the Quasi-Particle-PhononModel (QPM) - the main theoretical tool in this work. Like the
IBM-2 the QPM is phenomenological though microscopic, making it possible to describe nuclei near closed shells. Since the QPM
is a QRPA based model it uses a huge single particle basis including in principle all relevant shells for the description of Giant
Resonances as well as low-lying states,i.e. no effective charges are necessary.

2.1 The Interacting Boson Model

Several years the shell-model and the geometrical model of Bohr and Mottelson had been the only theoretical approaches to nuclear
structure. In 1974 the situation changed with the development of the Interacting Boson Model (IBM) by Arima and Iachello[Iac87].
The outstanding feature of this model is the application of group theoretical methods to nuclear structure physics allowing in many
cases a very intuitive and simple interpretation of nuclearstructure phenomena. In the following the IBM-1 and its extension the
IBM-2 are discussed with a special focus on mixed-symmetry states and the related F-Spin symmetry.

2.1.1 The Interacting Boson Model 1

The IBM-1 [Iac87] is a purely phenomenological model. Its basic assumption is that collective low-lying states in even-even nuclei
can be described by a fixed number of bosons having angular momentum and parity J=0+ (s-boson) and J=2+ (d-boson). The
restriction to s- and d-boson stems from the observation that the residual interaction between like nucleons is strongest in the J=0
and J=2 channels. So the microscopic counterparts of s- and d-boson are correlated fermion pairs in the shell model. It ispossible
to enlarge the model space and take into accounte.g. g-bosons. Fixing the boson number is the fundamental difference to the
geometrical model causing several predictions where both approaches differ seriously. In the IBM-1 - the simplest version of the
interacting boson model - no distinction is made between protons and neutrons - the nucleus is considered as a one component
system. This restriction is lifted in the IBM-2 which explicitly distinguishes between proton and neutron bosons as described in the
next section. The IBM considers only single boson energies for s-boson as well as for d-bosons, so clearly it cannot account for any
shell effects. Therefore the model space of the IBM-1 is six dimensional, spanned by the single substate of the s-boson and the five
magnetic substates of the d-boson. To construct a suitable hamiltonian the following points have to be taken into account:

• The hamiltonian must fulfill rotational symmetry, hermicity and the pauli-principle,

• the interaction between bosons is assumed to be of two-bodycharacter,

• since the hamiltonian must conserve the boson number everycreation-operator must be combined with a destruction-operator.

Using the tensorproduct, it is possible to couple two spherical tensors to a new one with defined angular momentum

[T(l1) ×T(l2)](l)
m
=
∑

m1 ,m2

〈l1m1l2m2|lm〉T(l1)m1
T(l2)

m2
. (2.1)

A scalar (l=0) spherical tensor is trivially invariant under rotations. Therefore the most general, rotational invariant hamiltonian
describing the bosonic system can be written as a weighted sum of all possible scalars which can be formed considering points two
and three

H= E0+ εs(s
†s) + εd(d

†d̃) +
∑

l1 l2 l′
1

l′
2

L

ν L

l1 l2 l′
1

l′
2

[[b†

l1
× b†

l2
](L) × [b̃l′

1
× b̃l′

2
](L)]

(0)

0 , (2.2)
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whereb̃lm= (-1)l+mbl−m. The number of terms can be reduced when the requirement of symmetry under the pauli-principle and
hermicity is taken into account. If in addition terms which contribute to the binding energy are neglected the hamiltonian can be
written as

H= ε′′nd + a0P† · P+ a1L† ·L+ a2Q† ·Q+ a3T†
3 ·T3+ a4T†

4 ·T4, (2.3)

whereT(l1) ·T(l2) := [T(l1) ×T(l2)](0)0 is a short-hand notation for the scalar product. The operators stand for

P =
1

2
(d† · d̃− s† · s)

Tl = [d
† × d̃](l) ; l = 0, 1, 2, 3, 4

Qχ = (d† · s+ s† · d̃)−χT2

nd =
p

5T0

L=
p

10T1.

(2.4)

In this form the appearing terms contain at least superficially a more intuitive interpretation:L is the angular momentum operator,P
the so called pairing operator andQχ , T3 andT4 represent quadrupole, octupole and hexadecapole operators. However one should
always keep in mind that these operators act on boson states,therefore no direct connection to fermionic counterparts can be drawn.
The weighting factor are adjusted to the experimental data reflecting the phenomenological treatment of the IBM. Depending on the
mass region different terms of the hamiltonian are dominating concerning their influence on nuclear structure properties.

The IBM offers the possibility to apply easily group theoretical concepts and symmetries to nuclear physics. In nearly all fields
of physics symmetries play a fundamental role causing conservation laws like momentum, energy and parity conservation. A ha-
miltonian is said to have the symmetry G, if the corresponding generatorsgi of the group G - forming a Lie-Algebra - fulfill the
condition

∀gi ∈ G : [H, gi] = 0. (2.5)

An important consequence of a symmetry is the degeneracy of eigenstates. Suppose|γ〉 is an eigenstate of the hamiltonian H with
energy E, then follows with Eq.2.5 that all states gi |γ〉 have the same energy

Hgi |γ〉 = giH|γ〉 = Egi |γ〉. (2.6)

To label an eigenstate of H distinct, one needs at least two quantum numbers|Γγ〉. Γ labels states with different energy andγ
distinguishes between degenerated states. Casimir-operators Cm are an other important concept. They commute with every generator
of the group G:

∀gi ∈ G : [Cm, gi] = 0. (2.7)

The hamiltonian contains automatically the Symmetry G, if it can be written as a sum of Casimir-operators of the group G:

H|Γγ〉 =
∑

m

kmCm[G]|Γγ〉 =
∑

m

kmEm|Γγ〉 (2.8)

For the IBM the concept of the so calleddynamical symmetry is of fundamental importance. Suppose a Lie-Algebra G2 fulfilling
the condition G1 ⊃ G2. Obviously G2 is also a symmetry of the hamiltonian with the eigenstates|Γ2γ2〉. The combination of both
properties leads to the eigenvalue problem:

H|Γ1γ1Γ2γ2〉 = E(Γ1)|Γ1γ1Γ2γ2〉. (2.9)

The energies solely depend onΓ1. Typically the requirement of G1 being the symmetry is too strong and the hamiltonian can be
written as

H′ =
∑

m1

km1
Cm1
[G1] +
∑

m2

km2
Cm2
[G2]. (2.10)

SinceH′ contains the Casimir-operators of G2 not all generators of G1 will commute. G1 is no longer a symmetry ofH′ but G2.
However, becauseH′ is a combination of Casimir-Operators of G1 and G2 its eigenvalues can be obtained analytically

H′|Γ1γ1Γ2γ2〉= (
∑

m1

km1
Em1
(Γ1) +
∑

m2

km2
Em2
(Γ2))|Γ1γ1Gamma2γ2〉. (2.11)
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The essential point is that the eigenstates ofH andH′ are the same but split in energy. One says that the hamiltonian H′ contains G1

as adynamical symmetry. The generalisation is straightforward and can be applied to chains of algebras

G1 ⊃ G2 ⊃ G3 ⊃ ...⊃ GΩ. (2.12)

G1 until GΩ−1 are the dynamical symmetries of the system while GΩ is the true symmetry ofH′ in the sense of Eq.2.5.
How can this formalism be applied to the IBM? The d-boson withits 5 magnetic substates and the s-boson span a six-dimensional

vectorspace. The most general, particle number conservingtransformations are given by the 36 bilinear combinations of the type
b†

l,m
bl′,m′ whose explicit expressions are given in Ref. [Iac87] . They form a unitary, six dimensional Lie-Algebra named U(6).

Similarly to Eq. 2.12 it is possible to divide the U(6) in subalgebras which must contain the O(3) for being physicaly relevant.
Clearly, the underlying reason is that angular momentum must be a good quantum number. There are exactly three chains which
fulfill this condition

U(6)







⊃ U(5) ⊃ O(5)

⊃ SU(3)

⊃ O(6) ⊃ O(5)







⊃ O(3), (2.13)

named after the highest dimensional subalgebra of U(6): U(5), SU(3) and O(6), respectively. The IBM-1 hamiltonian of Eq.2.3 can
be expressed as a sum of Casimir-operators

H =e0 + e1C1(U(6)) + e2C2(U(6)) +ηC2(O(6)) + ε̃C1(U(5))

+αC2(U(5)) + βC2(O(5)) + δC2(SU(3)) + γC2(O(3))
(2.14)

whereCn is the Casimir-Operator of the n-th order of the corresponding group. If an appropriate set of parameters is chosen, the
resulting hamiltonian contains only Casimir-Operators ofone of the three chains given in Eq.2.13. Then the condition of Eq.2.12
holds and the solution of the eigenvalue problem can be obtained analytically. The three cases of the IBM-1 where this is possible -
U(5), SU(3) and O(6) - are usually referred to as ’limits’. They are the dynamical symmetries of the corresponding hamiltonian. Since
the hamiltonian consists of commuting operators, the quantum number associated with each of the Casimir-operators areconserved
and can be used to label the states. Moreover, the wavefunctions of the three limits are independent of the actual parameters providing
distinct transition rates.

The existence of these limits is maybe the reason why the IBM became so successful. They provide an understanding of the range
of collective nuclear structure which can be obtained within the IBM. Typically these dynamical symmetries are broken and the full
IBM hamiltonian of Eq.2.3 has to be diagonalized numerically, however one can compare the properties of the nucleus of interest
to the limiting cases -e.g. to the distinct transition rates - and make statements to which symmetry the nucleus is closest. Therefore
the limits act as benchmarks bringing order in the diversityof nuclear spectra.

2.1.2 The Interacting Boson Model 2

The IBM-2 [Iac87] is the natural extension of the IBM-1 considering explicitly the neutron-proton degree of freedom. Incontrast
to the IBM-1 which is purely phenomenological, the IBM-2 hasat least qualitatively a microscopic justification and in principle
it is possible to derive the parameters of the IBM-2 from microscopic considerations. However, until today this connection is not
quantitative,i.e. the derived parameter using the OAI-mapping [Ots78] differfrom the one required to fit the data. This is a serious
caveat of the IBM-2. The microscopic counterparts of s- and d-bosons are correlated nucleon pairs of the same type. The main
problem of shell model calculations is the drastically increasing size of the model space when going from magic nuclei toopen-
shell systems. Typically, it would be necessary to diagonalize matrices of the dimension of∼1020, a number where one could not
even think of diagonalizing it. The IBM-2 can be seen essentially as a very vast and rough truncation of this huge shell model space
reducing the problem even at midshell to matrices of∼102 which can be handled by conventional diagonalization techniques easily.

The most general IBM-2 hamiltonian has the form

H= Hπ +Hν +Vπν . (2.15)

Hπ andHν have exactly the same form as the IBM-1 hamiltonian of Eq.2.3. The third term codifies the interaction between proton
and neutron bosons and can be expressed in a multipole form

Vπµ = c0(ndπ
· ndµ
) + c1(Lπ ·Lµ) + c2(Q

χ
π ·Qχµ)

+ c3(Q
χ
π ·Q

′
µ) + c4(Q

′
π ·Q

χ
µ) + c5(Q

′
π ·Q

′
µ)

+ c6(Q
′′
π ·Q′′µ) + c7(Uπ ·Uµ) + c8(Vπ ·Vµ).

(2.16)
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The multipole operators are given by

ndρ
= d†

ρ · d̃ρ

Pρ =
1

2
(d†
ρ · d̃ρ)−

1

2
(s†
ρ · sρ)

Lρ =
p

10[d†
ρ · d̃ρ]

(1)

Qχρ = [d
†
ρ × sρ + s†

ρ × d̃ρ]
(2) −χ[d†

ρ × d̃ρ]
(2)

Q′ρ = [d
†
ρ × d̃ρ]

(2)

Q′′ρ = [d
†
ρ × sρ + s†

ρ × d̃ρ]
(2)

Uρ = [d
†
ρ × d̃ρ]

(3)

Vρ = [d
†
ρ × d̃ρ]

(4),

(2.17)

whereρ is eitherπ or ν . Equation 2.15 is literally swarming with parameters and contains 21 free parameters - usually more than
data points are available to fit them. In order to perform a meaningful calculation one has to reduce their number. The key idea is
to orientate on the microscopic shell-model hamiltonian todecide which parts of the hamiltonian in Eq.2.15 are actually important.
This way is not unique causing the existence of several IBM-2Hamiltonians. The maybe most common and successful one is

H = επndπ
+ ενndν

+ 2κQπ ·Qν +λMπν . (2.18)

Equation 2.18 has a sound microscopic justification and mimics the common fermionic pairing-quadrupole hamiltonian. The fermio-
nic analogon of the d-boson energiesεπ andεν is the monopole pairing part, while the analogon of 2κQπ·Qν is the proton-neutron
quadrupole interaction.Mπν is the so called Majorana-Operator which has no direct microscopic counterpart. Its most general form
is

Mπν =[s
†
ν × d†

π − s†
π× d†

ν]
(2) · [sν × d̃π− sπ × d̃ν]

(2)

− 2

3
∑

k=1

[d†
ν × d†

π]
(k) · [d̃ν × d̃π]

(k)
(2.19)

The underlying algebra of the IBM-2 is Uπ(6)× Uν(6). The three dynamical symmetries SU(3), O(6) and U(5) are still contained
when proton and neutron parts are coupled on the U(6) level and can be used for interpreting nuclear structure phenomena.The
focus of this thesis is on an other symmetry of the IBM-2 Hamiltonian, the so called F-Spin.

On the nucleonic level isospin is approximately a good quantum number and a useful symmetry to describe nuclear systems and
to simplify calculations. Protons and neutrons are treatedas different states of one particle: the nucleon. On the bosonic level the
F-Spin quantum number was introduced in Ref. [Ari77] as an analogue for bosons to the isospin concept for nucleons. The F-Spin
quantum numbers for proton and neutron bosons are given by

b†
π|0〉=
�

F = 1/2

Fz =+1/2

b†
ν |0〉=
�

F = 1/2

Fz =−1/2.

(2.20)

The treatment of proton and neutron bosons as an F-Spin doublet imposes an SU(2) group structure, therefore isospin and F-Spin
are mathematically identical. The generators of the SU(2) group can be written as

F+ = d+π d̃ν + s+πsν

F− = d+ν d̃π + s+ν sπ

Fz =
1

2

�

d+π d̃π + s+πsπ − d+ν d̃ν − s+ν sν

�

=
1

2

�

Nπ − Nν

�

.

(2.21)

F+ andF− enhance or lower Fz - being one half of the difference between proton and neutronboson numbers - by one unit. SinceF+,
F− andFz form a Lie-Algebra they are close under commutation. As introduced in Eq.2.7 it is possible to define a Casimir-Operator
for this algebra commuting with every generator

F2 = F−F+ + Fz(Fz + 1). (2.22)
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ConvenientlyFz is chosen to label the states together with the corresponding eigenvalue ofF2: F(F+1). For a given number of
proton and neutron bosons the F-Spin can take values betweenFmin = |Nπ - Nν |/2 and Fmax = (Nπ+Nν )/2. F-Spin is a useful
quantum number to classify the boson states with respect to their symmetry under pairwise proton and neutron exchange. Basis
states that are characterized by a maximum F-Spin quantum number F = Fmax can be transformed by successive action of the F-Spin
raising operatorF+ into a state that consists of proton bosons only. Obviously,such a state is unchanged under pairwise exchange
of proton and neutron labels since it does not contain any neutron bosons. Therefore, IBM-2 states with maximum F-spin quantum
number are calledFully-Symmetric States (FSSs). All states with F<Fmax contain at least one pair of proton and neutron bosons
which behave antisymmetric under the exchange of proton andneutron labels. This class of states is investigated in thisthesis and
are referred to asMixed-Symmetry States(MSSs).

The F-Spin is an exact symmetry if all generators of Eq.2.21 commute with the IBM-2 hamiltonian.Fz is per construction
diagonal in a F-Spin basis, the remaining strong condition is [F±,H]=0. The weaker condition for F-Spin being at least a good
quantum number is given by [F2, H] = 0. However, the IBM-2 of Eq.2.18 is far from being a F-Spin scalar nor is it commuting
with F2. So in principle one can expect F-Spin mixing between mixed-symmetric and fully-symmetric states preventing F-Spin of
being a useful concept. The reason why F-Spin is nonethelessapproximately a good quantum number is caused by the Majorana-
term of Eq.2.19. This operator gives an overall energy-shift to states with F<Fmax separating fully-symmetric and mixed-symmetric
states. Since the degree of F-Spin mixing dependents on the energy splitting between states of different F-Spin, the presence of the
Majorana-term reduces this effect drastically. However, F-Spin mixing is not completely negligible,e.g. the A=100 region is known
for strong F-Spin mixing effects [Kim96] signaled by M1-transition between low-lying states.

How would F-Spin symmetry show up in nuclear spectra? Suppose the chosen IBM-2 hamiltonian is a F-Spin scalar, then the
excitation spectra of a set of nuclei with the same, fixed total boson number N = Nπ + Nν would be identical for all states with F =
Fmax. Of course, the hamiltonian must be the same for all nuclei demanding an identical set of IBM-2 parameters. The various nuclei
with different Fz would form degenerated F-Spin multiplets. In case of F-Spinbeing a good quantum number the multiplets are not
necessarily degenerated. However, if the energy variationwith Fz is small, one can hope to identify them. Figure 2.1 displays the
low-lying states of a selected set of heavy nuclei. All have atotal boson number of 13 and therefore form a F-Spin multiplet [Bre85]
of Fmax = 13/2 ranging from Fz = -7/2 to Fz = 3/2. Since the levels are nearly degenerated, F-Spin is notonly a good quantum
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Figure 2.1: The experimental energy levels for selected nuclei belonging to an Fmax=13/2 multiplett. The levels are nearly degenerated
proving that F-Spin symmetry is approximately fulfilled.

number but also the symmetry condition seems to be fulfilled to a large extent. It should be noted that no other reason existto look
at this set of nuclei expect F-Spin. One can consider F-Spin as a reasonable - unfortunately rarely known - symmetry in nuclei. In
addition, the goodness of F-Spin is confirmed by the sheer fact that the IBM-1 - considering only states with F = Fmax - works so
well for low-lying states in general. Investigating the properties of MSS allows to test the validity of F-Spin symmetryfor the states
with F<Fmax.
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The IBM-2 transition operators have a simple form using the multipole operators of Eq.2.17. The M1-transition operatoris given
by

T(M1) =

r

3

4π
[gπLπ+ gνLν]µN

=

r

3

4π

�

Nπgπ +Nν gν

N
Ltot + (gπ − gν)

NπNν

N
(Lπ/Nπ −Lν/Nν)

�

µN ,

(2.23)

gπ and gν denote the proton and neutron boson g-factors. Typically, gπ=1 and gν=0 are chosen in calculations.Ltot denotes the
total angular momentum which is per construction a good quantum number and can not connect different states. Hence, transitions
are solely induced through the second term of Eq. 2.23. This term can only induce M1-transitions between states whichdiffer by
one unit of F-Spin [Pie08]. Therefore M1-transitions are exactly forbidden between two fully-symmetric states. Since, no other
M1-transitions are allowed, expect the one between a fully-symmetric state and a mixed-symmetric state, it can be used as a
unique experimental signature for identifying mixed-symmetric states. The difference between the boson g-factor amounts to∼1µN ,
consequently one can expect a M1-transition matrix elementof the order of〈FSS||T(M1)||MSS〉 ≈ 1µN . The E2-transition operator
is given by

T(E2) = eπQχππ + eνQχνν , (2.24)

where the quadrupole operatorsQχππ , Qχνν can be found in Eq.2.17 and eπ, eν are boson effective charges accounting for states
which contribute to the transition of interest but are not included in the small IBM-2 model space. Assuming that F-Spin symmetry
is fulfilled, the M1- and E2- transition matrix elements are in general proportional to the following factors

〈FSS||T(M1)||MSS〉 ∼ (gπ − gν)
p

NπNν

〈FSS||T(E2)||FSS〉 ∼ eπNπ+ eνNν

〈FSS||T(E2)||MSS〉 ∼ (eπ − eν)
p

NπNν .

(2.25)

Note that also the ground state is a fully-symmetric state. Since eπ ≈ eν the B(E2)-value between the 2+ms and the ground state is
reduced in contrast to the B(E2)-value connecting the 2+

1 and the ground state. Typically the values amount to severalW.u. for the
2+1 state and a weakly collective∼1 W.u. transition for the 2+ms state.

It is always very pleasant to have simple schemes and pictures in order to understand and interpret complex nuclear structure cal-
culations. The so called Q-phonon scheme is such a tool helping to understand the sometimes complicated results in the framework
of the IBM. In case of the IBM-1 it is assumed that the IBM wavefunctions for low-lying states can be approximated by applying
the quadrupole operator Q of Eq.2.4 on the strongly correlated ground state:

|2+
1
〉= NQQ|0+

1
〉, (2.26)

with NQ being a proper normalization constant. Following the Q-Phonon scheme higher-lying states can be understood as multi-Q-
Phonon excitatione.g. the two-phonon triplet

|J+〉= N
(J)

QQ (QQ)(J)|0+
1
〉 with J = 0, 2, 4. (2.27)

Indeed, this scheme works very well and it has been shown in Ref. [Pie94] that the deviations between the full IBM-1 wavefunctions
and the Q-phonon wavefunctions are always smaller than 7% for the 2+1 and the 4+1 .

In general one has to consider proton and neutron quadrupoleoperators as defined in Eq.2.17. Both operators can couple ina
symmetric and in an antisymmetric way. The symmetric coupling is identical to the Q-phonon operator of Eq.2.26

Qs = Qπ +Qν , (2.28)

while the antisymmetric coupling

Qms =Qπ − cQν , (2.29)

offers the possibility to describe mixed-symmetry states in the Q-Phonon scheme [Pie98b]. The constant c ensures orthogonality to
the symmetric state. The one-phonon 2+

ms occurs naturally by actingQms on the ground state

|2+
ms
〉 = NmsQms|0+1 〉. (2.30)

Besides the symmetric multi-phonon states of Eq.2.27 thereexists an additional class of multi-phonon states caused bya coupling
of the symmetric and the mixed-symmetric one-phonon states

|J+〉= N (J)
ms
(QmsQs)

(J)|0+
1
〉 with J = 0, 1, 2, 3, 4. (2.31)
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Figure 2.2: The symmetric and the mixed-symmetric one phonon states act as building blocks of collective nuclear structure. Shown
are the experimental signatures for mixed symmetry states.

Since the phononsQs andQms are distinguishable from each other, two-phonon states with quantum numbers 1+ and 3+ are allowed.
As in the case of the IBM-1, it has been shown that also for the IBM-2 the Q-Phonon scheme gives a good approximation for the
IBM-2 wavefunctions assuming good F-Spin. The Q-Phonon scheme makes the importance of the 2+

1 and 2+ms states apparent, they
act as building blocks of collective nuclear structure. Figure 2.2 displays the multiphonon structures in vibrationalnuclei in the
Q-phonon scheme. Also shown are the expected decay properties concerning M1- and E2-transitions.

In summary the experimental signatures for a one-phonon quadrupole mixed-symmetric state are

• enhanced M1-matrixelement to the 2+1 of the order of∼1µN

• weakly collective E2-transition to the ground state.

In the following the IBM-2 is not used for interpreting the MSS in 92Zr and94Mo. The calculations are done in the QPM which
is outlined in the next section. It is not easy to setup a quantitative connection between the MSS defined in the IBM-2 and the
corresponding state of the QPM which shares the aforementioned properties. Hence, in this thesis the identification of the MSS in
the framework of the QPM is simply done by searching for a state which exhibits the two crucial properties.
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2.2 The Quasiparticle Phonon Model

The Quasiparticle Phonon Model (QPM) is a phenomenological, microscopic model. It uses a separable force1 in the particle-hole
channel making it possible to include all relevant single-particle states for describing collective excitationi.e. no effective charges
are necessary to reproduce electromagnetic transition strengths. The golden horse of the QPM is the coupling of one-phonon states
to two- and three-phonon states - a feature which is unique tothe QPM. The next section describes technical aspects how the QPM
tackles the nuclear many-body problem followed by a sectionabout transition operators with a special focus on M1-transitions being
important for MSS.

2.2.1 General formalism

The phenomenological hamiltonian used in QPM calculationscontains four parts

Hqpm =Hsp +Hpair +Hm +Hsm, (2.32)

where:

• Hsp is the single-particle hamiltonian usually taken as a Wood-Saxon potential,

• Hpair absorbs the short range pairing correlations in the particle-particle channel,

• Hm represents a separable multipole interaction in the particle-hole channel,

• Hsm is a separable spin-multipole interaction in the particle-hole channel.

The QPM equations are obtained by a step-by-step diagonalization of the hamiltonian. In the following each of these steps is
examined in detail and realistic examples are provided for the case of92Zr. The discussion is limited to even-even nuclei and natural
parity states, therefore the last termHsm - being only important for unnatural parity states - is not considered here. Additional
information can be found in Ref. [Sol92].

First an appropriate mean-field potential is chosen - separately for protons and neutrons - to account for parts of the long-range
interaction. The common choice in case of the QPM is a Wood-Saxon potential of the form

Uτ(r) =
Vτ

0

1+ e(r−Rτ
0
)/aτ

0

−
ħh2

µ2c2

1

r

d

dr

�

Vτ
ls

1+ e(r−Rτ
ls
)/aτ

ls

l · s
�

+ Vc(r). (2.33)

Vc represents the coulomb potential andµ the reduced mass. All parameters are fitted to obtain a suitable description of the pro-
perties of nuclei in a given mass region with the restrictions Rτ

ls
= Rτ

0
, aτ

ls
= aτ

0
, and RC = Rp

0. Of course this treatment reflects the
phenomenology of the QPM approach, however in principle it would be possible to use a mean-field potential obtained in a self-
consistent way using Hatree-Fock and Skyrme Forces [Sol92]. This thesis considers the nuclei92Zr and94Mo. The Wood-Saxon
parameters used to calculate the properties of these nucleiare shown in Tab.2.1. In Fig. 2.3 is presented the resulting single particle

V0

(MeV)
R0

(fm)
a0 (fm) V ls

(MeV)
neutrons -44.70 5.802 0.6200 -9.231
protons -56.70 5.577 0.6301 -9.609

Table 2.1: Parameters of the Woods-Saxon potential used to calculate the properties of 92Zr and 94Mo.

spectra for neutrons (a) and protons (b). To obtain the ground state configuration one simply fills in the available numberof nucle-
ons from the bottom to the top accounting for the pauli principle. At this stage the model is called independent shell model and can
describe only some properties of magic nuclei. For giving a realistic description of nuclei the residual interaction codified in the last
three terms of Eq. 2.32 has to be taken into account.

Monopole pairing is known to be by far the strongest residualinteraction. This property of the nuclear force manifests in several
fundamental experimental signatures like the 0+ ground state in even-even nuclei, the odd-even mass staggering or the different level
densities of even-even and even-odd (odd-odd) nuclei. The pairing force tends to couple like nucleons to spin-zero pairs causing
nuclear superfluidity conceptually very similar to the superfluidity found in solid state physics. The main theoreticaltool to account

1 A separable force is defined asV(r1,r2) = V(r1)V(r2).
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(a) (b)

Figure 2.3: The single particle spectra for neutrons (a) and protons (b) calculated with the Woods-Saxon parameters in Tab. 2.1. The
single particle energies are counted relative to the depth of the potential in Eq. 2.33 neglecting the second term.

for this effect is the BCS theory developed by Bardeen, Cooper and Schrieffer in 1957. As an ansatz for the nuclear ground state a
wavefunction is chosen, which reflects the superfluid-character of nuclei

|BCS〉 =
∏

k>0

(uk + v ka+
k

a+
k̄
)|0〉, (2.34)

where k runs over the whole single particle basis,|0〉 is the vacuum state and̄k represents the time-reversed state of k,i.e. in a
spherical basis k = (n, j, l, m) and̄k = (n, j, l, -m). The square of the coefficients uk and vk can be interpreted as the probability that
the state k is either empty or occupied by a nucleon pair. In QPM calculations pairing correlations are absorbed in thesecond term
Hpair of Eq.2.32

Hpair =−
n,p
∑

τ

G(0)τ

∑

j, j′

p

(2 j + 1)(2 j′ + 1)[a+
jm

a+
j−m
]00[a

+

j′−m′a
+

j′m′]00, (2.35)

where

[a+
j

a+
j′]λµ =
∑

m,m′
C
λµ

jm j′m′a
+
jm

a+
j′m′ . (2.36)

Cλµ
jmj′m′ is the common Clebsch-Gordan coefficient. The structure of the pairing hamiltonian is very simple and assumes that monopo-

le pairing is of zero-range and state-independent as indicated by the constant matrix element G(0)τ . In principle the latter assumption
is not fully justified and more refined treatments are recommended like using a density dependent pairing force [Sev08]. However
the QPM is able to account for the main properties of spherical nuclei and therefore this treatment seems to be acceptable.
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(a) (b)

Figure 2.4: The BCS ground state for neutrons (b) and protons (b) calculated within the QPM for 92Zr. The pairing force ensures a
non-zero occupation probability of single-particle states above the fermi surface λF .

(a) (b)

Figure 2.5: The probability density for a (2d5/2⊗2d5/2) two-quasiparticle state (a) and the four lowest two-quasiparticle states relative
to the BCS ground state in 92Zr (b) (blue for neutron and red for protons).
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The ansatz for the BCS ground state exhibits the important caveat of having no distinct particle number. Of course this isa bad
assumption for calculating the properties of finite nuclei.Therefore the variational principle - the common method to determine the
coefficients uk and vk - has to be applied under the constraint that

〈BCS|N|BCS〉= N . (2.37)

This can be easily implemented by using Lagrange multiplicators. The corresponding equation for calculating the BCS-ground state
reads

δ
¦

〈BCS|Hsp +Hpair |BCS〉 −λ〈BCS|N|BCS〉
©

= 0, (2.38)

λ is the chemical potential or fermi leveli.e. the energy which is on average necessary to add an additionalparticle. The result of
this minimization procedure are the well-known BCS equations which allow to determine the coefficients uk and vk. It is very useful
to introduce so called quasiparticles via the Bogoliubov transformation

α+
k

:= uka+
k
− v kak̄

α+
k̄

:= uka+
k̄
− v kak.

(2.39)

This definition allows to rewrite the BCS ground state as

|BCS〉 ∼
∏

k>0

(αk̄αk)|0〉. (2.40)

On the one hand the BCS formalism allows to interpret pairwise interacting particles asnon-interacting quasiparticles which is a
highly efficient way to account for pairing correlations on the other hand the price one has to pay is the loss of the distinct particle
number. In Fig. 2.4 is presented the BCS ground state of92Zr - neutrons (a) and protons (b) - calculated within the QPM.The
non-zero occupation probabilities for single-particle levels above the fermi-surfaceλ highlights the important feature of the pairing
force being able to scatter pairs of nucleons over differentj-shells. Therefore the fermi-surface is dissolved in dependence of the
pairing matrix element G(0)τ . The pairing constants G(0)

n
and G(0)

p
are fitted to odd-even mass differences in the neighbouring nuclei.

Examining Eq.2.40 makes clear that the BCS ground state can be considered as the quasiparticle vacuum

αk|BCS〉= 0, (2.41)

analogously as|0〉 is the vacuum of particles. Hence, in even-even nuclei two-quasiparticle excitations can be written as

|φ〉 = α+
k1
α+

k2
|BCS〉. (2.42)

Similarly to the particle-hole excitation spectrum in the independent shell model one can introduce a quasiparticle excitation spec-
trum relative to the BCS-ground state with the pleasant feature that pairing correlations are already included. On the left-hand-side
of Fig. 2.5 is shown the occupation probability for the (2d5/2⊗2d5/2) two-quasiparticle states and on the right-hand-side the four
lowest two-quasiparticle excitations in92Zr. The quasiparticle energies can be calculated from the coefficients uk and vk with the
equation

ε j =
Æ

∆2
τ+ (E j −λτ)2 (2.43)

where Ej is the single-particle energy from the Wood-Saxon potential and∆τ is the so called pairing gap

∆τ = G(0)τ

∑

j

u jv j. (2.44)

In the third step of the diagonalization procedure Hm is included being responsible for the mixing of quasiparticle states. In the
quasiparticle representation the hamiltonian of Eq. 2.32 can be written as

Hqpm =

n,p
∑

τ

±1
∑

τρ

∑

j,m

ε jα
+
jm
α jm+
∑

λµ

±1
∑

τρ

(κ
(λ)
0 +ρκ

(λ)
1 )M

+
λµ
(τ)M+

λµ
(ρτ), (2.45)

where the multipole operator is given by

M+
λµ
=

τ
∑

j j′

f
(λ)

j j′p
2λ+ 1

�u
(+)

j j′

2
([α+

j
α+

j′]λµ + (−1)λ−µ[α+
j
α+

j′]λ−µ)− v
(−)
j j′ Bτ( j j′;λµ)

�

, (2.46)

Bτ( j j′;λµ) =
∑

mm′
(−1) j

′−m′C
λµ

jm j′m′α
+
jm
α+

j′m′ . (2.47)
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The reduced matrix element fλ
j j′ = 〈 j||i

λ f τλ (r)Yλ(Ω)|| j′〉 contains the radial dependence fτ
λ(r) of the residual interaction. The

following combination of Bogoliubov’s coefficients are introduced u(±)
j j′ = ujv j′± uj′v j and v(∓)

j j′ = ujuj′∓ v jv j′ . The QPM uses a
separable interaction in the particle-hole channel. This assumption is an oversimplification of the nuclear force, butnot as bad as
it seems,e.g. in Ref. [Knu76] it was shown that more realistic matrix elements can be approximated to a reasonable extend with a
separable force. The advantage in using a separable force isan enormous simplification concerning technical and numerical aspects
when diagonalizing the hamiltonian of Eq. 2.45. Of course, the aim is to diagonalize the hamiltonian exact, because of the infinite
dimension of the eigenvalue problem this is prohibited. In order to find a suitable truncation scheme, one can write the ground state
or any other state in the following way

|ψν 〉= Cν0 |BCS〉+
∑

m,i

Cνmiα
+
mα
+
i |BCS〉+
∑

m,i,n, j

Cνmn,i jα
+
mα
+
nα
+
i α
+
j |BCS〉+ ... (2.48)

The first and the second term should contribute with the largest amplitudes from a perturbation theory viewpoint motivating the
ansatz for a set of operators which project the groundstate on the excited states

Q+
λµi
=

1

2

n,p
∑

τ

∑

j j′
{ψλi

j j′[α
+
j
α+

j′]λµ − (−1)λ−µφ
λµ

j j′ [α jα
′
j
]λ−µ}. (2.49)

This approach is called Quasiparticle Random-Phase Approximation (QRPA). From Eq. 2.49 one sees immediately thatQ|BCS〉 6=
0, so the simple BCS-vacuum is not equivalent to the QRPA-vacuum. Instead, four, eight, twelve etc. quasiparticle configurations
are expected to appear in the QRPA-vacuum causing a so called’correlated ground state’.

The QRPA equations for determining the coefficientsψλi

j j′ (forward amplitude) andφλi

j j′ (backward amplitude) can be obtained
in many ways. The most elegant one is the Equation of Motion method discussed in Ref. [Shu07]. An other one is to apply again
the variation procedure

δ

�

〈QRPA|Hqpm|QRPA〉 − (ωλi/2)

�

∑

j j′
{(ψλi

j j′)
2 − (φλi

j j′)
2} − 2

��

= 0, (2.50)

where|QRPA〉 is the QRPA-vacuum andωλi the energy of the i-th phonon with multipolarityλ. The explicit equations can be found
in most nuclear structure textbooks (e.g. Ref. [Shu07]). The forward and backward amplitudes fulfill the normalisation condition

∑

j j′
[ψλi

j j′ψ
λi′
j j′ −φ

λi

j j′φ
λ′ i′
j j′ ] = 2δii′δλλ′ . (2.51)

The amplitudes are nomalised for some historical reasons totwo. It is worth pointing out that the QRPA solutions containcollective
- e.g. the [2+1 ]RPA and the [3−

1
]RPA - as well as non-collective solutions namely nearly pure two-quasiparticle excitations which are

not included in the space of the IBM. To avoid misunderstandings it should be mentioned that in the QPM language every solution
of the QRPA equations is called a phonon, in contrast to the geometrical model of Bohr-Mottelson or the IBM, where only collective
excitations are referred to as phonons.

Diagonalizing the hamiltonian of Eq. 2.45 in the space of one-phonon states, given by the solutions of Eq. 2.50, yields

H =
∑

λµi

ωλiQ
+
λµi

Qλµi +Hint . (2.52)

As indicated by the presence ofHint , the QPM-hamiltonian is not completely diagonal in the space of the one-phonon states. The
off-diagonal termHint is responsible for the crucial mixing between the differentphonons. Its origin can be traced back to the
presence ofBτ( j j′;λµ) in Eq. 2.45. Therefore the most general wavefunction can be written as a mixture of one-, two- , three- etc.
phonon states

ψi(J) =

�

∑

α1

Si
α1
(J)Q+α1

+
∑

α2≤β2

Dα2β2
(J)
p

1+ δα2β2

[Q+α , Q+
β
]J+

+
∑

α3≤β3≤γ3

Ti
α3β3γ3

(J)
p

1+δα3β3γ3

[Q+α3
Q+
β3

Q+γ3
]J + ...

�

|QRPA〉,
(2.53)

where

δα3β3γ3
= δα3β3

+ δα3γ3
+ δβ3γ3

+ 2δα3β3
δα3γ3

. (2.54)

Most of the RPA and QRPA calculations include only one-phonon states since a coupling to two- and three-phonon states complicate
the whole calculation drastically concerning numerical aswell as technical aspects. However two- and three-phonon states are known
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to have a pronounced influence on the properties of low-lyingstates. For example the 2+1 state in even-even nuclei is without two-
and three-phonons states too high in energy, only after a coupling to more complex configurations it is pushed down in energy.
Therefore in many calculations - which stay on the one-phonon level - a direct comparison to experiment is difficult. For the QPM
the situation is different. Since it uses a separable force -which allows an enormous simplification of the calculation procedure - an
inclusion of up to three-phonon states is possible and one can compare the results directly to experiment. In order to determine the
coefficients S, D and T in Eq. 2.53 the resulting equations of the following minimization procedure are solved

δ

�

〈ψi(J)|H|ψi(J)〉 − Ei〈ψi(J)|ψi(J)〉
�

= 0. (2.55)

Their explicit form is given in Ref. [Ber99]. It is worth pointing out that no additional parameters have been introducedto account
for the phonon coupling. In the following two different types of calculations are presented which stop at different stages in the
diagonlization procedure. The ’QPM results’ contain all four steps, while the ’QRPA results’ stop after the third step,i.e. the
coupling to multiphonon states is not included.

2.2.2 Electromagnetic transition strengths and densities

Besides excitation energies electromagnetic decay properties are an excellent observable for testing model predictions and to deepen
our understanding of nuclear structure,e.g. they can give important informations about collective phenomena signaled by large
transition strengths. In the following the expressions fortransitions being important for MSS are discussed. In the quasiparticle and
phonon representation the electric transition operator transforms into

M (Eλµ) =
n,p
∑

τ

e(λ)τ

∑

j j′

〈 j||Eλ|| j′〉
p

2λ+ 1

�u
(+)

j j′

2

∑

i

(ψλi

j j′ +ϕ
λi

j j′)(Q
+
λµi
+ (−)λ−µQλ−µi)

+v
(−)
j j′

∑

mm′
C
λµ

jm j′m′(−)
j′−m′α+

j′m′α j′−m′

�

(2.56)

where the single-particle transition matrix element〈 j||Eλ|| j′〉 = 〈 j||iλYλrλ|| j′〉. The first term corresponds to a one-phonon ex-
change term between the initial and final state, while the second one is a so called boson-forbidden transition,i.e. in a pure boson
picture - neglecting the inner fermion structure of the Q-operators - this transition would be forbidden. The eτ represents effective
charges to account for states outside the chosen model space. In the shell model typical values are en = 0.5 and ep = 1.5. Since the
QPM uses a drastically larger model space containing all necessary states contributing to the transition of interest, it is possible to
take the bare values en = 0 and ep = 1.The explicit reduced matrix element for a ground state transition of a one-phonon state is

〈Qλi ||M (Eλ)||0+g.s.
〉=

n,p
∑

τ

e(λ)τ

∑

j, j′

u
(+)

j j′

2
〈 j||Eλ|| j′〉(ψλi

j j′ +ϕ
λi
j j′). (2.57)

For the discussion of mixed-symmetry states magnetic transitions are of outmost importance. The M1-transition operator has a
similar structure as Eq. 2.56 and contains a boson-forbidden part [Sol92]. This part allows M1-transition which are forbidden in the
IBM-2. The expression for magnetic transitions with multipolarity λ1 between two RPA-one-phonon states with multipolaritiesλ3

andλ2 is given by

〈Qλ3 i ||M (Eλ1)||Qλ2 i′〉=
p,n
∑

τ

∑

j1 j2 j3

v
(+)

j j′ · 〈 j1||Mλ1|| j2〉

·
�

λ3 λ2 λ1

j1 j2 j3

�

(ψ
λ3

j2 j3
ψ
λ2

j3 j1
+φ

λ3

j2 j3
φ
λ2

j3 j1
).

(2.58)

In addition to absolute electromagnetic transition strengths, transition densities constitute an excellent observable to give detailed
information about the nature of nuclear wavefunctions. If one restricts to the one-phonon part of the wavefunction the transition
density can be written as

ρν (r) =
∑

i

Sν
i
(J)ρJ

i
(r) (2.59)

with

ρJ
i (r) =

N ,Z
∑

j j′

u
(+)

j j′

2
ρJ

j j′(r) · (ψ
J i

j j′ +ϕ
J i

j j′). (2.60)
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The two-quasiparticle transition densitiesρJ

j j′ can be written as

ρJ

j j′(r) = (−1) j− 1
2 i l′−l−J

ĵ ĵ′

4Ĵ
p
π
(1+ (−1)l+l′+J )

®

j
1

2
j′
−1

2

�

�

�

�

J0

¸

p∗
j
(r)p j′(r), (2.61)

pj stands for the radial part of the single-particle wavefunction obtained from the Woods-Saxon potential of Eq. 2.33. Each two-
quasiparticle transition density has its own specific radial dependence. The different radial behaviour is the basic requirement for
the new signature for MSS presented in section 5.2.
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3 The Experiment
The electron and proton scattering experiments were performed at the linear accelerator S-DALINAC in Darmstadt and at the
iThemba LABS cyclotron located in Somerset West, South Africa, respectively. The experimental setups and data taking conditions
are described in this chapter.

3.1 Electron scattering at the S-DALINAC

This section gives an outline of the S-DALINAC, the electronscattering setup at the spectrometer and the detector system on the
focal plane.

3.1.1 The S-DALINAC

The first European superconducting electron linear accelerator S-DALINAC delivers high-quality electron beams since1991. It
covers the low-energy range between 2.5 and 130 MeV with currents up to 40µA used in a variety of experiments. A schematic
layout of the S-DALINAC is shown in Fig. 3.1. The electrons are emitted by a thermionic gun and accelerated electrostatically

1

2

3

4

5

Experimental HallAccelerator Hall

Figure 3.1: Floor plan of the S-DALINAC with its experimental setups: HIPS 1©, polarizability of the nucleon 2©, low energy tagger
NEPTUN 3©, QCLAM spectrometer 4© and Lintott spectrometer 5©.

to an energy of 250 keV. A chopper/prebuncher system operating at room temperature generates electron bunches. Afterwards the
bunches enter the superconducting injector linac consisting of several niobium cavities cooled to 2 K. The electrons are accelerated
in the injector up to 10 MeV at maximum and can be directly usedat the High Intensity Photon Setup (HIPS) [Moh99] for nuclear
resonance flouresence or photoactivation experiments1©. Alternatively, the beam can be injected in the main superconducting linear
accelerator which provides an energy gain of up to 40 MeV. Either the electrons are extracted right away to the various experiments
or - if a higher energy is needed - they can be recirculated once or twice providing a maximum energy of 130 MeV.

In the experimental hall on the right hand side of Fig. 3.1, a wide range of nuclear physics questions can be addressed by various
experimental setups. The electron beam can be converted into bremsstrahlung photons and used for studying the polarizability of
the nucleon2© [Yev10] or for (γ,γ′) experiments at the low-energy photon tagger NEPTUN3© [Sav10]. Two spectrometers are
available for electron scattering experiments. The QCLAM spectrometer4© [Lüt95] offers the possibility to investigate nuclear
current distributions at a scattering angle of 180◦. For the electron scattering experiments performed in thisthesis, the Lintott
spectrometer5© [Wal78] was used. In contrast to the QCLAM the Lintott offersthe possibility to work in the energy-loss mode
resulting in a high energy resolution.
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3.1.2 High-resolution electron scattering facility

The Lintott spectrometer is used for high-resolution electron scattering experiments. Figure 3.2 presents a schematic picture. The
electron beam enters from the left and hits the target placedat the Pivot point1© of the spectrometer. The scattered electrons
enter the dipole magnet of the spectrometer2© where they are momentum analyzed and finally hit the focal plane 3© with a
position sensitive detector system. The electrons at the central trajectory are deflected by 169.7◦ - the so called magic angle - which

1

2

3

Figure 3.2: The Lintott spectrometer at the S-DALINAC. The yellow lines mark the incoming and scattered electrons. The target is
placed at the pivot point 1© of the spectrometer. The scattered electrons are momentum analyzed in the spectrometer
magnet 2©. At the focal plane 3© is placed a position sensitive detector system.

was chosen to improve the ion-optical properties of the spectrometer. The solid angle acceptance is relatively small with 6 msr.
The Lintott provides a high energy resolution up to∆E/E = 1.5·10−4. Some important parameters of the Lintott spectrometer are
summarized in Tab. 3.1.

Electron energy range 20 - 120 MeV
Momentum acceptance± 2.1%
Energy resolution 1.5·10−4

Angular range 33◦ - 165◦

Angle step 12◦

solid angle acceptance 6 msr

Table 3.1: Main parameters of the Lintott spectrometer.

The energy resolution in experiments with charged particles is limited by the beam energy spread which amounts typically to
∆E/E = 10−3, i.e. for the Lintott spectrometer this factor is one order of magnitude larger than the intrinsic energy resolution. The
so called energy loss mode allows to perform scattering experiments independently of the beam energy spread. The elements of the
beam line are used to project the beam as an extended spot on the target with a size corresponding to the beam energy spread∆E.
The electrons leaving the target enter the spectrometer at slightly different positions and under slightly different angles causing a
variaton of trajectories inside to spectrometer magnet. Ifthe properties of the beam line elements are matched with theion optical
properties of the spectrometer, all electrons exciting thetarget nuclei in the same energy state can be focused at the same point on
the focal plane making the energy resolution independent ofthe beam energy spread.

A picture of the focal plane detector system is shown in Fig. 3.3. It is based on a modern silicon micro strip detector unit and fast
readout electronics allowing a high spatial resolution andhigh count rates [Len06]. The focal plane - having a length of24 cm - is
too large for one single micro strip detector. Therefore four micro strip detectors are mounted together covering the full focal plane.
Each consists of 96 strips with a thickness of 500µm and a pitch of 650µm. The gaps between them are responsible for the blind
regions seen in the electron scattering spectra (see section 5.2). If necessary the gaps can be filled by changing slightly the magnetic
field strength of the spectrometer magnet.
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Figure 3.3: The detector system on the focal plane of the Lintott spectrometer consists of the following elements: Magnetic spectrometer
iron yoke 1©, vacuum connections of bias signals to the preamplifiers 2©, vacuum connections of the preamplifiers analog
signals 3©, detector unit 4©, vacuum connections of supply voltages and control signals of preamplifiers 5©, detector case
6© and readout electronics and HV main adaptor 7© (slightly modified from Ref. [Len06]).

3.2 Proton scattering at iThemba LABS

The proton scattering experiments were carried out at the cyclotron of iThemba LABS in South Africa. The facility and theexperi-
mental setup are outlined in this section.

3.2.1 iThemba LABS

A floorplan of the iThemba LABS is presented in Fig. 3.4. The facility covers a wide range of applications like proton6© and
neutron therapy7©, radioactive isotope production5©, γ - spectroscopy10© and the high-resolution K600 spectrometer11© which
was used for the proton scattering experiments described inthis thesis. The particles are initially accelerated usingone of the two
solid-pole injector cyclotrons (SPC). The first one2© is used for the acceleration of light-ions, while the secondone 3© is mainly
used for heavy ions and polarized protons. The heart of the facility is a separated-sector cyclotron4© which consists of four sectors,
each with an angle of 34◦ where the particles from the injectors are further accelerated up to the required energy. The maximum
energy achievable for protons is 200 MeV.

3.2.2 K600 spectrometer

A schematic picture of the light-ion spectrometer K600 usedin the proton scattering experiments is shown Fig. 3.5. The protons
from the separated sector cyclotron enter the scattering chamber and hit the target at1©. The beam is stopped in a corresponding
Faraday cup. A set of collimators3© define the solid angle which amounts to 6 msr at maximum. The scattered protons pass a
sextupole magnet4© and a quadrupole magnet5© used for focusing the beam vertically. Afterwards the protons enter the first6©
and the second dipole magnet7© where they are momentum analyzed and finally focused on the focal plane. The detector system
on the focal plane consists of two horizontal and one vertical multiwire drift chamber8© for event reconstruction. Additional plastic
scintillators 9© located behind the focal plane are used as a trigger and for particle identification. The energy resolution achieved for
protons amounts to∆E/E≈ 1·10−4. As in the case of electron scattering the energy resolutionis independent of the beam energy
spread due to the energy-loss mode.
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Figure 3.4: Floor plan of the iThemba LABS facility in South Africa with its main experimental setups: Ion source 1©, SPC1 injector
cyclotron 2©, SPC2 injector cyclotron 3©, separated-sector cyclotron 4©, radioactive isotope production 5©, proton therapy
6©, neutron therapy 7©, experiments with charged particles 8©, experiments with neutron beams 9©, γ-spectroscopy 10©,

K600 spectrometer 11© and beam swinger magnet 12© (slightly modified from Ref. [New96]).
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Figure 3.5: The K600 spectrometer at iThemba LABS: Scattering chamber 1©, internal Faraday cup for small-angle scattering ex-
periments 2©, set of collimators 3©, sextupole magnet 4©, quadrupole magnet 5©, first dipole magnet 6©, second di-
pole magnet 7©, two horizontal and one vertical drift chamber 8© and two plastic scintillators 9© (slightly modified from
Ref. [New96]).
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4 Data analysis and results
This chapter describes the data analysis and results for theproton and electron scattering experiments discussed in this master thesis.
The first part examines the proton scattering experiments at92Zr and94Mo. Both experiments were carried out at the iThemba LABS
facility located in South Africa using the high-resolutionK600 spectrometer. The second part describes the electron scattering
experiment at92Zr which was performed at the S-DALINAC using the Lintott Spectrometer. The investigations and conclusions of
the following chapters are based on the results obtained in this chapter. In addition electron scattering data on94Mo described in
Ref. [Kuh05] are reanalyzed.

4.1 Proton scattering

This section is organized as follows. First the data taking conditions are described concerning target properties, scattering angles,
achieved energy resolutions and measured spectra. Next theprocedure how to extract the cross sections and error estimates are
discussed. Subsequently the DWBA analysis performed to assign spin and parity quantum numbers to excited states is outlined.
Finally, the results for the proton scattering experimentsat 92Zr and 94Mo are presented and compared to the results of Refs.
[Sin09, Fra05]. The properties of important transitions are discussed and the isoscalar B(E2)- and B(E4)-strengths distributions are
compared to QPM predictions.

4.1.1 Data taking conditions

The experiments were carried out at the cyclotron of iThembaLABS using the K600 spectrometer. Both measurements were
performed during the same beam time in 2005 under identical kinematical conditions,i.e. the maximum available beam energy of
Ep = 200 was chosen and the spectrometer angles were varied between 4◦ and 26◦. In total 14 spectra were measured for94Mo and
12 for 92Zr. Due to the energy loss mode - which is available at the K600spectrometer - the energy resolution amounts to∆E≈
35 keV. Typically the beam currents varied between 1 and 30µA depending on the scattering angle. For the94Mo experiment a
self-supporting foil enriched to 93.9% and 1.2 mg/cm2 areal density have been used. The92Zr target was also self-supporting with
an enrichment of 93.4% and an areal density of 1.3 mg/cm2. In both nuclei the maximum excitation energy in the analysis was∼4
MeV. At energies above 4 MeV the level density is too high to resolve the excited states unambigously. Table 4.1 summarizes the
main experimental parameters of both reactions.

92Zr 94Mo
areal density of the target 1.3 mg/cm2 1.2 mg/cm2

enrichment of the target 93.4% 93.9%
energy resolution ∼ 35 keV ∼ 35 keV
beam energy 200 MeV 200 MeV
beam currents 1 - 30µA 1 - 30µA
measured spectra 14 12
evaluated energy range 0 - 4 MeV 0 - 4 MeV

Table 4.1: The main parameters of the 92Zr(p,p′)- and the 94Mo(p,p′)-experiments.

Figure 4.1 displays four representative spectra for the92Zr(p,p′)- (upper part) and94Mo(p,p′)-reactions (lower part). Important
transition are marked with an arrow. The elastic lines are scaled down with the corresponding factors given in the figuresfor
illustration purposes.
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Figure 4.1: Representative spectra of the 92Zr(p,p′) and 94Mo(p,p′) reactions measured at 200 MeV. Prominent transitions are labeled
with their spin and parity quantum numbers. The elastic transitions are scaled with the corresponding factors given in the
figures.
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4.1.2 Determination of the cross sections and energy calibration

The absolute center-of-mass (c.m.) differential cross section of the state of interest was calculated using the formula

dσ

dΩ
(θc.m.) =

J · Aex p · cos(θ/2)

Np ·∆Ω · nt · ε
, (4.1)

where

• J is the Jacobian to transform the differential cross sections from the laboratory to the center-of-mass system,

• Aexp is the peak area of the state of interest,

• nt is the number of92Zr or 94Mo target nuclei per unit volume,

• cos(θ /2) is a factor to correct the target thickness to an effective one, whereθ is the angle relative to the beam

• Np is the total number of protons incident on the target,

• ε is the efficiency of the drift chambers (see Fig. 3.5),

• ∆Ω is the solid angle covered by the by the entrance collimator to the spectrometer.

In the following some remarks are made to the various quantities. The peak areasAex p are obtained by fitting the spectra with
the peak fitting software SFit [Fuji]. The physical background from hydrogen contaminations in the target was estimatedby an
empirical smooth function. The line shape was taken to be identical to the elastic peak shapes in each spectrum. For each peak only
the height and the position of the centroid were treated as free parameters.

The number of target nuclei was calculated using the equation

nt =
t ·ρ · NA · εd

M
, (4.2)

where t is the thickness of the target,ρ is the bulk density of the target,NA is Avogadro’s constant,εd the isotopic enrichment
andM is the atomic mass of the target nuclei of interest. In the present experiment the target was placed in the so-called transition
geometry,i.e. the protons pass always the same effective path lengthteff in the target which is given by

teff = t/cos(θ/2). (4.3)

The cross section were corrected for the detection efficiencies ε of the multiwire drift chambers and for the dead time of the
electronics. Typically, the total detection efficiency amounts to 85%. The solid angle covered by the collimator was determined to
be 1.166 msr.

Since no reference measurements are available for energy calibration in both nuclei, prominent and well known transitions were
used to calibrate the spectra. Due to the results of the (n,n′γ)-reaction states with well known energy, spin and parity quantum
numbers are available which can be used for the calibration up to 3.5 MeV. Hence, the missing reference measurements are not a
serious caveat and a meaningful energy calibration can be performed up to∼4 MeV.

4.1.3 Error estimate

The measured (p,p′) cross sections contain statistical as well as systematical errors. The total uncertainty of measured cross sections
includes:

• statistical uncertainties in the peak area determination3-10%

• uncertainties in the determination of the solid angle∼1%

• statistical uncertainties in the determination of the accumulated charge in the Faraday cup∼1%

• error in dead-time corrections∼1%

The errors were treated as independent from each other and taken to be the square root of the sum of the squared systematic and
statistical errors.
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4.1.4 DWBA analysis

In order to assign spin and parity quantum numbers to the excited states, a DWBA analysis was performed in the framework ofthis
thesis using the coupled-channel program CHUCK3 [Kunz]. The distorted waves in the entrance and exit channels were generated
by solving the Schrödinger equation with the optical potential

U(r) = Vc(r)− V f
v
(r, R

v
, a
v
) + Vls

�

ħh

mπc

�2

(l · s)
1

r

d

dr
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+ i
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(4.4)

considering Coulomb, central volume, imaginary volume, spin-orbit and imaginary spin-orbit potentials. The nuclearpotential form
factors are chosen to have a a Wood-Saxon type given by

fk =

�

1+ exp

�

r − Rk

ak

��−1

, (4.5)

with radiusRk = rkA1/3 and diffusenessak. The Coulomb potential was taken to be of standard form

Vc(r) =







Zp Zt (3−(r/Rc)
2)

2Rc
, r < Rc

Zp Zt

r
, r > Rc

(4.6)

whereZp is the charge of the projectile,Zt is the charge of the target andRC is the Coulomb radius. The optical potential parameters
are displayed in Tab. 4.2 for92Zr. For 94Mo a slight modification of the parameters was necessary. Theparameters were fitted to
the elastic cross sections starting from the set of Ref. [Sch82]. The transition potential was taken to be the derivativeof the optical

Woods-Saxon potential LS potential
V (MeV) r (fm) a (fm) V (MeV) r (fm) a (fm)

Re 17.520 1.257 0.750 -2.484 1.021 0.787
Im -10.980 1.253 0.822 1.853 1.020 0.592

Table 4.2: The parameters of the optical potential used for 92Zr.

potential weighted with a spin dependent factor rJ+2, i.e. for a given spin the calculated angular distributions have the same shapes
regardless of the microscopic structures of the consideredstates.

The angular distributions of the cross sections are used to assign spin and parity quantum numbers to the excited states.The
requirement for an unambiguous spin-parity assignment in the present work were: Agreement between theory and experiment over
the complete measured angular range. The requirement for a tentative spin-parity assignment was: The position of the first maxima
between theory and experiment are in agreement. Otherwise no quantum numbers are assigned. At 200 MeV the protons interact
mainly isoscalar [Fra85] with the target nuclei and excite natural-parity states1, i.e. from the spin quantum number follows directly
the parity quantum number. It would be possible to extract anisoscalar transition strength for each state from the quantity

β2
L
=

�

dσ

dΩ

�ex p

L

��

dσ

dΩ

�DW BA

L

(4.7)

and compare it to predictions of the QPM. In this thesis a morefundamental way was chosen to compare QPM results to the data
which is described in section 4.1.7.

For most of the states the one-step cross section of the collective model is sufficient and the experimental cross sections are
reasonably well described. The comparison between theory and the experimental data is shown in Fig. 4.2 and Fig. 4.3 for92Zr and
in Fig. 4.4 and Fig. 4.5 for94Mo.

However, there are two exceptions. For the symmetric quadrupole two-phonon states in92Zr and 94Mo the description by a
pure one-step excitation fails, due to large two-phonon components in the wave functions. For all other states two-stepprocesses
can be neglected. This is especially the case for the 2+

5
in 94Mo which is claimed to have a cross section shape pointing to a

two-phonon nature in Ref. [Bur07]. However, the deviationsfrom a one-step cross section shape at higher scattering angles are
due to the excitation of the 6+2 (2872.4 keV) which is close in energy to the 2+5 (2870.0 keV). The 6+ cross section has its first

1 Natural-parity states are defined as states its spin and parity are connected by the relationπ = (-1)J .
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maximum approximately at the first minimum of the 2+ cross section. Therefore, the enhancement of the 2+
5

cross section seen at
larger scattering angles can not be attributed to the two-phonon nature of this state. Indeed at smaller scattering angles - where the
6+2 should contribute only weakly to the total cross section - a pure one-step cross section achieves a good description. This is in
agreement with the results of Ref. [Bur75]. Two-step processes will play only a role for nearly pure two-phonon states like for the
2+2 in 94Mo and the 2+3 in 92Zr.

The second exception is the mixed-symmetry state in94Mo (and to a smaller extend the MSS in92Zr). Due to its isovector cha-
racter the cross section shape differs significantly from collective model predictions. In order to describe these states, a microscopic
treatment is needed. This is the main topics of this master thesis and will be discussed in chapter 5.

In the following sections the results of the coupled-channels analysis is discussed for92Zr and94Mo. In total 19 unambiguously
and 2 tentative spin-parity assignments could be made for92Zr. For 3 states no spin could be assigned. For94Mo 17 angular distri-
butions of cross sections could be measured with 13 unambiguously and 2 tentative assignments. Each of the angular distributions
is shown and all transitions are discussed. It should be mentioned that - expect for some states in94Mo - no new spectroscopic
information could be obtained from the present proton scattering experiments. Both nuclei are already measured in other hadron
and (n,n′γ) reactions with better energy resolutions. The aim of this work is not to obtain new spectroscopic informations but to use
the data for new insights in the properties of mixed-symmetry states. This will be discussed in the following chapters.

Tables 4.3 and 4.4 display the observed excited states and the assigned quantum numbers for92Zr and94Mo, respectively. In
Figs. 4.2-4.5 the experimental cross sections are comparedto collective model predictions. Each transition is discussed in detail.

4.1.5 Proton scattering results for 92Zr

No Ex Ex Ex Jπ Jπ Jπ (dσ/dΩ)max B(EL)IS

(keV)1 (keV)2 (keV)3 ( mb/sr )1 ( s.p.u. )2

1 937(1) 935 934.5(1) 2+ 2+ 2+ 7.59 15.5
2 1496(3) 1495 1495.5(1) 4+ 4+ 4+ 0.48 6.6
3 1849(1) 1847 1847.3(1) 2+ 2+ 2+ 1.91 2.4
4 2062(2) 2053 2066.6(1) 2+ 2+ 2+ 1.0
5 2187(3) 2182 2186.3(1) 2+ (2+) 2+

6 2339(1) 2334 2339.6(1) 3− 3− 3− 9.41 35.2
7 2394(4) 2393 2398.4(1) 4+ 4+ 4+ 0.47 1.7
8 2490(3) 2482 2485.9(2) 5− 5− 5− 0.42 10.0
9 2749(2) 2757 2747.9(2) 3− 3− 3−

10 2814(4) 2823 2819.6(1) 2+ 2+ 2+ 0.23 0.5
11 2859(3) 2869 2864.7(2) 4+ 4+ 4+ 0.32 4.3
12 2948(5) 2963 2957.7(5) 6+ (6+) 6+ 0.07 4.0
13 3047(3) 3055 3057.5(3) 2+ 2+ 2+ 0.24 0.7
14 3181(2) 3187 3178.3(2) (4+) 4+ 4+ 0.20 2.3
15 3236(4) 3248 3236.9(6) (4+) 4+ 4+ 0.16 1.9
16 3264(2) 3273 3262.9(4) 2+ 2+ 2+ 0.85 0.8
17 3329(3) 3345 5− 5− 0.21 4.0
18 3366(5) 3382 3−

19 3450(1) 3452 3452.2(1) 3− 3− (2+) 1.08 5.0
20 3494(3) 3491 3500.1(3) 2+ (3−) 2+ 0.23
21 3603(4) 3587
22 3643(3) 3634
23 4184(3) 4181 3− 3− 0.28 0.9
24 4410(5) 4397 2+ 2+ 0.38 0.3

1 this work
2 Ref. [Sin09]
3 Ref. [Fra05] and NNDC

Table 4.3: Results of the DWBA analysis 92Zr(p,p′) experiment. The energy, spin and parity quantum numbers are compared to the
results of Ref. [Sin09] and Ref. [Fra05]. The excitation energies of Ref. [Sin09] are accurate within 10 keV at∼2 MeV and 20
keV at ∼4 MeV. The quantity (dσ/dΩ)max is the cross section at the first maximum of the corresponding state. The states at
2187 keV and 2749 keV belong to 90Zr.
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The 2+ states at 935, 1853, 2814 and 3264 keV
The cross sections are described well by the collective model predictions assuming a spin of 2 and a positive parity. Thisis in
agreement with the results of Refs. [Sin09,Fra05].

The 2+ state at 2062 keV
Due to the two-phonon character of this state, its cross section can not be described by one-step processes alone.

The 2+ state at 2187 keV
Due to a remaining abundance of90Zr in the target, this is the first excited 2+ in 90Zr located at 2196.3 keV. Only collective states
like the first 2+ and first 3− can be seen in the spectra. Contributions from other Zr isotopes than90Zr can be neglected.

The 2+/3− doublette at 3047 keV
The observed transition is a doublet of the 2+ state at 3057.5 keV and the 3− state at 3039.8 keV which cannot be resolved. This
explains the deviations in the excitation energy compared to Ref. [Fra05] and the deviations of theory and experiment atlarger
scattering angles. The cross section is described best by assuming a spin of 2 and a positive parity. Therefore the 3− state is much
weaker excited.

The 2+ state at 3494 keV
The angular distribution is described best by assuming 2+ as quantum numbers. The state can be identified with the 2+ state of
Ref. [Fra05] at 3500.1 keV. In contrast to this result Ref. [Sin09] made a tentative assignment of (3−).

The 2+ state at 4410 keV
The angular distribution for a 2+ states fits best in agreement with Ref. [Sin09]. The excitation energy is out-of-range of the (n,n′γ)
dara.

The 3− states at 2339, 3450 and 4184 keV
Assuming quantum numbers 3− gives the best fit to all three states. This is in agreement with [Sin09]. The (n,n′γ)-reaction of
Ref. [Fra05] assigns 3− for the state at 2339 keV, a tentative assignment of (2+) for the state seen at 3452.2 keV. The third state is
out-of-range of this experiment.

The 3− state at 2749 keV
Like the 2+ state at 2187 keV this 3− state belongs to90Zr being located at 2747.9 keV.

The 4+ states at 1496, 2394 and 2859 keV
The cross sections are described well assuming spin and parity 4+ which is in agreement with Refs. [Sin09, Fra05]. The state at
2394 keV forms a doublet with the 3− state at 2339 keV which could be resolved.

The tentative 4+ states at 3180 and 3236 keV
Only the position of the maxima correspond to the theoretical predictions for the angular distribution of a 4+ state. Serious deviations
can be found at larger scattering angles which are not understood. Theoretical angular distributions of other multipolarities do not
improve the description. However, in Ref. [Sin09] and NNDC both states have been clearly assigned as 4+ states.

The 5− states at 2490 and 3329 keV
Both states can be described with the angular distribution of a 5− state. It would be desirable to measure a larger angular range in
order to make these conclusions more reliable. The results are in agreement with Ref. [Sin09]. Only the state at 2490 keV is seen in
Ref. [Fra05].

The 6+ state at 2948 keV
The cross section shape points to a 6+ state. In agreement with the results of Refs. [Fra05,Sin09].

The states at 3366 and 3643 keV
No quantum numbers could be assigned for the cross section ofthe states at 3366 and 3643 keV. In Ref. [Sin09] a 3− at 3382 keV
is seen which may correspond to the state at 3366 keV.
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Figure 4.2: Comparison between angular distributions of the collective model to experimental data of the 92Zr(p,p′)-reaction.

30



Figure 4.3: Comparison between angular distributions of the collective model to experimental data of the 92Zr(p,p′)-reaction.
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4.1.6 Proton scattering results for 94Mo

No Ex Ex Ex Jπ Jπ Jπ (dσ/dΩ)max

(keV)1 (keV)2 (keV)3 ( mb/sr )1

1 871(1) 871 871.09(1) 2+ 2+ 2+ 10.02
2 1573(2) 1573 1573.72(1) 4+ 4+ 4+ 1.03
3 1861(4) 1864 1864.3(1) 2+ 2+ 2+

4 2062(4) 2068 2067.4(1) 2+ 2+ 2+ 0.76
5 2394(4) 2393 2393.1(1) 2+ 2+ 2+ 0.28
6 2534(1) 2534 2533.8(3) 3− 3− 3− 7.59
7 2608(2) 2611 2610.5(3) 5− 5− 5− 0.47
8 2769(2) 2770 2768.2(2) 4+ 4+ 4+ 0.52
9 2865(2) 2870.0(2) 2+ 2+ 0.23
10 3008(2) 3014 3011.5(2) 3− 3− 3− 0.37
11 3382(2) 3396 3389.5(7) 5− 5(−)

12 3452(2) (4+) 0.32
13 3531(9) 3534.3(2) 2+

14 3633(2) (2+) 0.20
15 3798(3) 3802 3792.8(3) 2+ 2+ 2+ 0.31
16 3996(3) 3995 2+ 2+ 0.22
17 4146(4) 4139 2+ 2+ 0.23

1 this work
2 Ref. [Pig92]
3 Ref. [Fra03] and NNDC

Table 4.4: Results of the 94Mo(p,p′) experiment evaluated in this thesis. The energy, spin and parity quantum numbers are compared
to the results of Ref. [Pig92] and Ref. [Fra03]. The excitation energies of Ref. [Pig92] are accurate within 2 keV at ∼2 MeV
and 5 keV at∼4 MeV. The quantity (dσ/dΩ)max is the cross section at the first maximum of the corresponding state.

The 2+ states at 871, 3798, 3996 and 4146 keV
Assuming a spin of 2 and a positive parity give a best fit to the data. This is in agreement with the results of Ref. [Pig92]. In
Ref. [Fra03] the states at 871 and 3798 keV are also identifiedas 2+ states, while the states at 3996 and 4146 keV are out-of-range
of this experiment.

The 2+ at 1861 keV
Like the 2+3 state in92Zr two-step processes contribute to the shape of the cross section indicating large two-phonon components in
the wave function. Ref. [Pig92] as well as Ref. [Fra03] make a2+ assignment for this state.

The 2+ at 2062 keV
The angular distribution of the cross section deviates seriously from the one for a 2+ state. However, in Refs. [Pig92,Fra03] the state
was unambiguously identified as a 2+ state. Indeed the deviations can be explained by considering the microscopic structure of this
state and are due to its isovector nature. This will be the topic of chapter 5..

The 2+ at 2394 keV
The state is close to the 6+ state at 2423 keV. This doublet can not be resolved. Therefore, at larger scattering angles - where the
contributions of the 6+ state become important - data points are not available. At smaller scattering angles the angular distribution
points to a 2+ state which is in agreement with Refs. [Pig92,Fra03].

The 2+ at 2865 keV
Like the state at 2394 keV this state is close to a 6+ state at an energy of 2872 keV. The 2+ state is located at 2870 keV according to
Ref. [Fra03]. Of course, this doublet can not be resolved. Hence, at larger scattering angles the contributions of the 6+ state become
important and enhance the absolute cross section. At smaller scattering angles a pure one-step 2+ cross section describes the data
best. This result is in sharp contrast to Ref. [Bur07] which identified this state as a two-phonon state. Considering the contributions
of the 6+ there is no sign, in the present data, for a two-phonon state.

The tentative 2+ state at 3633 keV
The angular distribution can not be described by any theoretical cross section. However, the location of the first maximum being at
small scattering angles indicates a 2+ state. This state is not seen in Refs. [Pig92,Fra03].

The 3− state at 2534 keV
The angular distribution indicates a 3− state in agreement with Refs. [Pig92,Fra03].
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The 2+/3− doublet at 3008 keV
The state is a doublet formed by a 2+ state at 2993 keV and a 3− state at 3011 keV. This doublette can not be resolved. The angular
distribution is described best by assuming a spin of 3 and negative parity. This points to a collective 3− state.

The 4+ states at 1573 and 2768 keV
In agreement with Refs. [Pig92,Fra03] the angular distributions indicate a 4+ assignment for both states.

The tentative 4+ state 3452 keV
The cross section shape is described best assuming a 4+ state. Due to the deviations at smaller scattering angles only a tentative
assignment is possible. The state was not seen in Refs. [Pig92,Fra03].

The 5− state at 2608 keV
In agreement with Refs. [Pig92,Fra03] the angular distribution indicates a 5− state.

The states at 3382 and 3531 keV
No spin and parity assignments could be made for these states. In Ref. [Fra03] the first one is identified as a 5− state and the second
one as a 2+ state.
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Figure 4.4: Comparison between angular distributions of the collective model to experimental data of the 94Mo(p,p′)-reaction.
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Figure 4.5: Comparison between angular distributions of the collective model to experimental data of the 94Mo(p,p′)-reaction.

4.1.7 Comparison to QPM results

All angular distributions of a given spin presented in the last sections have very similar shapes (expect for the two important states
mentioned before). Hence, the main experimental observable accessible is the magnitude of the cross sections,i.e. information
about the isoscalar transition strengths. In principle it would be possible to obtain from theβ2

L coefficients defined in Eq. 4.7 the
isoscalar transition strengths. However, this quantity ishighly sensitive to the chosen set of optical model parameters and assumes
the validity of the collective model form factors which is not fully justified. The final aim is to compare the extracted isoscalar
strengths distributions to results of the QPM. This can be done on a more fundamental way. The theoretical cross sectionscan be
calculated by using directly the nuclear structure resultsof the QPM and a microscopic effective projectile-nucleus interaction. Four
ingredients are necessary to obtain a theoretical cross section using the program DWBA07 [Ray07]:

(i) the transition form factors provided by the QPM,
(ii) the transition amplitude for inelastic proton scattering is provided by the free nucleon-nucleon t-matrix of Franey-Love, [Fra85]

which can be written in coordinate space as

t(r) =t0(r) + tσ(r)~σ1 · ~σ2

+ tτ(r)~τ1 · ~τ2 + tστ(r)(~σ1 · ~σ2)(~τ1 · ~τ2)

+ tLS(r)~L · ~S + tLSτ(r)(~L · ~S)(~τ1 · ~τ2)

+ tT (r)S12(~r) + tTτ(r)S12(~r)(~τ1 · ~τ2)

(4.8)

(iii) an optical potential calculated from this interaction,
(iv) single particle wave functions obtained as solutions of a Wood-Saxon potential (see Tab. 2.1).

The values of first maxima of the calculated and measured proton scattering cross section are compared with each other in the
following figures. This procedure is carried out for the quadrupole and hexadecapole states in92Zr (see Fig. 4.6) and for the
hexadecapole states in94Mo (see Fig. 4.7). In addition the distributions of the quadrupole transition strengths in92Zr and94Mo are
compared to each other in Fig. 4.7. In general the QPM achieves a satisfying description of the cross section maxima and therefore
of the isoscalar transition strengths.
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Figure 4.6: Comparison between measured cross section maxima of quadrupole (lhs) and hexadecapole (rhs) states in 92Zr to QPM
predictions and the isoscalar transition strengths deduced in Ref. [Sin09].

Figure 4.7: Comparison between measured cross section maxima of hexadecapole states in 94Mo to QPM predictions and to the isos-
calar transition strengths deduced in Ref. [Pig92] (lhs). The right-hand-side compares the isoscalar strengths distributions
of 92Zr and 94Mo.
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4.2 Electron scattering at 92Zr

This section is organised as follows. First the data taking conditions are discussed concerning target properties, beam energy and
scattering angles. The measured spectra are shown. Next thedecomposition of the spectra and the procedure how to obtainthe
absolute cross sections are outlined. Finally, the statistical and systematic uncertainties are discussed and the results are presented.

4.2.1 Data taking conditions

The experiment was performed at the S-DALINAC using the Lintott spectrometer during a beam time in 2007. The beam energy
was chosen to cover the first maximum of the quadrupole formfactors and amounts to 63.5 MeV. In total four spectra were taken
under scattering angles ofθ = 69◦, 81◦, 93◦ and 117◦. For the measurements a self-supporting target of 1.3 mg/cm2 areal density
and an enrichment of 93.4% was used. In the energy-loss mode the achivied energy resolution amounts to∆E≈ 30 keV (full width
at half maximum). Typically, the beam currents were about 1µA. The main parameters of the92Zr(e,e′) experiment are summarized
in Tab. 4.5. The measured spectra are shown in Fig. 4.8. The blind spots in the spectra are due to the limited size of the micro strip
detectors (see Fig. 3.3).

areal density of the target 1.3 mg/cm2

enrichment of the target 93.4%

energy resolution ∼30 keV
beam energy 63.5 MeV
beam currents 1µA
evaluated energy range 0 - 2.4 MeV
scattering angles 69◦, 81◦, 93◦, 117◦

Table 4.5: The main parameters of the 92Zr(e,e′)-reaction.

4.2.2 Determination of the cross sections

The decomposition of the spectra was performed with the program FIT. In the most general case the fitting function consists of a
polynomialB(x)which describes the instrumental background and a functionyi(x)which is assumed to describe thei-th individual
peak. Here, the parameterx labels the excitation energy. The whole spectrum can be fitted with the function F(x)

F(x) = B(x) +
∑

i

yi(x). (4.9)

An instrumental background is absent in the measured spectra. The shape of the functiony(x) - which must take into account the
Gaussian form of the peak itself as well as the radiative taildue to electron energy losses in the target - was assumed to begiven by

y(x) = y0 ·







exp(− ln 2 · (x − x0)
2/∆x2

1
) x < x0

exp(− ln 2 · (x − x0)
2/∆x2

2
) x0 ≤ x ≤ x0+η∆x2

D1/(D2 + x − x0)
γ x > x0+η∆x2

(4.10)

with

• x0 the position of the peak maximum,

• y0 the counting rate at the peak maximum

• ∆x1,2 the half widths at half maximum forEx < x0 andEx ≥ x0, respectively,

• η the starting point of the radiative tail in units of∆x2,

• γ the exponent of the hyperbolic function of the radiative tail,

• D1 and D2 determined from the condition of a smoothly differentiableconnection of the second Gaussian function and the
hyperbolic function at the intersection pointx0+η∆x2.
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Figure 4.8: The measured spectra of the 92Zr(e,e′) reaction. Prominent transitions are labeled with their spin and parity quantum
numbers.

The peak areas are determined by an integration of the model functions up to a cutoff limit ofEcutoff = x0+5∆x1. The missing peak
areas are estimated by applying corrections called SchwingerδS , bremsstrahlungδB and ionization correctionsδI . The Schwinger
correction accounts for the emission of real photons and theemission and absorption of virtual photons. The bremsstrahlung correc-
tion is due to effects which cause an asymmetric distortion of the peak. These are caused by small angle scattering from electrons
and nuclei other than the nucleus of interest. The ionization correction describes the energy loss of the electrons in the target due to
atomic excitations and ionizations.

The final peak area is given by

A= Aint · eδS+δB+δI , (4.11)

whereAint is the peak area obtained from the integration of the model function yi up to the cutoff limit. In the present analysis all
parameters were fixed to the properties of the elastic peak. Only the counting ratey0 and the peak positionx0 were treated as free
parameters for each peak.

In principle it is possible to calculate the cross section ofan excited state using Eq. 4.1. In contrast to proton scattering the electron
scattering process is dominantly electromagnetic and the elastic scattering cross section can be calculated with a high accuracy in
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the framework of Quantum Electrodynamics. Hence, it is preferred to determine the inelastic cross section
�
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�

in
relative to the

elastic cross section
�
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el
�
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�

in

=
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·
100

ε
·
�

dσ

dΩ

�

el

, (4.12)

whereAel andAin are the areas corrected for dead time and radiative processes for the elastic and inelastic peaks, respectively. It is
necessary to account for the isotopes enrichmentε, since the elastic cross section contains contributions ofthe nucleus of interest as
well as other stable isotopes like90Zr for the case of92Zr. The area of the inelastic peak corresponds only to the nucleus of interest.
The elastic cross section were calculated using the phase shift code PHASHI [Bähr]. The charge density of the ground state was
approximated by a three-parameter Fermi distribution. Theparameters were taken from Ref. [Jag74].

4.2.3 Error estimate

Since, the absolute cross sections of the inelastic transitions were calculated relative to the elastic peak one avoidscontributi-
ons of systematic errors in the determination of the solid angle and the accumulated charge in the Faraday cup as well as target
inhomogeneities. The total uncertainty of the cross section includes

• statistical uncertainties in the peak area determination2-4%

• error in the dead-time correction∼1%

• inaccuracy in the calculation of the elastic cross section∼2%

The errors were treated as independent from each other and taken to be the square root of the sum of the squared systematic and
statistical errors.

4.2.4 Form factor results

The measured absolute cross sections of the excited states can be converted into form factors by calculating the ratio with the cross
section for Mott scattering. The final results for the symmetric and mixed-symmetric states are given in Tab. 4.6. The parameterq
stands for the momentum transfer,E0 is the beam energy andθ gives the scattering angle.

q E0 θ |F(2+fs)|2 × 10−4 |F(2+ms)|2 × 10−4

(fm−1) (MeV) (deg)
0.35 63.5 69 3.98± 0.07 2.02± 0.04
0.41 63.5 81 5.19± 0.11 2.67± 0.08
0.46 63.5 93 5.39± 0.11 2.95± 0.08
0.54 63.5 117 7.94± 0.23 4.23± 0.17

Table 4.6: Transition form factors for the symmetric and mixed-symmetric states of 92Zr. The errors include only the uncertainties in the
peak area determination.
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5 An alternative view on one-phonon quadrupole
mixed-symmetry states

The main experimental signature for assigning a mixed-symmetric character to a 2+ state is a strong M1 transition to the 2+1 state
as discussed in section 2.1.2. This thesis presents for the first time an additional signature which manifests the different isospin
character of the 2+1 (FSS) and 2+

ms
(MSS) by a comparison of their charge and matter transition radii. Electron and proton scattering

cross sections are analysed to obtain experimental informations about these quantities.
This chapter is organized as follows. First, the results of aQPM calculation for92Zr are presented and compared to various

experimental observables. Based on these results, the ideafor the new signature is developed in the framework of the QPM. Next
- to check its validity - the charge and matter transition radii of the FSS and MSS are measured in92Zr, where the MSS is already
identified based on absolute M1 transition matrix elements.The new signature motivates a novel explanation for the origin of
effective forces used in quadrupole collective models and for the general formation mechanism of mixed-symmetry states. This
is presented in section 5.3. Finally, some semi-quantitative considerations on the evolution of mixed-symmetry states in the N=50
region are discussed, based on a QRPA calculation [Pon10].

5.1 QPM results for 92Zr

Since the IBM-2 does not work very well near closed shells andconsiders spin contributions to M1 transitions only in an average
way [Hey10], microscopic approaches are needed to investigate the properties of mixed-symmetry states in92Zr. The shell model is
the superior model for describing low-energy excitations near closed shells. However, since the aim of this work is to describe proton
and electron scattering cross sections and to study - as willbecome clear in section 5.3 - the role of the Giant QuadrupoleResonance
(GQR) on the formation of MSS, a QRPA based approach is favourable. The first point would in principle be possible in the shell
model, but requires extensive theoretical calculations following the procedure of Ref. [Sag87]. The latter point is prohibited, due to
the limited model space of the shell model. The QPM is a very suitable QRPA approach for these purposes, since it includes the
coupling of one-phonon to two- and three-phonon states, which are known to be very important for the description of low-energy
excitations.

The QPM calculations were performed following the procedure of section 2.2. The parameters of the Woods-Saxon potential
used to obtain the single-particle basis were fixed to the properties of neighbouring nuclei and are given in Tab. 2.1. Thestrength
of the pairing force was fitted to odd-even mass differences and the strength of the residual interaction was determined to describe
the B(E2) value and the excitation energy of the 2+

1 state. No additional parameters are needed to include the coupling to multi-
phonon states. Since the QPM uses in contrast to the shell model a single-particle basis being sufficiently large to fulfill the energy
weighted sum rules, no effective charges are necessary to describe the experimental B(E2) values. Magnetic transitions are calculated
assuming a spin quenching factor ofgs = 0.6 .

state E (keV) structure
Exp QPM

2+1 934 1025 91%[2+1 ][RPA]

2+2 1847 1983 91%[2+2 ][RPA]

2+3 2066 2043 17%[2+
4
][RPA] + 13%[2+

5
][RPA] + 54%[2+1 ⊗ 2+1 ][RPA]

Table 5.1: The structure of the three lowest 2+ states in 92Zr in terms of QRPA phonons. The 2+1 and 2+2 states are nearly pure
one-phonon states, while the 2+3 is dominantly a two-phonon state with noticeable one-phonon contributions.

The wave functions of the three lowest 2+ states are shown in Tab. 5.1 and Tab. 5.2. The 2+
1 and 2+2 states are dominated by the first

and second RPA phonons, respectively. The contributions ofother one-phonon, two-phonon and three-phonon states are less than
10%. The first and second RPA-phonons are mainly formed by the same two two-quasiparticle components (2d5/2 ⊗ 2d5/2)n and
(1g9/2⊗1g9/2)p. In case of the[2+1 ][RPA] both components are in-phase and for the[2+2 ][RPA] out-of-phase forming the microscopic
analogue of the symmetric and mixed-symmetric one-quadrupole phonon states defined in the framework of the IBM-2.

Indeed, as shown in Tab. 5.3, both states are connected by a strong M1 transition. Besides the two dominant two-quasiparticle
components, both RPA phonons contain many two-quasiparticle components (not shown in this table), which contribute with small
amplitudes to the wave function, but are large in number and all in-phase. They are mainly 2ħhω-excitations and belong to the
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GQR as will be discussed in the next sections. Surprisingly,the GQR admixture in the wave function is mainly responsiblefor the
enhanced B(E2) values of the 2+1 and 2+2 states in92Zr.

[2+1 ][RPA] [2+2 ][RPA]

q1 ⊗ q2 ψ φ % ψ φ %

(2d5/2⊗ 2d5/2)n 1.20 0.16 70.98 -0.76 0.11 28.30
(2d5/2⊗ 3s1/2)n 0.19 0.07 2.91 0.37 0.05 13.09
(2d5/2⊗ 1g9/2)n 0.20 0.11 2.65 0.23 0.08 4.76
... ... ... ... ... ... ...
(1g9/2⊗ 1g9/2)p 0.51 0.19 11.03 0.8008 0.0892 31.66
(1f5/2 ⊗ 2p1/2)p 0.23 0.10 4.47 0.2866 0.0464 8.00
(2p3/2 ⊗ 2p1/2)p 0.23 0.09 4.47 0.3059 0.0442 9.16
... ... ... ... ... ... ...

Table 5.2: Wave functions of the [2+1 ][RPA] and [2+2 ][RPA]-phonons in 92Zr. φ andψ are the forward and backward amplitudes defined
in Eq. 2.49. The numbers in percentage label the contribution of each two-quasiparticle state to the norm of Eq. 2.51. Both
states are dominated by two two-quasiparticle components which are in-phase for the [2+1 ][RPA] forming a symmetric state
and out-of-phase for the [2+2 ][RPA] forming a mixed-symmetric state.
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Figure 5.1: Comparison of the calculated and measured excitation energies of the low-lying states in 92Zr. The QPM provides an
excellent description of the excitation energies.

The 2+3 state has a different structure. Its main amplitude is a two-phonon component formed by the first RPA-phonon. However,
the contributions of the [2+

4
][RPA]- and [2+

5
][RPA]-phonons are appreciable and indicate deviations from a harmonic phonon picture.

The validity of the QPM predictions and the wave functions inTab. 5.1 and Tab. 5.2 can only be tested by a comparison to
experimental data. Since in92Zr a large amount of complementary experimental observables - being sensitive to different parts of
the wave functions - is available, a detailed test can be performed.

Figure 5.1 presents a comparison between measured and calculated excitation energies of the five lowest states. The QPM re-
produces the experimental energies with an accuracy of∼100 keV. The comparison between experimental and calculated E2 and
M1 transition strengths is shown in Tab. 5.3. Again the QPM accounts well for the decay properties of the symmetric and mixed-
symmetric 2+ states.

Finally, Tab. 5.4 proves, that the QPM is also able to accountfor the g factors of the FSS and MSS [Wer08]. This quantity gives
valuable informations about the main components in the wavefunction. The negative g factor of the FSS indicates an appreciable
contribution of the (2d5/2 ⊗ 2d5/2)n two-quasiparticle component to its wave function. This feature is nicely reproduced by the
wavefunctions of Tab. 5.2.
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B(E2)(W.u.) B(M1)(µ2
N

)
Ji → Jf Exp QPM Exp QPM

2+1 → 0+1 6.4(6) 5.9
2+2 → 0+1 3.4(4) 2.6
2+3 → 0+1 <0.005 0.1
2+2 → 2+1 0.37(4) 0.64

Table 5.3: Comparison of the calculated and measured transition strengths in 92Zr. The symmetric and mixed-symmetric states are
connected by a strong M1-transition.

g(Jπ)(µn) Exp QPM
g(2+1 ) -0.18(1) -0.09
g(2+2 ) 0.76(50) 0.31

Table 5.4: Comparison of the calculated and measured g-factors in 92Zr [Wer08].

In summary the QPM accounts very well for the properties of the lowest states in92Zr and describes with a reasonable accuracy
a large body of complementary experimental data. This givesstrong evidence for the validity of the wave functions givenin Tab.5.1
and Tab. 5.2. Based on these successful calculations one cantry a further analysis of the properties of the FSS and MSS in92Zr.

5.2 One-phonon mixed-symmetry states in electron and proton scattering

In order to find a new experimental signature for proving the different isospin character of the FSS and MSS, the transition densities
of the 2+fs (upper part) and 2+ms (lower part) in92Zr are examined in Fig. 5.2. The transition densities are calculated using the
wavefunctions of Tab. 5.1 and Tab. 5.2 which account - as proven in the previous section - for a large amount of experimental data.
The proton and neutron transition densities are shown separately. For both states the maximum of the neutron transitiondensity (∼6
fm) is displaced to the exterior compared to the maximum of the proton transition density (∼5 fm).

The corresponding one-body operator allows a decomposition of each full transition density (solid lines) in two pieces: A col-
lective part stemming mainly from the GQR (dotted lines) andthe contribution of the largest valence two-quasiparticlecomponents
(dashed lines),i.e. (2d5/2⊗2d5/2) in case of neutrons and (1g9/2⊗1g9/2) in case of protons. The key point is the different radial
behaviour of each transition density. An out-of-phase coupling of the neutron valence contribution to the GQR - as for the MSS -
will cause two effects:

(i) first a reduction of the full neutron transition density with respect to the FSS, due to the negative sign of this dominant neutron
component. As a consequence the matter transition density (ρmatter = ρn +ρp), will be shifted to the interior,

(ii) and second a shift of the full neutron density to the nuclear interior due to the subtraction of the specific shape of the
(2d5/2 ⊗ 2d5/2)n-part having a maximum at alarger radius than the GQR.

For the FSS this effect is reversed and the transition density is shifted to the exterior. Both effects contribute coherently to areduction
of thematter transition radius when going from the FSS to the MSS. By contrast thecharge transition radii will essentially bethe
same, since in both states the (1g9/2⊗1g9/2)p-part couples in-phase to the GQR. The maxima of the GQR, fulland valence transition
densities are marked with vertical lines in Fig. 5.2 to highlight this effect. Figure 5.3 displays the matter transitiondensities for both
states. The matter transition density of the MSS is displaced to the interior compared to the FSS, as expected from the considerations
made above. To quantify these conclusions, Tab. 5.5 shows the transition radii of the charge, neutron and matter transition densities
defined as

Rtr =

√

√

√

√

∫

ρ(r) · r4 · dr
∫

ρ(r) · r2 · dr
, (5.1)

whereρ(r) is the corresponding density. As expected, the charge transition radii are nearly the same, while the neutron and matter
transition radii differ by 0.207 fm and 0.152 fm, respectively.

In summary the different coupling of the (2d5/2 ⊗ 2d5/2)n-configuration to the GQR causes asensitivity of the matter transition
radii to the different isospin character of the FSS and MSS. This can be considered as an alternative way to prove the mixed-
symmetric character of the MSS, independently of M1 transition matrix elements.

How can these model dependent predictions be verified experimentally? Obviously, the matter transition radii of the FSSand
MSS has to be measured, but in addition it is necessary to testif the charge transition radii are really the same. Otherwise one can
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Figure 5.2: The proton and neutron transition densities weighted with r4 for the symmetric (top) and mixed-symmetric state (bottom).
Every full transition density (solid lines) is decomposed in two parts: The contribution of the largest configuration of Tab.5.2
(dashed lines) and the remaining parts stemming mainly from the GQR (dotted lines). The proton transition densities are
very similar for both states and differ only in magnitude. The full neutron transition density for the MSS is shifted to the
interior in comparison to the FSS, due to the out-of-phase coupling of the (2d5/2⊗2d5/2)-configuration to the GQR. The
vertical lines mark the positions of the maxima.

Rπ(fm) Rν (fm) Rmatter(fm)
2+

fs
4.762 5.162 4.992

2+
ms

4.688 4.955 4.841
∆R 0.074 0.207 0.152

Table 5.5: The charge, neutron, and matter transition radii of the FSS and MSS in 92Zr and their differences∆R.

not be sure, if the displacement of the matter transition radii is due to a change in the neutron transition densities - as predicted - or
if maybe a change in the proton transition densities of both states is responsible for this effect.

Apparently two probes with a different sensitivity to protons and neutrons are needed to study this. Electron scattering at low
momentum transfers is known to be very sensitive to the charge transition radius [Hei83]. Therefore, the data from section 4.2
is compared in Fig. 5.4 (lhs) to DWBA form factors calculatedusing the charge transition densities of Fig. 5.2 with the code of
Ref. [Hei83]. The QPM achieves an excellent description of the electron scattering data points concerning magnitude and momentum
transfer dependence showing the validity of the charge transition radii in Tab. 5.5.

To illustrate the sensitivity of the electron scattering data to the charge transition radius at least qualitatively, one can form the
ratio of both form factors using the expansion given in Ref. [Hei83]

F(2+
ms

, q)

F(2+
fs

, q)
=

p

B(E2+
ms
) · (1− (q2/14)R2

ms
+ ...)

p

B(E2+
fs
) · (1− (q2/14)R2

fs
+ ...)

, (5.2)
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Figure 5.3: The matter transition densities (sum of proton and neutron transition densities) of the symmetric and mixed-symmetric
states. Since 800 MeV protons interact dominantly isoscalar with the target nuclei, these densities are ’seen’ by the proton.
The transition density of the mixed-symmetric state is shifted to the interior in comparison to the symmetric state.
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Figure 5.4: The formfactors of the symmetric and the mixed-symmetric states compared to DWBA calculations employing the QPM
transition densities (lhs). Both formfactors have very similar shapes indicating approximately the same transition radii. On
the right hand side is shown the square root of the ratio of both formfactors.

whereRfs andRms are the charge transition radii of the symmetric and mixed-symmetric state, respectively. The expansion is only
meaningful for light nuclei, due to the uncertainties in theCoulomb correction factors caused by the strong Coulomb field of heavy
nuclei. However, forming the ratio offers the possibility to become approximately independent of both Coulomb correction factors,
since they should cancel to some degree [Hei83]. In case of equal transition radii, the ratio of Eq. 5.2 would beidenpentent of q.
Indeed, the five data points shown in Fig. 5.4 exhibit a nearlyconstant value over the measuredq range (note that the value atq = 0
is given by the ratios of the B(E2) values according to Eq. 5.2). The solid black line shows the ratio of the QPM form factorsbeing
nearly constant. The solid blue line is calculated with Eq. 5.2 using the experimental transition strengths and assuming arbitrary
values of Rfs = 5.2 fm and Rms = 5.0 fm. Clearly, the sharp slope does not match the experimental data. Therefore, the electron
scattering results point to very similar charge transitionradii in agreement with the values given in Tab. 5.5.
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Figure 5.5: The cross sections of 800 MeV proton scattering for the symmetric (filled red circles) and mixed symmetric 2+ states (green
stars) taken from Ref. [Bak75]. The cross sections calculated within the QPM using the effective interaction of Ref. [Fra85]
achieve a good description of the experimental data and reproduce the crucial shift, which is due to the isovector nature of
the mixed symmetric state. The figure on the right hand side illustrates the dependence of the cross sections on the sign of
the (2d5/2⊗2d5/2)n configuration. For a detailed explanation see text.

Figure 5.6: The shift in the cross sections can also be found in the 200 MeV proton scattering data analyzed in this thesis. On the left
hand side are shown the cross section for 92Zr and on the right hand side for 94Mo. Even only a few data points are available,
the shift can clearly be seen in both cases. In 94Mo it is much stronger which can be attributed to the lower collectivity of the
MSS compared to 92Zr.

The left hand side of Figure 5.5 displays the proton scattering cross sections measured at 800 MeV which are taken from
Ref. [Bak75]. Due to the strong nuclear force the interaction between the incident proton and the nucleus takes mainly place at
the surface, consequently proton scattering is highly sensitive to the size of the matter transition radius [Wam10]. Protons interact
dominantly through the isoscalar central channel of the effective nucleon-nucleus force at an incident energy of 800 MeV [Fra85].
Hence, the sum of the neutron and proton transition density is the important quantity. Clearly, as expected, the features of the (p,p′)
cross sections of the MSS are shifted to higherq values as compared to those of the FSS indicating a larger matter transition radius
of the symmetric state. The QPM describes both cross sections reasonably well pointing to the validity of the matter transition radii
given in Tab. 5.5. For calculating the cross sections the code DWBA07 [Ray07] has been used taking the widely used t-matrix
parametrization of Franey-Love [Fra85] as an effective projectile target interaction.
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The right hand side of Fig. 5.6 illustrates the sensitivity of the proton scattering cross section to the sign of the (2d5/2⊗2d5/2)n
configuration. Besides the cross sections of the FSS (red line) and MSS (green line), Fig. 5.6 shows the cross section (blue line) for
the transition density of the MSS where the sign of the (2d5/2⊗2d5/2)n configuration has been artificially switched from minus to
plus forming a ’symmetric state’. As a result the cross section is displaced to smaller q-values and nearly coincides with the cross
section of the FSS. Hence, in the framework of the QPM the observed shift can be clearly attributed to the isovector natureof the
2+ms state.

In conclusion the electron and proton scattering data support the QPM values of the matter and charge transition radii given in
Tab. 5.5. Since, the difference in the matter transition radii is due to the different isospin character of both states, this is an alternative
way for identifying the 2+2 in 92Zr as the MSS.

Figure 5.7: Comparison between the cross section of the MSS and all other quadrupole states in 94Mo. The solid lines are drawn to
guide the eyes. The cross section are scaled to the data point at θc.m. = 7.69◦ of the 2+

fs
.

Can this shift be found in other proton scattering data and nuclei as well? On the left hand side of Figure 5.6 is presented the
proton scattering data of chapter 4 measured at 200 MeV. Despite the limited data points the shift in the cross sections can clearly
be identified. In addition on the right hand side one can see the cross section of the FSS and MSS in94Mo. Also in this case the shift
is clearly visible being even stronger than in92Zr. These additional examples point to a very robust nature of the new signature for
a mixed-symmetry state. In addition the observed shift allows to measure for the first time therelative signs between the GQR and
the two large valence two-quasiparticle components, sincea change of sign of the proton component would cause different charge
transition radii and a shift of the matter transition density to the exterior. This is an observable not accessible in gamma spectroscopy.
It is very interesting that such an observable can really be measured directly, although other observables like the B(M1)-strength are
insensitive to this quantity.

The most interesting and promising consequence of the observed shift in the matter transition radii is displayed in Fig.5.7. The
proton scattering data of the MSS in94Mo are compared to all other 2+ states measured in the experiment of section 4.1.6. A total
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number of eight quadrupole states has been identified. The 2+
2 is a two-phonon state with a very different cross section shape due

to two-step processes, hence it is not included in the discussion. For a better illustration the MSS is compared to statesbelow 3
MeV (upper part) and above 3 MeV, separately. Figure 5.7 is restricted to the first maximum, since not for all 2+ states proton
scattering data are available at larger scattering angles.Without any exception the cross section of the MSS is shifted strongest to
larger scattering angles indicating a smaller matter transition radius compared to all other 2+ states in 94Mo. This is a surprise,
because most of the 2+ states are non-collective having B(E2) values which are up to two orders of magnitude smaller than the
ground state transition of the 2+1 , i.e. the admixture of the GQR is small. Therefore, the matter transition radii of these non-collective
states depend on their single-particle components which might cause very different transition radii. However, the shift of the matter
transition radius of the MSS due to its isovector nature is sostrong that it dominates all other effects. This is a very important
observation.It will allow to identify the MSS solely by measuring proton scattering cross section, although absolute M1 transition
strength are not known. Remembering the results of92Zr, the shift can be expected to increase at larger scattering angles making
this effect even more apparent than in Fig. 5.7.

It would be very interesting to study the properties of the shift along an isotopic chain. The Mo-chain is a promising candidate.
The next heavier nucleus is96Mo. Here, a MSS is already identified from M1 matrix elements.The B(E2) value of the MSS
decreases from 1.6 W.u. in94Mo to 0.08 W.u. in96Mo, i.e. the shift can be expected to be even stronger than in94Mo (clearly, the
shift becomes stronger with decreasing collectivity of theMSS). In98Mo no MSS is known so far and the shift offers the possibility
to identify for the first time a MSS in this nucleus. One may even think of investigating the deformed nucleus100Mo and try to
study the evolution of the MSS from nearly spherical to deformed nuclei. It should be noted that the (n,n′γ)-reaction - one of the
main experimental methods to obtain information about B(M1) values between two excited states - becomes uncertain whenthe
level density is high (because of its non-selective excitation mechanism at low neutron energies). Measuring proton scattering cross
section with a high energy resolution up to the second minimum with a sufficient number of data points might be an alternative to
study the properties of MSS in heavier nuclei away from closed shells.

In addition it is questionable if the B(M1:2+ms → 2+ms) strength is a unique experimental observable to identify aMSS in deformed
nuclei, since it is decreasing with increasing square of thedeformation parameter (see Fig. 5.12). It is not clear whether this decrease
can be attributed to a ’washing out’ of the MSS or maybe a structural change in the 2+1 state is the reason. The B(M1) strength
depends on the structure of both states and cannot answer this question. In contrast the proton and electron scattering cross section
depend only on the structure of a single excited state. This is an important advantage. Whether the idea of the shift really works in
more deformed nuclei, can only be decided by experiment.
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5.3 Effective forces in quadrupole collective models and the formation mechanism of mixed-symmetry states

So far three things could be learned from the observed shift in proton scattering: First, the different isospin character of the FSS
and MSS in92Zr has been proven in an alternative way independent from electromagnetic transition matrix elements. Second, the
relative signs between the valence components and the GQR has been measured for the first time. Finally, Fig. 5.7 proves that the
small matter transition radius is a unique feature of the MSSwhich no other 2+ state shares, hence it can be used to identify a MSS,
without knowledge of the B(M1: 2+

ms
→ 2+1 ) strength.

Besides these pleasant points, the shift gives experimental evidence for having three main building blocks contributing to the
wave functions of the FSS and MSS: The GQR, a main proton and a main neutron two-quasiparticle component. In addition, the
strong B(M1) strength between the FSS and MSS proves the strong mixing between the two latter components. In collective valence
space models like the IBM-2 this mixing is caused by an effective proton-neutron interaction. This force is a key ingredient for the
IBM-2 and is responsible for many nuclear structure phenomena resulting from configuration mixing like deformation andphase
shape transitions. However, in the IBM-2 a microscopic justification for this effective force between bosons is still missing. The new
experimental results obtained in the last section motivates a simple picture for the ’microscopic’ origin of this force. Our aim is not
to calculate the various parameters of the IBM-2 Hamiltonian, but to give a qualitative understanding of the origin of this effective
force.

As already mentioned in the latter section the GQR contributes strongly to the transition densities shown in Fig. 5.2. This
surprising feature is examined in detail in this section. First, Fig. 5.8 delivers a proof for the admixture of the GQR in the wave
function and sheds light on the consequences for the absolute B(E2) values. Subfigures (I) and (II) display a decomposition of
the B(E2) values of the FSS and MSS in the contributions of thevarious proton two-quasiparticle components. Starting atthe
lowest two-quasiparticle configuration the contribution of each is summed up. The full B(E2) values are reached at∼23 MeV.
Two-quasiparticle components at higher energies contribute negligibly. (The transition strengths of Tab. 5.3 differfrom the values
in Fig. 5.8, since here are shown the corresponding values for the one-phonon states,i.e. the coupling to multi-phonon states is
neglected.) The B(E2) values are essentially composed fromtwo sources, the valence space part which is located at low energies
and a higher lying part located between 17 - 23 MeV. This higher lying part is formed by 2ħhω two-quasiparticle states and belongs
to the GQR [Pon10]. The admixture of the GQR exceeds∼80% of the B(E2) value of the FSS and∼65% in case of the MSS, while
its contributions to the wave functions is less than 2%. Hence, the dominating part of the collectivity (collectivity is used here in the
sense of large B(E2) values) arise from a coupling to the GQR making both states to one-phonon states (in the IBM-2 sense).For
the B(M1) value the situation is different. Here, the valence space is entirely responsible for the large B(M1) value of 0.63µ2

N
.

Due to the limited size of the model space, the GQR is not included in valence space approaches like the shell model and the
IBM-2. These models can account for the B(E2) strength stemming from the low-energy parts in Fig. 5.8. The parts of the high-
energy mode are included effectively by using effective charges, which are typically fitted to the experimental B(E2) strengths. On
the contrary the QPM - covering a model space being large enough to fulfill the energy-weighted sum rules - can account for the
valence part as well as the contribution of the GQR. As a consequence the QPM does not need any effective charges.

The presence of the GQR in the wave functions of quadrupole collective states raises the question about itsgeneral role for effec-
tive forces used in nuclear structure models describing low-lying collective states such as the IBM-2. This topic will be addressed
qualitatively in the spirit of an effective field theory (EFT). EFTs are a concept of fundamental importance in physics with broad app-
lications in many different areas such as Fermi theory and Chiral Perturbation theory in elementary particle physics [Wei79,Gas85],
the BCS theory of superconductivity in solid states physics[Sha94] or in the construction of an effective nucleon-nucleon potential
as a low-energy phenomenon of QCD in nuclear physics [Kol99]. The basic idea is to ’integrate out’ the high energy sector and
take its contributions approximately into account by a few parameters in the effective theory at lower energies. These parameters
are usually determined from experiment. Therefore each EFTis only able to describe phenomenon at a specific and sufficiently low
energy scale. This procedure can be formally carried out by the use of the renormalization group. The decoupling of physics at both
energies is a necessary requirement,i.e. a clean separation of energy scales must be given.

The proton-neutron interaction is believed to be responsible for the development of configuration mixing, collectivity and finally
for the formation of the FSS and MSS. In a phenomenological valence space approach like the IBM-2, which describes low-lying
collective excitations, a simplified Hamiltonian can be written as:

HIBM2 = επndπ + εµndµ + 2κQχππ ·Q
χµ
µ (5.3)

whereερ andndρ (ρ = π or µ) are thed-boson energies and numbers. The crucial proton-neutron interaction is codified in the

third term withQ
χρ
ρ being boson quadrupole operators. An increase of the interaction strengthκ will start to mix the unperturbed

proton and neutron boson states and will finally cause the collective FSS and MSS connected by a strong M1-transition as seen
in experiment. This parameter is usually fixed empirically to experimental data without considering its microscopic origin which
determines its strength.

To shed light on the ’microscopic’ origin of this effective interaction we consider a different theoretical approach, namely the
QPM. In the spirit of EFTs, the QPM can be viewed as the ’complete theory’ including the ’high-lying’ degrees of freedom.
In contrast the IBM-2 is the effective theory valid at low-energies, where the correlations outside the IBM-2 model space are
effectively taken into account.
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Figure 5.8: The decomposition of the absolute B(E2)- and B(M1)-values in the contributions of the various two-quasiparticle states.
The B(E2)-values of the FSS (I) and MSS (II) are mainly formed by two-quasiparticle configurations in the energy range 17
- 23 MeV. This part of the wave function belongs to the GQR. In contrast the B(M1)-value is exclusively formed by the two
large two-quasiparticle configurations (2d5/2⊗ 2d5/2)n and (1g9/2⊗ 1g9/2)p being low in energy.

In order to obtain a deeper understanding of the mechanism causing the formation of both states within a full space model like
the QPM we introduce a simple ’3-state model’. As a starting point we take the lowest proton and neutron two-quasiparticle BCS
states at energies of 1.917 and 3.172 MeV respectively as in the full QPM calculation for92Zr andin addition the Giant Quadrupole
Resonance (GQR) at 11.8 MeV. As in Landau-Migdal theory [Mig67] the interaction between the GQR and the two-quasiparticle
states is given by a simpleδ function:

Vα = g · 〈α|δ(~r −~r ′)|GQR〉

= g ·
∫

dr · r2 ·ρα(r) ·ρGQR(r)
(5.4)

whereα refers to the proton (p) or neutron (n) two-quasiparticle state. The parameterg is the interaction strength andρα,ρGQR

stand for the transition densities. The equation points to adirect relation between the collectivity of the GQR and the absolute value
of the matrix element. Finally, the following Hamiltonian is diagonalized:

H3st =







GQR −Vp −Vn

−Vp εp 0

−Vn 0 εn






(5.5)

εGQR, εn andεp stand for the unperturbed energies. The results of this simple scheme are confronted with the full QRPA calculation
in Table 5.6. The main propertiesi.e. formation of symmetric and mixed-symmetric states, neutron dominance of the FSS, B(E2)-
and B(M1)-values are reproduced in this simple approach. The 3-state model accounts for the essential physics.

The crucial result is that the two collective states FSS and MSS are formed in the ’3-state model’ solely by a coupling to the GQR.
The contribution of the GQR to the wave functions is small, but since the matrix element〈0+1 ||E2||GQR〉 is ∼6 times larger than
the one of the main proton two-quasiparticle state, the B(E2) value is mainly produced by the GQR as already discussed. This effect

49



Figure 5.9: Shown are the results of the ’3-state model’ described in the text as a function of the coupling strength g . The dotted vertical
line marks the coupling strength which describes the data most suitably.

observable full QRPA 3-state 3-state QRPA
2+

fs
2+

ms
2+

fs
2+

ms
2+

fs
2+

ms

(2d5/2 ⊗ 2d5/2)n 71% 28% 50 % 50 % 76 % 22%

(1g9/2 ⊗ 1g9/2)p 11% 32% 40% 50 % 24 % 74%

E(2+
fs

) 1457 keV 1081 keV 1421 keV
E(2+

ms
) 2536 keV 2485 keV 2498 keV

B(E2:2+
fs
→ 0+1 ) 166 e2fm4 181 e2fm4 259 e2fm4

B(E2:2+
ms
→ 0+1 ) 84 e2fm4 60 e2fm4 170 e2fm4

B(M1:2+
ms
→ 2+1 ) 0.63µ2

N
0.86µ2

N
0.87µ2

N

∆Rcharge 0.07 fm 0.00 fm -
∆Rmatter 0.21 fm 0.22 fm -

Table 5.6: Comparison of wave functions (top) and selected observables calculated in the full QRPA to the 3-state model and the
3-state QRPA model discussed in the text for 92 Zr. The two simple models reproduce the essential features of the full QRPA
calculation. The sign of the main neutron component of the MSS is in all three cases negative.

has been recognised previously by [Sag87]. The GQR not only brings the collectivity in the states but also causes amixing of the
two dominant two-quasiparticle states. In a valence-space approach like the IBM-2 this is achievedby the effective proton-neutron
interaction codified in the third term of Eq.5.3. An enhancement of the interaction strengthκ is equivalent to an increased coupling
strength g to the GQR. The dependence of different observables on the coupling strength g is shown in Fig.5.9. In effective field
theory language the proton-neutron quadrupole interaction in the IBM-2 can be thought of being dominantly mediated by the high
energy mode GQR. Since the energy scale of low-lying collective structure is∼1 MeV and the isoscalar GQR is typically at∼10
MeV a clean separation of scales is given justifying this viewpoint.
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Although the ’3-state model’ is successful in reproducing the main features of the full QRPA calculation, it cannot be expected
to be valid at larger coupling strength g, since ground statecorrelations become important here. In order to include them, the QRPA
equations have been solved, using the same ansatz as in the ’3-state model’,i.e. the GQR at higher energies and one proton and one
neutron two-quasiparticle state. This model is labeled ’3-state QRPA’ in the following. The nuclei92Zr (Tab. 5.6),94Mo (Tab. 5.7)
and96Mo (Tab. 5.8) are calculated within this approach and compared to full QRPA calculations. The unperturbed energy of the
GQR in all three nuclei is the same at 11.8 MeV. The unperturbed two-quasiparticle energies - taken from a BCS calculation- are
in 92Zr εn = 1.917 MeV andεp = 3.172 MeV, in94Mo εn= 1.917 MeV andεp = 2.698 MeV and in96Mo εn = 2.194 MeV andεp

= 2.698 MeV. The coupling strength to the GQR g was fixed to the value which describes the full QRPA results best. The coupling
strength increases slightly from g = 1082 in92Zr to 1120 in94Mo and 1168 in96Mo. In all three nuclei the essential features of the

observable full QRPA 3-state QRPA
2+

fs
2+

ms
2+

fs
2+

ms

(2d5/2 ⊗ 2d5/2)n 43 % 56% 49% 50%

(1g9/2 ⊗ 1g9/2)p 39 % 36% 48% 49%

E(2+
fs

) 938 keV 1099 keV
E(2+ms) 2252 keV 2172 keV

B(E2:2+1 → 0+1 ) 407 e2fm4 483 e2fm4

B(E2:2+
ms
→ 0+1 ) 52 e2fm4 79 e2fm4

B(M1:2+
ms
→ 2+1 ) 0.92µ2

N
1.27µ2

N

Table 5.7: Comparison of the full QRPA calculation to the 3-state QRPA model described in the text for 94Mo. The simple model
achieves a reasonable description of the QRPA results.

full QRPA calculation are well described. First, FSS and MSSphonons are formed with very similar amplitudes compared tothe full
QRPA results. Very interesting is the predicted proton dominance of the FSS and the neutron dominance of the MSS in96Mo. This
is discussed in the next section. The energies of the symmetric and mixed-symmetric RPA-phonons are in reasonable agreement and
especially the behaviour of the energy shifts when going from nuclei to nuclei are similar to the QRPA results. However, in 92Zr
both B(E2)-values are a factor∼2 larger than the full QRPA results.

observable full QRPA 3-state QRPA
2+

fs
2+

ms
2+

fs
2+

ms

(2d5/2 ⊗ 2d5/2)n 31 % 67% 34% 65%

(1g9/2 ⊗ 1g9/2)p 67 % 23% 62% 34%

E(2+
fs

) 810 keV 1057 keV
E(2+ms) 2426 keV 2326 keV

B(E2:2+1 → 0+1 ) 542 e2fm4 631 e2fm4

B(E2:2+
ms
→ 0+1 ) 23 e2fm4 35 e2fm4

B(M1:2+
ms
→ 2+1 ) 0.67µ2

N
1.17µ2

N

Table 5.8: Comparison of the full QRPA calculation to the 3-state QRPA model described in the text for 96Mo. Again, the simple model
achieves a reasonable description of the QRPA results.

This discrepancy maybe attributed to the importance of other two-quasiparticle components in the wave functions, not included
in the very small model space used here. Indeed, the wave function of the MSS in Tab. 5.2 exhibits contributions of∼40% from
two-quasiparticle configurations, which are not included in the (2d5/2 ⊗ 2d5/2)n, (1g9/2 ⊗ 1g9/2)p - modelspace. Therefore one
cannot expect to describe these states correctly. In order to achieve better results of the ’3-state QRPA’ model, the model space must
be enlarged to include the configurations known to be important in the wave functions of Tab. 5.2. These refinements of the ’3-state
QRPA’ model are currently on their way. Surprisingly, the ’3-state model’ - which uses the same small model space - exhibits better
agreement with the QRPA results. This behaviour is not understood and is probably accidental. For94Mo and96Mo the description
of the B(E2) values is much better and close to the full QRPA results. This is remarkable for such a simple model approach. Indeed,
here the contribution of the (2d5/2 ⊗ 2d5/2)n- and (1g9/2 ⊗ 1g9/2)p - configurations is larger than in92Zr. Very interesting is the
behaviour of the ’3-state QRPA’ model at low coupling strength g (see Fig. 5.10). The B(E2) value of the MSS is larger than the one
of the FSS. This matches the situation in94Zr where the B(E2)-value of the MSS is indeed a factor∼2 larger than the one of the
FSS. It is very promising that such an uncommon feature is describable in this simple approach.
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Figure 5.10: Shown are the results of the ’3-state QRPA’ model mentioned in the text as a function of the coupling strength g for 94 Mo.
The dotted vertical line marks the coupling strength which describes the full QRPA results at best.

5.4 The evolution of one-phonon quadrupole mixed-symmetry states

The ’3-state QRPA’ model allows a simple explanation for theevolution of the MSS in92Zr, 94Mo and96Mo. The experimental
B(M1) value increases from 0.37(4)µ2

N
in 92Zr [Fra05] to 0.56(5)µ2

N
in 94Mo [Fra03] and finally decreases to 0.17(2)µ2

N
in

96Mo [Les07]. What is the mechanism behind these sharp changesin the B(M1) strengths? The behaviour is surprising, because the
MSS are expected to be collective excitations and typicallyone assumes a very smooth change of the properties of collective states
when going through the nuclear chart. However, in Fig. 5.8 itwas shown that the B(M1) strength is mainly determined by thetwo
main two-quasiparticle components and hence has a single-particle nature. Clearly, changes in the B(M1) strength mustbe guided
by an interplay between these two main components.

The full QRPA calculation as well as the ’3-state QRPA’ modelreproduce the variation in the B(M1) values qualitatively (see
Tabs. [6-8]), although both overpredict the experimental B(M1) value. The B(M1) strength has its largest value when themain
proton and neutron amplitudes are balanced and as large as possible in the MSS and FSS states. So the wavefunctions for this
’optimal case’ would be

|2+
FSS
〉= 1/

p
2

�

(1g9/2⊗ 1g9/2)p + (2d5/2⊗ 2d5/2)n

�

|2+
MSS
〉= 1/

p
2

�

(1g9/2⊗ 1g9/2)p − (2d5/2⊗ 2d5/2)n

�

.

(5.6)

Apparently, the wave functions of94Mo are closest to this case explaining its large B(M1) value.In 92Zr and 96Mo either the
neutron or proton two-quasiparticle component dominates the wave function of the 2+

fs
. This unbalance reduces the B(M1) value in

comparison to94Mo. The ’3-state QRPA’ model offers a simple explanation forthis behaviour. Figure 5.11 displays the contribution
of the proton and neutron configurations to the wave functions of the FSS and MSS as functions of thedifference of the two-
quasiparticle energies ∆E = E2qp((2d5/2 ⊗ 2d5/2)n) - E2qp((1g9/2 ⊗ 1g9/2)p). The value g = 1120 obtained for94Mo was used as
coupling strength.
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Figure 5.11: The two main components calculated in the ’3-state QRPA’ model as a function of the energy difference of the neutron
and proton two-quasiparticle energy. The proton two-quasiparticle energy has been fixed to the value in the Mo chain at
2698 keV. The coupling strength is kept constant to the value of g=1120.

At a large energy difference the proton-neutron interaction mediated by the GQR is not strong enough to fully mix both states,
hence the FSS is neutron and the MSS is proton dominated. Consequently the B(M1) value is relatively small. This changes when
the energy difference decreases. The proton-neutron interaction (which is kept constant here) is now strong enough to mix the two
unperturbed states almost completelyand at∼900 keV the optimal case of Eq. 5.6 is reached (of course, the GQR also contributes to
the wavefunctions, but its amplitude is always smaller than4%). If∆E continues to decrease the effect of avoided level crossingtakes
place and the FSS becomes proton and the MSS neutron dominated. Due to the unbalance in the proton and neutron components
the B(M1)-value decreases again.

The vertical lines mark the energy differences∆E in 92Zr, 94Mo and96Mo. The slightly different values ofg which were used
in the calculations of Tabs. 6-8 have only minor effects on the amplitudes,e.g. changing the value ofg from 1120 to 1168 changes
the amplitudes by less than 4%. Therefore Fig. 5.11 offers a qualitative understanding ofthe different B(M1) strengths in the three
nuclei. Due to the proton subshell at Z=40 the proton two-quasiparticle configuration is high in energy causing a large energy
difference∆E in 92Zr. Consequently the B(M1) value is small. The neutron dominance of the FSS is experimentally confirmed
by the negative g-factor of -0.18(1) as well as the proton dominance of the MSS with a positive g factor of 0.76(50). The energy
difference in94Mo has nearly the optimal value resulting in a large B(M1) strength. The increased importance of the proton two-
quasiparticle configuration in the FSS is in agreement with the much larger g-factor of 0.274(75). Unfortunatly no g g factor of the
MSS in 94Mo is known. The nucleus96Mo is already beyond the optimal mixing point and the FSS is strongly proton dominated
here, while the MSS is predicted to be neutron dominated. This decreases the B(M1)-value again. Indeed, the experimental g factor
of the FSS increases to 0.419(38) proving the increased importance of the proton configuration. Table 5.9 summarizes theg factor
results. It would be of outmost importance to obtain information about the g factor of the MSS in96Mo which is not known so far
to really check its neutron dominance. This could be done at the ’Rutgers/Yale g factor setup’ at the university of Yale.

g(2+1 )(µN ) g(2+2 )(µN ) B(M1)(µ2
N )

Exp full QRPA Exp full QRPA Exp full QRPA
92Zr -0.18(1) -0.09 0.76(50) 0.31 0.37(4) 0.64

94Mo 0.274(75) - - - 0.56(5) 0.92
96Mo 0.419(38) - - - 0.17(2) 0.67

Table 5.9: Comparison of calculated and measured g factors and B(M1:2+
ms
→ 2+1 ) strengths in 92Zr, 94Mo and 96Mo.

Starting at the beginning of an isotopic chain, the increaseof the neutron two-quasiparticle state from nucleus to nucleus (caused
by an increase of the neutron pairing gap) coming closer to the lowest proton two-quasiparticle state seems to be a very common
feature not limited to the Mo-chain. Hence, the simple picture of avoided level crossing seems to be a very general feature of MSSs
and points to a ’washing out’ of MSSs and a decrease of the corresponding B(M1) strength when approaching more collective
nuclei. In the Cd-chain a decrease of the B(M1)-strength is also predicted in a large-scale shell-model calculation [Boe07]. However,
experimental data is still missing at the beginning of the chain. At midshell in112Cd and114Cd experimental data is available and
the B(M1) strength amounts to 0.099(7)µ2

N
and 0.089(9)µ2

N
, respectively. These are much smaller values than observedin the

N=52 chain. If one accepts that the B(M1) value of102Cd has a similar magnitude as in92Zr, 94Mo and96Ru, the decrease of the
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B(M1) strength is also present in the Cd-chain. Very interestingly, the proton and neutron amplitudes of the MSS in112Cd has been
extracted from inelastic hadron scattering by Pignanelliet al. [Pig88]. The neutron amplitude dominates which is in agreement with
the expectations from the avoided level crossing.

Of course, the picture of the avoided level crossing is only meaningful when the (1g9/2⊗ 1g9/2)p- and (2d5/2⊗ 2d5/2)n- configu-
rations are dominating in the wavefunctions. This is the case for 94Mo, 96Mo and partly for92Zr, but for more collective nuclei like
98Mo other two-quasiparticle states should play an importantrole. Hence, one better takes the avoided level crossing as the ’driving
force’ behind the decrease of the B(M1) strength in the N=50 region, but there might be other effects which also play an important
role.
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Figure 5.12: The excitation energies of the FSS (green), MSS (red) and their energy difference (blue) over
p

NπNν (lhs). Nπ and Nν
are the valence proton and neutron numbers counted to the nearest closed shell. On the right hand side is shown the
dependence of the B(M1)-value on the square of the deformation parameter. The dashed blue line is drawn to guide the
eyes.

A very common case in nuclear structure physics is the fragmentation of a specific state (e.g. the scissors mode). In experiment
one possibly observes only one fragment and misses another.This would also ’decrease’ the observed transition strength. However,
it is worth mentioning that94Mo, 96Mo, 92Zr as well as112Cd and114Cd are measured using the (n,n′γ)-reaction. This method gives
rather complete information about the M1-transitions to the FSS up to∼ 3.5 MeV. Hence, the decrease of the B(M1)-strength in
96Mo, 112Cd and114Cd is really a nuclear structure effect and can not be attributed to fragmentation.

The simple picture of the avoided level crossing in the ’3-state QRPA’ model is confirmed by the full QRPA calculation (so even
when the ’3-state QRPA’ model is not valid, the avoided levelcrossing is still a feature of the full QRPA calculation). Itwould be
very useful to have a shell-model calculation - the superiormodel for these low-lying states - for the nuclei in the N=50 region to
confirm this picture. Unfortunately, in the shell-model calculation of the Cd-chain [Boe07] no information about the wavefunctions
is given. It would be very helpful to redo these calculations(maybe in a J-scheme code) in order to analyse them. These efforts
are justified, since the question if the MSS is ’washed out’ when approaching more collective nuclei is of course at the heart of
MSS investigations. It is also in strong contrast to the IBM-2 which predicts a nearly constant B(M1) value (at least in the three
analystically solvable limits). Probably, the assumptionof equal proton and neutron boson energies is a problem. Thenone always
obtains perfect mixing of the proton and neutron components.

It is not clear yet if the effect of avoided level crossing canreally be applied to explain the behaviour of the MSS in otherregions
of the nuclear chart. But a decrease of the M1 strength has been also observed in the Xe chain in Ref. [Coq10]. Unfortunately these
measurements were done using the method of Coulomb excitation which does not allow to detect all 2+ states up to∼3 MeV. Hence,
one can not be sure if one misses fragments at higher energies.

The sensitivity of MSS to the two-quasiparticle energies offers the possibility to fit pairing matrix-elements used in the shell-
model to the properties of MSS. This was recognized in Ref. [Sie09] where the pairing matrix elements were fine-tuned using the
properties of MSS. Hence, MSS can be expected to improve the development of effective interactions in the future.

Finally, Fig. 5.12 displays some systematics of the properties of MSS and FSS. On the left-hand side is shown the energy ofthe
2+

fs
(green line), the energy of the 2+

ms
(red line) and their energy difference (blue line) in dependence of the square root of the valence

proton times the valence neutron numbers (taking care of subshells). This is motivated by the results of Ref. [Hey86], which argues
that the properties of MSS depend on this quantity. All MSS ofTab. 5.10 are included. The smooth dependence on this quantity is
surprising and not understood. On the right-hand side is shown the B(M1) strength in dependence on the square of the deformation
parameter. Again all MSS of Tab. 5.10 are included except forthe MSS in the Mo, Ru and Zr chains. Their properties are maybe
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different due to the subshell closure. One finds a linear behaviour on the deformation parameter which is not understood and in
contrast to the findings for the scissors mode [Hey10]. Another interesting feature of MSS - not shown here - is the simultaneous
decrease of the B(M1) and B(E2) values of the MSS. This is alsopredicted by the ’3-state QRPA’ model and is probably connected
to the predicted neutron dominance.
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6 Summary and outlook
This work contains one main results. A new signature was found for identifying the quadrupole one-phonon mixed-symmetry state
(MSS) independently of M1 transition matrix elements. The new signature is based on a strong reduction of the matter transition
radius of the MSS compared to other 2+ states. This reduction is directly connected to its isovector nature. Proton scattering data
have been analysed to obtain experimental informations about this quantity. Using the new method the quadrupole MSS in92Zr and
94Mo have been unambiguously identified.

In addition the new signature allows to measure for the first time the relative signs between the two main proton and neutron
two-quasiparticle components and the GQR. To obtain this experimental observable it was necessary to measure - besidesthe matter
transition radii - the difference of the charge transition radii of the fully-symmetric state (FSS) and MSS. This was done using
electron scattering data measured at S-DALINAC and evaluated in the framework of this thesis. The results show that in92Zr and
94Mo the main neutron components is out-of-phase to the GQR, while the main proton component is in-phase. It is remarkable that
such an quantity can really be measured, since other observables like the B(M1) strength are insensitive to this quantity. It would
be interesting to investigate a nucleus where the main proton component can expected to be out-of-phase to the GQR and themain
neutron components in-phase. This would cause an enlarged matter transition radius of the MSS and a difference in the charge
transition radii,i.e. the situation is the opposite compared to92Zr and94Mo. Promising candidates can be found in the Zn-chain.

Finally, the experimental results obtained from proton andelectron scattering prove that the FSS and MSS are formed by three
main building blocs: The GQR, a large proton and a large neutron two-quasiparticle component. This observation motivates a simple
picture on the microscopic origin of the effective proton-neutron interaction used in quadrupole collective models like the IBM-2
- a question which has not been answered so far. From an effective field theory viewpoint the GQR can believed to mediate this
force by coupling to the valence-space components. A simple’3-state model’ using this idea gives surprisingly good agreement
with full QRPA calculations. However, the validity of this idea must be further tested. The next obvious step is to enlarge the model
space and to include more than just two two-quasiparticle components in the valence space. These refinements are currently under
way. The newly developed ’three state model’ predicts the properties of FSS and MSS in the N=50 region to depend cruciallyon
the energy difference of the lowest proton and the lowest neutron two-quasiparticle state. This results in a neutron dominance of
the MSS when going from94Mo to 96Mo which is in agreement with the predictions of the full QRPAcalculations. It would be of
outmost importance to verify these predictions experimentally and to measure the g-factors of the MSS in94Mo and96Mo (at least
the sign). This could be donee.g. with the ’Rutgers/Yale g-factor setup’ at the university ofYale.

An other interesting feature of MSS observed in this thesis is the deformation dependence of the B(M1) strength. The B(M1)
strength decreases linearly with increasing square of the deformation parameter. The behaviour is opposite to the scissors mode whe-
re B(M1) strength increases linearly with increasing square of the deformation parameter. The underlying reason is notunderstood
yet.
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