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Abstract

In the framework of this master thesis data from proton aedtedn scattering experiments on the nuékdr and “*Mo were
analyzed. The extracted cross sections and form factors egenpared to predictions of the Quasi-Particle Phonon M&RM).
Due to the different isospin sensitivity of both probes thetgn as well as the neutron matrix elements of the QPM wanetions
could be tested.

The central result of this work is the observation of a neweeixpental signature for a one-phonon quadrupole mixedasgimc
state. The new signature is based on a reduction of the negttesition radius of the mixed-symmetry state comparedl|totlaer
2" states. The matter transition radii of all quadrupole stageto 4 MeV in®*Mo were obtained from the proton scattering cross
sections. The matter transition radius of the quadrupoledisymmetry state is found to be - by far - the smallest. progperty
is directly connected to its isovector nature and can tbeedbe used to identify mixed-symmetry states indepengentB(M1)-
values used so far. A similar analysis is performedf@r. The difference of the charge transition radii betweansymmetric and
the mixed-symmetric state is extracted from electron edatj data ir’?Zr. Both radii have a very similar size.

A simple model is developed to study the influence of the Guddrupole Resonance on effective forces used in the btilega
Boson Model 2 and on the formation mechanism of mixed-symyettes in general. Conclusions on the evolution of mixed-
symmetry states are drawn for the Mo-chain using this sirmaldel. The M1-strength between the symmetric and mixedssginic
quadrupole states is found to be inverserly proportionah&square of the deformation parameter. This is the omptsithe
behaviour known from the scissors mode.




Zusammenfassung

Im Rahmen dieser Masterarbeit wurden Daten von Proton- lgidrBnenstreuexperimenten 3Zr und **Mo analysiert. Die ge-
messenen Wirkungsqguerschnitte und Formfaktoren wurdeNartiersagen des Quasi-Particle Phonon Models (QPM)ichrgh.
Auf Grund der unterschiedlichen Sensitivitét beider ProipeBezug auf den Isospinfreiheitsgrad konnten sowohl di¢dhen- als
auch die Neutronenlibergangsmatrixelemente der QPM-kifleliktionen zum Grundzustand getestet werden.

Das zentrale Ergebnis dieser Arbeit ist neue Signatur férldentifikation eines gemischt-symmetrischen ZustanDezu
wurden die Masseniibergangsradien alfeiZ2istande if*Mo bis 4 MeV untersucht. Der Masseniibergangsradius dessghtyi
symmetrischen Zustands ist mit Abstand am kleinsten. Di#égenschaft ist auf seinen isovektoriellen Charakter ekeriifihren
und kann in Zukunft als Identifikationsmerkmal fur einen ggoht-symmetrischen Zustand verwendet werden. Einecéitenlna-
lyse wurde fu’?Zr vorgenommen. Der Unterschied der Ubergangsladungsratiis symmetrischen und gemischt-symmetrischen
Zustandes irf?Zr wurde mit Hilfe von Elektronenstreudaten untersuchtidBeRadien sind im Rahmen experimenteller Fehler
gleich groR3.

Im Rahmen dieser Arbeit wurde ein einfaches Modell entwitaken den Einfluld der Quadrupol Riesenresonanz auf effekti-
ve Kraft im Interacting Boson Model 2 zu untersuchen. Das ®lloiefert zuséatzlich ein einfaches Bild fiir den Formasare-
chanismus von gemischt-symmetrischen Zustanden in Atoreke Des Weiteren wurden einige systematische Untersigeimu
der Eigenschaften gemischt-symmetrischer Zustdnde mongmen. Die B(M1)-Stéarke zwischen dem symmetrischen umd de
gemischt-symmetrischen Zustand fallt linear mit dem Qatades Deformationsparameters ab. Dies ist das gegestfiidnalten,
welches von der Scherenmode bekannt ist.
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1 Introduction

The atomic nucleus is a finite, complex, fermionic many-beggtem with well-defined proton and neutron numbers. Algfou
its size is negligible - the radii of the whole atom and itsleus differ by four to five orders of magnitude - the atomicleus
is responsible for 9% of the visible matter in the universe. Obtaining a desaibtf its properties and understanding the forces
between its constituents - starting from the fundamentdh of the strong interaction: Quantum Chromodynamicsds the
key point of nuclear structure research.

To reach this target one has to face several complicateteaak. It would be favourable to achieve a description afeiun
terms of the fundamental degrees of freedom in QCD: Quardszunons. Unfortunately nuclear structure phenomena téeep
in the low energy sector of QCD, therefore perturbative méshare ruled out. Lattice-QCD exhibits the only way to perfo
calculations in this energy regime. Since these calculatiequire enormous computational resources they judttstiiecome
feasible and predictive for mesons and baryons. Describitgmplex many-body system like the nucleus is - even for dutedon
- illusory. One has to apply a different strategy in ordeiri& huclei with QCD. The most consistent way is given by CHitffective
Field Theory (EFT) [Wei79, Leu94].

Low=Energy QCD

phenomeno. NN—potential
Argonne V18, CD Bonn

QCD-based NN—potential
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Figure 1.1: Shown is an overview about the theoretical strategies how to tackle the nuclear many body-problem. The upper part
describes how to build the bridge between QCD and nuclear structure and the lower part discusses phenomenological
approaches.

In this approach protons, neutrons and pions form the éfeeckegrees of freedom and it is possible to construct a puoele
nucleon potential whose properties are directly relats@@®. From the points made before it becomes clear that tHeawiorce
is only an effective one very similar to the van der Waalsraxd@on between neutral atoms. In the last years large pssgnas
been achieved in this field and nowadays such potentialsvaitalale fitting the scattering phase shifts until the cditpaframeter
used in the EFT [Epl09]. Very often more phenomenologicakptials are used like the Argonne V18 [Wir98] and CD-Bonn
potentials [Mac01].




Even given a suitable nucleon-nucleon potential calaudgtiie properties of nuclei is not straight forward. One dinstay as
close as possible to ab initio treatment of the nuclear many-body probleiine- solving the non-relativistic Schrodinger or the
relativistic Dirac equation without approximations. Theshcommoreb initio approaches are the Greens Function Monte Carlo
technique (GFM) [Piep03] and the no-core shell model [N&vB8th methods are in principle able to start with a bare eoct
nucleon potential and achieve a successful descriptioraofmproperties of light nuclei. Since their computatioreiind increases
exponentially with increasing nucleon numbers these mmgrcan be carried out only for the lightest nucleiS®2). Therefore it
is necessary to truncate the model space in order to taciledrenucleii.e. the Schrédinger equation is solved only approximately.
These simplified model spaces are not capable to describerahge correlations induced by the nuclear force nametyrakand
tensor correlations. Hence the bare nucleon-nucleonaictien has to be renormalized for transforming the eigemvaroblem
in the full space to an equivalent one in the much smaller ingplece. This can be done by the Brueckner G-matrix [Day67] or
similarity transformations like ¥,,_x (SRG) [Bog03] or UCOM [Fel98, Nef03]. Many approximate nmh have been developed
in the past. Well known examples are Hartree-Fock (HF), idarFock-Bogoliubov (HFB) or the conventional shell modéth
a core. At the moment more refined methods are under devetdpap@roximating the Schrodinger equation on a much more
controlled way than the three examples mentioned before. Promising@ea are the coupled cluster method [Kow04] and the
no-core shell model with an importance truncation [Rot0#}edoped by R. Roth and co-workers.

The previous sections describe the way how the nuclear rbady-problem should be tackled to stay on a fundamental.level
However there exist a large number of phenomenological lmadeich has proven to be successful in interpreting nudpactra,
transition strengths and in classifying excitation modeémmous examples are algebraic approaches like the Iriteyad8dson
Model [Ari75,Ari78, Ari77] which uses different degreesfeéedom namely bosons and geometrical models which treamtbleus
as a geometric entity [Boh75]. Both models are assumed touatdor simple, collective excitations like vibrations spherical
nuclei or rotations in deformed nuclei. In addition many ragzopic approaches use a purely phenomenological iti@may. the
Quasi-Particle Phonon Model (QPM) [Sol92, Ber99] or thellsinedel with a simpled- function as interaction. With increasing
computational capabilities and the advances in constytifective interactions, phenomenological approackesine more and
more replaced by microscopic treatments starting from bsteanucleon-nucleon potential. Figure 1.1 summarizesdifferent
theoretical strategies how to improve our understandinguofear structure.

For testing and improving nuclear models a large amount péemental data is essential. Especially experiments asdroa-
bles are needed which give new insights in the nature of fleetafe nuclear force. In general a very promising way t@Btigate
the properties of a quantum system is bringing it to extreoreitions [NuP04] be it- in the case of nuclei- the proton ¢aitnon
ratio, isospin or binding energy. This will amplify or supps certain parts of the nuclear interaction allowing testigate these
specific parts in detail. Radioactive beam physics corsstan excellent way to achieve this for nuclei. Althoughaoadtive beams
are not available since two decades, this modern and exgetatly very demanding branch of nuclear physics causedititevery
of many new structural phenomena like halo nuclei [Tan8&litron skins or proton-neutron pairing. Describing andeusidnding
these is a very challenging task for theory and indeed mamyefac accounting for the properties of stable nuclei sisfodly -
have serious problems when extrapolated to exotic nucteieXample which nicely illustrates the points mentionedvahie the
monopole tensor force whose important role in the evolutibshells has been stressed by Otsetkal. [Ots01] recently. In stable
nuclei its influence is somehow covered, however in exotaeithis part of the nuclear hamiltonian changes and caus@snagic
numbers very different from those found in stable nucleithie next years one can expect great improvements in nucdteatise
physics induced by radioactive beam facilities like FAIRKEN, TRIUMPF and REX-ISOLDE.

Shell effects and single-particle degrees of freedom datmithe structure of low-lying states in magic or semi-mamiclei.
If just a few valence nucleons are added so that both typestens and neutrons - are present, one observes the fasginati
structural evolution of nuclei. First - in nearly spherioalklei - a vibrator structure develops, forming multiplet€ollective states
which can be reasonably approximated by the harmonic aswmillAdding more and more valence nucleons the nucleuss star
deform. Finally, when the critical point is reached, it urgies a shape phase transition - a highly interesting arehsixely
studied phenomena in nuclei [lac00, lac98]. The protortmauinteraction - being responsible for configuration miSha53]
- is the driving force behind this key point of nuclear sturetresearch. Its importance has been first recognized bijt 8hd
Goldhaber [Sha53] in 1953 and repeatedly stressed by mherysdike Talmi [Tal62], Federman and Pittel [Fed78] or viexgently
Otsukaet al. [Ots01]. Phenomenologically, the strength of the protentron interaction has been codified in theN\ -scheme by
Casten [Cas85].

Clearly, experimental observables which are sensitivaitokey ingredient of nuclear structure physics are extheweauable
for understanding and investigating the nuclear-many lodplem. In 1984 lachello [lac84] predicted a new class oi-lging
isovector collective states in the framework of the intérgzboson model 2 (IBM-2) [Ari77]. These so called 'mixesgmmetry
states’ (MSS) exhibit the intriguing property of being neymmetric with respect to the proton-neutron degree ofdfvee This
feature makes them very different from other low-lying eotive states being symmetric. The first known example - azgbe the
most famous one - was thé Bcissors mode discovered by Richter and his group in theyngeformed nucleu$>*Gd [Boh84].
This pioneering key experiment of mixed-symmetry resednas been performed at the S-DALINAC in electron scatterBugy.
far a large amount of data on this mode has been accumulated. iE weakly collective nuclei a*l mixed-symmetry state
is known [Pie99, Pie20]. It is important to note that onlyerade nucleons contribute to this excitation in sharp cehti@ the
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Figure 1.2: Section of the nuclei chart. Marked are the nuclei where a 2% mixed-symmetry state has been identified on the basis of
absolute transition strength. No examples are known in the A & 200 region.

properties of an other isovector mode: The Giant Dipole Rasoe (GDR). The GDR is mainly formed bi& excitation [Wou87]
i.e. nucleons are excited above closed shells resulting in a migtter excitation energy than the scissors mode.

The focus of this thesis is on an other kind of mixed-symmestayes. In 1984 Hamilton [Ham84] suggested the first exawiple
a weakly collective 2 mixed-symmetry state in vibrational nuclei based on thdyaisof E2/M1 multipole mixing ratios. Its main
experimental signature is a strong B(M1)-strength to rheuZd a weakly collective B(E2)-strength to the ground stBte(8]. In
general detecting a transition between two excited stat@biés a challenging task and requires the combinatioroaiglementary
experimental techniques. Hence the knowledge about thiterstayed sparse in the 1980s and 1990s. There were only a few
examples based on absolute transition strength report&efs. [Lie88, Ver88, Van95, Gar96, Wie97, Faz92]. In the 14990s
the situation changed with the improvement of several expsital techniques which allows to determine the decayepaibf
states far off the yrast band [Pie98a, Pie99]. The prime plauf 2" mixed-symmetry states was identified by Pietratial. in
%Mo [Pie99]. Not only the B(M1)-strength is very large in thigcleus - indicating a very 'clean’ mixed-symmetry statert ddso
a multiphonon structure has been observed [Pie99, Pie2@hvigformed by the symmetric and the mixed-symmettigpRonons.
This observation proves that both phonons can be considerédilding blocks of collective nuclear structure in ngapherical
nuclei. Nowadays a large amount of data about this excitatiode is available [Pie08] as shown in Fig. 1.2. All of thera ar
located near closed shells. Unfortunately no example imaative nuclei has been identified so far. This can be tréeett to the
difficulties in measuring the B(M1)-strength in radioaetivuclei.

As stressed by Heyde and Sau [Hey86] the propertied ohied-symmetry states are directly sensitive to the dffegiroton-
neutron interaction. Near closed shells one observes ayhégiiting phenomenon: The structure of both ghonons contains -
besides a collective part - large single particle contrims [lac06, lud08]. This opens up the opportunity to studylétail the
interplay between collective and single particle degrédse@dom when going from spherical to more collective nudté/en by
the proton-neutron interaction. Since usually only twgdasingle particle components - one proton and one neutrmprasent,
one can draw conclusions about shell structure and thegstraf the proton-neutron interaction investigating thefiguration
mixing between these large components. The B(M1)-strebgtiveen the MSS and/2state and the g-factors of both states are
excellent experimental observables for measuring theegegf mixing. This is highlighted by comparing thé 8tate and MSS
structures if2Zr and®*Mo. Since®?Zr lies at a proton subshell gap (Fig. 1.4) the proton twosiparticle state is located at much
higher energy causing a drastically larger energy diffeedretween the lowest proton and neutron two-quasipadisiéigurations
than in”*Mo. As a result the proton-neutron interaction mediate¥r a smaller configuration mixing than #iMo resulting in a
smaller B(M1)-strength and a negative g-factor of tijestate [Fra03, Fra05]. Clearly; Zmixed-symmetry states constitute a very
fine probe for exploring nuclear structure, sensitive ty sihell effects and the detailed strength of the protonsoeeunteraction.
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Figure 1.3: The B(M1)-strength of the scissors mode in the rare-earth region exhibits a smooth dependence on the P-factor indicating
that the properties of the scissors mode are mainly determined by an interplay between the integrated pairing and proton-
neutron force in the valence space.
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Figure 1.4: Shown is the shell structure for 27y (a). Since Z = 40 is a subshell gap the lowest proton two-quasiparticle state is at much
higher energy than the lowest neutron two-quasiparticle state resulting in weak configuration mixing with a > f3 (b).

In heavy-mass, deformed nuclei - the regime of the scissotemthe situation is different. Configuration mixing and goton-
neutron interaction become so pronounced that many thdupaasiparticle states contribute to collective excitaiavashing out
completely shell effects and influences of specific quasiarstates. Investigations asZr and®*Mo are therefore prohibited.
Figure 1.3 displays the summed B(M1)-strength of the scisemde in the rare earth region over P = (N.)/(N,+N,) with
N, (N,) being the number of valence protons (neutrons). The Pfé€as87] is believed to reveal qualitatively the compeit
between théntegrated pairing force & N, +N,) and theintegrated proton-neutron interaction{NN,,) in thevalence space. The
B(M1)-strength depends smoothly on this quantity indizgtihat the properties of the scissor mode are mainly deteay an
interplay between these two integral quantities. One dem tlae 2 mixed-symmetry state as very fine probe of nuclear structure
being sensitive to the details while the scissors mode isidecprobe being sensitive to overall properties of nuclei.

The typical strategy how to learn more about the nucleus @nzbnstituents is to make use of external fields and to amahes
response. In order to obtain complementary experimenf@anrations about the nature of an excitation mode it is irtgugrto use
different probes interacting strongly, electromagndifcar weakly. So far gamma spectroscopy has been the maieriemental
technique for investigating the properties of fhixed-symmetry states. This method gives access to akselattromagnetic
transition strengthise. only the structure of the proton wavefunction is testedsTirk investigates thet2mixed-symmetry states
in 22Zr and®*Mo in electron - and proton scattering. Since protons inteaimedium energies isoscalarly [Fra85] with the nucleus
a detailed test of the neutron wavefunction is possible dgiiteon energy and momentum transfers are decoupled iproand
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electron scattering experiments allowing to explore rarciructure at different momentum transfers which is insgme in gamma
spectroscopy.

Collective vibrations are not limited to the atomic nuclelsne. They constitute a general feature of other quantistes)s.
The two fluid character of nuclei is the basic necessity fomfag mixed-symmetry states. Thus it is not surprising td finixed-
symmetry states in other two fluid quantum systems as wallekample analogue scissors-mode states have been fouagped
Bose-Einstein Condensates [Gue99, Mar00] and metallisteis [Nes99]. Since the investigated features of nuclaillective
vibrations and mixed-symmetry states - are widespreadgrhena in physics this work should be of rather broad interest

This thesis is organized as follows. The next chapter giviesed summary of the nuclear structure models used in thikwo
the IBM and the QPM. The experimental setup and data takingitions are described in Chapter 3. The next chapter dissus
data analysing methods and presents measured cross sdotignoton and electron scattering’aZr and®*Mo. Spin and parity
qguantum numbers of the various states are assigned usicglteetive model. The extracted isoscalar B(E2)- and B{&dngths
distributions are compared to QPM calculations. ChapteeSgnts a new signature for identifying a mixed-symmetriesndepen-
dently of M1-matrixelements. Moreover a simple pictureiscdssed about the microscopic origin of the effective gmateutron
interaction used the IBM-2. The simple picture allows toaduce a '3-state model’ which explains the properties ofSMiSthe
N=50 region. The results of this thesis are summarized irp&h& and an outlook for future applications is given.




2 Theoretical descriptions

This chapter gives an outline about the nuclear structurdetsaised in this thesis. The first one is the Interacting Bddodel 2
(IBM-2) introduced by Arima and lachello in 1984. It stantsrh a purely phenomenological ansatz using bosons asieffelegrees
of freedom. Typically, this approach is the first choice whaired-symmetry states are discussed in literature. Inyndaformed
nuclei - the region of the scissors mode - the IBM-2 works weeyl achieving an excellent description of a large numbenafiear
properties. However near closed shelksg. in °2Zr and®*Mo - where shell effects become important and only a few bssoe
present, the IBM-2 - obscuring any shell structure - is netlibst choice. Therefore in this thesis it is used for clgisgifnuclear
excitations and defining the experimental signatures oédiisymmetry states. This will be done in the first part of thapter.

In the second part the focus is on the Quasi-Particle-Phdhodel (QPM) - the main theoretical tool in this work. Like the
IBM-2 the QPM is phenomenological though microscopic, mgkt possible to describe nuclei near closed shells. Sime€QPM
is a QRPA based model it uses a huge single particle basisding in principle all relevant shells for the descriptiochGiant
Resonances as well as low-lying staies,no effective charges are necessary.

2.1 The Interacting Boson Model

Several years the shell-model and the geometrical modebbf Bnd Mottelson had been the only theoretical approachrsdear
structure. In 1974 the situation changed with the developmoEthe Interacting Boson Model (IBM) by Arima and lachdllac87].
The outstanding feature of this model is the applicationrofig theoretical methods to nuclear structure physicsvaligin many
cases a very intuitive and simple interpretation of nuctarcture phenomena. In the following the IBM-1 and its asten the
IBM-2 are discussed with a special focus on mixed-symmettes and the related F-Spin symmetry.

2.1.1 The Interacting Boson Model 1

The IBM-1 [lac87] is a purely phenomenological model. Itsibaassumption is that collective low-lying states in eesBen nuclei
can be described by a fixed number of bosons having angularemtom and parity J=0 (s-boson) and J=2(d-boson). The
restriction to s- and d-boson stems from the observationtiearesidual interaction between like nucleons is strehgethe J=0
and J=2 channels. So the microscopic counterparts of s--dedah are correlated fermion pairs in the shell model. fioissible
to enlarge the model space and take into acceuptg-bosons. Fixing the boson number is the fundamental difiee to the
geometrical model causing several predictions where bopnoaches differ seriously. In the IBM-1 - the simplest i@nsf the
interacting boson model - no distinction is made betweemopsoand neutrons - the nucleus is considered as a one contpone
system. This restriction is lifted in the IBM-2 which exptlg distinguishes between proton and neutron bosons asibesd in the
next section. The IBM considers only single boson energies-boson as well as for d-bosons, so clearly it cannot atdouany
shell effects. Therefore the model space of the IBM-1 is sixeshsional, spanned by the single substate of the s-bosbtharfive
magnetic substates of the d-boson. To construct a suitabhdtbnian the following points have to be taken into acd¢oun

» The hamiltonian must fulfill rotational symmetry, hernticand the pauli-principle,
« the interaction between bosons is assumed to be of two-tiahacter,
« since the hamiltonian must conserve the boson number exveayion-operator must be combined with a destructionmaipe

Using the tensorproduct, it is possible to couple two sglaétensors to a new one with defined angular momentum

[T x TERD = 3" (1 m, Lm, [ lm) TTER), (2.1)

mj,my

A scalar (I=0) spherical tensor is trivially invariant umdetations. Therefore the most general, rotational imr@rhamiltonian
describing the bosonic system can be written as a weighted$all possible scalars which can be formed consideringtpdivo
and three

H=Eo+e(s'9)+e(dd+ D vy, [Ib] x b 1% x [By x By ]V, (2.2)

nblL




whereb,,,= (-1)*™b,_,,. The number of terms can be reduced when the requiremeninuhsyry under the pauli-principle and
hermicity is taken into account. If in addition terms whiabntribute to the binding energy are neglected the hamdiomian be
written as

H=e"ng+aoP - P+aL" L +a,Q - Q+asTh Ty +a,T, Ty, (2.3)
whereT() . T(2) .= [T0) x T()]© 5 & short-hand notation for the scalar product. The opesatand for

1o
P=—(d"-d-s"-

5 s'-s)
T,=[d"xd]® ;1=0,1,2,3,4

Q*=(d"-s+s"-d)—yT, (2.4)
nd == '\/gTO
L = v/10T,.

In this form the appearing terms contain at least supeffficgainore intuitive interpretatiori: is the angular momentum operatBr,
the so called pairing operator a@#, T andT, represent quadrupole, octupole and hexadecapole operitimvever one should
always keep in mind that these operators act on boson stagesfore no direct connection to fermionic counterpaais loe drawn.
The weighting factor are adjusted to the experimental dgtaating the phenomenological treatment of the IBM. Degandn the
mass region different terms of the hamiltonian are domigationcerning their influence on nuclear structure properti

The IBM offers the possibility to apply easily group thedeat concepts and symmetries to nuclear physics. In neéidiells
of physics symmetries play a fundamental role causing ceaten laws like momentum, energy and parity conservatfoha-
miltonian is said to have the symmetry G, if the correspogdieneratorg; of the group G - forming a Lie-Algebra - fulfill the
condition

Vg, €G:[H,g]=0. (2.5)

An important consequence of a symmetry is the degeneradgenstates. Suppogg) is an eigenstate of the hamiltonian H with
energy E, then follows with Eq.2.5 that all stately have the same energy

Ha:ly) = gHly) = Egly). (2.6)

To label an eigenstate of H distinct, one needs at least tvamtgm number$l'y). " labels states with different energy apd
distinguishes between degenerated states. Casimirtope@, are an other important concept. They commute with everyrgéore
of the group G:

Vg, €G: [C,,0]=0. (2.7)

The hamiltonian contains automatically the Symmetry G,¢hin be written as a sum of Casimir-operators of the group G:
HITY) = knCrlGIITY) = Y kyEnlTy) (2.8)
m m

For the IBM the concept of the so calleginamical symmetry is of fundamental importance. Suppose a Lie-Algebsafuilling
the condition G D G,. Obviously G, is also a symmetry of the hamiltonian with the eigenstHfgs,). The combination of both
properties leads to the eigenvalue problem:

HIT 71 Tay2) = E(T)IT71Tara). (2.9)

The energies solely depend dr. Typically the requirement of Gbeing the symmetry is too strong and the hamiltonian can be
written as

H = K, Ciy [G1]+ Y ki, Ci, [Ga]. (2.10)
my mp

SinceH’ contains the Casimir-operators of, ot all generators of Gwill commute. G is no longer a symmetry dfi’ but G,.
However, becausk’ is a combination of Casimir-Operators of @nd G, its eigenvalues can be obtained analytically

HI0171T572) = O kg By (T + Y Ky By (T))|Ty v, Gammay ). (2.12)

my m2




The essential point is that the eigenstatelsl @ihndH’ are the same but split in energy. One says that the hamittétfigontains G
as adynamical symmetry. The generalisation is straightforward and can be apptieth&ins of algebras

G,2Gy DGy D...D Gy (2.12)

G, until G,_; are the dynamical symmetries of the system whilgi§the true symmetry dfl’ in the sense of Eq.2.5.

How can this formalism be applied to the IBM? The d-boson \w#h magnetic substates and the s-boson span a six-dimahsio
vectorspace. The most general, particle number consetrangformations are given by the 36 bilinear combinationthe type
bzmbz’,m’ whose explicit expressions are given in Ref. [lac87] . Thaynf a unitary, six dimensional Lie-Algebra named U(6).
Similarly to Eq. 2.12 it is possible to divide the U(6) in sidgebras which must contain the O(3) for being physicalyvaahe.
Clearly, the underlying reason is that angular momentumt io&is good quantum number. There are exactly three chairghwhi
fulfill this condition

D U(5)>0(5)
U(6){ >SU(3) >0(3), (2.13)
> 0(6) > 0(5)

named after the highest dimensional subalgebra of U(6)),\$8(3) and O(6), respectively. The IBM-1 hamiltonian of £E§ can
be expressed as a sum of Casimir-operators

H =e; 4 €,C,(U(6)) + €2C,(U(6)) + nC,(0(6)) + €C,(U(5))

+aC,y(U(5)) + BC,(0(5)) + 6Co(SU(3)) +7C5(0(3)) (2-14)
whereC,, is the Casimir-Operator of the n-th order of the correspagdjroup. If an appropriate set of parameters is chosen, the
resulting hamiltonian contains only Casimir-Operator®é of the three chains given in Eq.2.13. Then the conditfdaga?.12
holds and the solution of the eigenvalue problem can bemddaanalytically. The three cases of the IBM-1 where thi®ssible -
U(5), SU(3) and O(6) - are usually referred to as 'limits’ ejtare the dynamical symmetries of the corresponding hamiélh. Since
the hamiltonian consists of commuting operators, the qumamumber associated with each of the Casimir-operatorscaserved
and can be used to label the states. Moreover, the wavedasaif the three limits are independent of the actual paensmptoviding
distinct transition rates.

The existence of these limits is maybe the reason why the IBd&ime so successful. They provide an understanding ofrige ra
of collective nuclear structure which can be obtained withie IBM. Typically these dynamical symmetries are broked the full
IBM hamiltonian of Eq.2.3 has to be diagonalized numengcadlbwever one can compare the properties of the nucleusetst
to the limiting cases e.g. to the distinct transition rates - and make statements talwdymmetry the nucleus is closest. Therefore
the limits act as benchmarks bringing order in the diversityuclear spectra.

2.1.2 The Interacting Boson Model 2

The IBM-2 [lac87] is the natural extension of the IBM-1 caleiing explicitly the neutron-proton degree of freedomcdmtrast

to the IBM-1 which is purely phenomenological, the IBM-2 teideast qualitatively a microscopic justification and iimpiple

it is possible to derive the parameters of the IBM-2 from msécopic considerations. However, until today this coripeds not
guantitative,.e. the derived parameter using the OAl-mapping [Ots78] dfifem the one required to fit the data. This is a serious
caveat of the IBM-2. The microscopic counterparts of s- afimbsbns are correlated nucleon pairs of the same type. The ma
problem of shell model calculations is the drastically @asing size of the model space when going from magic nuclepém-
shell systems. Typically, it would be necessary to diageaahatrices of the dimension ef10°°, a number where one could not
even think of diagonalizing it. The IBM-2 can be seen essdiptas a very vast and rough truncation of this huge shellehsgace
reducing the problem even at midshell to matrices-@f” which can be handled by conventional diagonalization tiegles easily.

The most general IBM-2 hamiltonian has the form

H=H,+H, +V,,. (2.15)

H, andH, have exactly the same form as the IBM-1 hamiltonian of Eq.Pt® third term codifies the interaction between proton
and neutron bosons and can be expressed in a multipole form

Vo =co(ng, ndu) +o(Lr-Ly)+c(QX- Qﬁ)

T 63(QF - QL) +eu(Q, - Q) +¢5(Q, - Q) (2.16)
+ C6(Q;-; . Qg) + C7(U1'r : U,u,) + C8(V1'r : Vu)




The multipole operators are given by

— AT
ndp —dp‘dp

Po

1 . - 1 .
E(dp-dp)—a(sp-sp)
L, =v10[d! -d ]V

ot F e d 1@ — o rdt x g 1@
Qf =1[dl xs, +s) xd,]¥ —y[d xd,] (2.17)

Q, =1[dl xd,]®
Q=[d! xs,+s xd 1@
U, =[d! xd,]®
Vv, =[dl xd,],

wherep is eitherr or v. Equation 2.15 is literally swarming with parameters andtaims 21 free parameters - usually more than
data points are available to fit them. In order to perform ammegul calculation one has to reduce their number. The Heg iis
to orientate on the microscopic shell-model hamiltoniadeoide which parts of the hamiltonian in Eq.2.15 are agtuaiportant.
This way is not unique causing the existence of several IBikgiltonians. The maybe most common and successful one is

H=¢€.nq +€,ng +2cQ,-Q, +AM,. (2.18)

Equation 2.18 has a sound microscopic justification and gdithie common fermionic pairing-quadrupole hamiltoniame fermio-
nic analogon of the d-boson energieesande,, is the monopole pairing part, while the analogon ©f@,.- Q,, is the proton-neutron
quadrupole interactiom ,, is the so called Majorana-Operator which has no direct re@mpic counterpart. Its most general form
is

M., =[s| xd —s xd/]®-[s, xd,—s, xd,]®

3 . (2.19)
— 2 [df x df]® - [d, xd,]®
k=1

The underlying algebra of the IBM-2 is 106)x U,,(6). The three dynamical symmetries SU(3), O(6) and U(5) allestitained
when proton and neutron parts are coupled on the U(6) lexkkan be used for interpreting nuclear structure phenonigma.
focus of this thesis is on an other symmetry of the IBM-2 Héonilan, the so called F-Spin.

On the nucleonic level isospin is approximately a good quamumber and a useful symmetry to describe nuclear systedns a
to simplify calculations. Protons and neutrons are treatedifferent states of one particle: the nucleon. On theriodevel the
F-Spin quantum number was introduced in Ref. [Ari77] as alague for bosons to the isospin concept for nucleons. TBeiR-
quantum numbers for proton and neutron bosons are given by

. F=1/2
bz10) =1 F = +1/2

._ F=1/2
,10) = {F —_1/2.

The treatment of proton and neutron bosons as an F-Spinetdaipposes an SU(2) group structure, therefore isospin aggdifr
are mathematically identical. The generators of the SU@)gcan be written as

(2.20)

F,=d'd, +s's,

F_=d'd,+s's,

1 - ~
F.=3 [d;dﬂ +sts, —dfd, - sjsv] (2.21)

1
=5 (Ne=Ny ).

F, andF_ enhance or lower~ being one half of the difference between proton and nedtosion numbers - by one unit. Sirfeg,
F_ andF, form a Lie-Algebra they are close under commutation. Auhticed in Eq.2.7 it is possible to define a Casimir-Operator
for this algebra commuting with every generator

FP=F_F, +F,(F, +1). (2.22)
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ConvenientlyF, is chosen to label the states together with the correspgrelenvalue of%: F(F+1). For a given number of
proton and neutron bosons the F-Spin can take values betiygers [N, - N, |/2 and E,,, = (N,+N,)/2. F-Spin is a useful
guantum number to classify the boson states with respetteio symmetry under pairwise proton and neutron exchangsisB
states that are characterized by a maximum F-Spin quantathenfF = F, ., can be transformed by successive action of the F-Spin
raising operatoF . into a state that consists of proton bosons only. Obviossigh a state is unchanged under pairwise exchange
of proton and neutron labels since it does not contain anyroretosons. Therefore, IBM-2 states with maximum F-spiangum
number are calleérully-Symmetric States (FSSs). All states with £F_,,, contain at least one pair of proton and neutron bosons
which behave antisymmetric under the exchange of protomantton labels. This class of states is investigated intt@sis and

are referred to aBlixed-Symmetry Sates(MSSs).

The F-Spin is an exact symmetry if all generators of Eq.2@hroute with the IBM-2 hamiltonianE, is per construction
diagonal in a F-Spin basis, the remaining strong condit®fii ,H]=0. The weaker condition for F-Spin being at least a good
quantum number is given b¥$, H] = 0. However, the IBM-2 of Eq.2.18 is far from being a F-Spakar nor is it commuting
with F2. So in principle one can expect F-Spin mixing between misgmmetric and fully-symmetric states preventing F-Spin of
being a useful concept. The reason why F-Spin is nonethafge®ximately a good quantum number is caused by the Maeran
term of EQ.2.19. This operator gives an overall energytshistates with KF,,, separating fully-symmetric and mixed-symmetric
states. Since the degree of F-Spin mixing dependents omé#rgyesplitting between states of different F-Spin, thespnee of the
Majorana-term reduces this effect drastically. HoweveBgdin mixing is not completely negligible,g. the A=100 region is known
for strong F-Spin mixing effects [Kim96] signaled by M14tsition between low-lying states.

How would F-Spin symmetry show up in nuclear spectra? Supftes chosen IBM-2 hamiltonian is a F-Spin scalar, then the
excitation spectra of a set of nuclei with the same, fixed tmtaon number N = N + N, would be identical for all states with F =
Fnax- Of course, the hamiltonian must be the same for all nucleiadeling an identical set of IBM-2 parameters. The varioudaiu
with different F, would form degenerated F-Spin multiplets. In case of F-$ping a good quantum number the multiplets are not
necessarily degenerated. However, if the energy variatitm F, is small, one can hope to identify them. Figure 2.1 displags t
low-lying states of a selected set of heavy nuclei. All hatetal boson number of 13 and therefore form a F-Spin multj@ee85]
of F.« = 13/2 ranging from F= -7/2 to F, = 3/2. Since the levels are nearly degenerated, F-Spin ismgta good quantum

6" S
2 0.5
= +
m 4 —
2+
-
] o
158Dy 162Er 166Yb 170Hf 174VV 17%)8
F 32 12 -12 -312 -5i2 -7/2

Figure 2.1: The experimental energy levels for selected nuclei belonging to an F,,,=13/2 multiplett. The levels are nearly degenerated
proving that F-Spin symmetry is approximately fulfilled.

number but also the symmetry condition seems to be fulfibeal large extent. It should be noted that no other reasontexisbk
at this set of nuclei expect F-Spin. One can consider F-Spimr@asonable - unfortunately rarely known - symmetry ideium
addition, the goodness of F-Spin is confirmed by the sheetfiat the IBM-1 - considering only states with F 5k - works so
well for low-lying states in general. Investigating the pesties of MSS allows to test the validity of F-Spin symméuwythe states
with F<F,

max-*
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The IBM-2 transition operators have a simple form using thutipole operators of Eq.2.17. The M1-transition operagagiven

by
3
T(Ml)z 4_n[gnLn+ngv].u’N

(2.23)
[3 [N.g.+N,g NN,
= 4_7'C|: == 1/Ll‘ol‘—i_(grr_gv) = (Ln/Nn_LV/NV):|,UzN,

N N

0, and g denote the proton and neutron boson g-factors. Typicallylgand g=0 are chosen in calculationk,,, denotes the
total angular momentum which is per construction a good ummumber and can not connect different states. Hencesitiars
are solely induced through the second term of Eq. 2.23. Enim tan only induce M1-transitions between states whitfler by
one unit of F-Spin [Pie08]. Therefore M1-transitions are exactly forbiddexivieen two fully-symmetric states. Since, no other
M1-transitions are allowed, expect the one between a &ytymetric state and a mixed-symmetric state, it can be used a
unique experimental signature for identifying mixed-syetrit states. The difference between the boson g-factouatado~1u,,,
consequently one can expect a M1-transition matrix elewfethe order of FSS|T(M1)||MSS) ~ 1u, . The E2-transition operator
is given by

T(E2) =€, Q% +e,Q¥, (2.24)
where the quadrupole operatd@~, Qv can be found in Eq.2.17 and,ee, are boson effective charges accounting for states

which contribute to the transition of interest but are natuded in the small IBM-2 model space. Assuming that F-Spimraetry
is fulfilled, the M1- and E2- transition matrix elements arggeneral proportional to the following factors

(FSYIT(MD)|IMSS) ~ (87 — &)V NN,
(FSS|T(E2)||FSS ~e,N, +e,N, (2.25)
(FSYIT(E2)[IMSS) ~ (e, — e, )/ NN, .
Note that also the ground state is a fully-symmetric staiticeSe, ~ e, the B(E2)-value between thé 2and the ground state is
reduced in contrast to the B(E2)-value connecting the@d the ground state. Typically the values amount to seViéral for the
2] state and a weakly collectivel W.u. transition for the 2 state.
Itis always very pleasant to have simple schemes and p&ctu@der to understand and interpret complex nucleartstreical-
culations. The so called Q-phonon scheme is such a toolrwetpiunderstand the sometimes complicated results indnesfivork

of the IBM. In case of the IBM-1 it is assumed that the IBM wawgdtions for low-lying states can be approximated by apglyi
the quadrupole operator Q of Eq.2.4 on the strongly coedlgtound state:

12F) = N,Ql0]), (2.26)

with N, being a proper normalization constant. Following the Q+Rimoscheme higher-lying states can be understood as multi-Q
Phonon excitatior.g. the two-phonon triplet

) =NQQQWI0T)  with J=0,2,4. (2.27)

Indeed, this scheme works very well and it has been shownfir{Re94] that the deviations between the full IBM-1 waugdtions
and the Q-phonon wavefunctions are always smaller than 7%1@6%F and the {f

In general one has to consider proton and neutron quadragpaators as defined in Eq.2.17. Both operators can cougle in
symmetric and in an antisymmetric way. The symmetric cagpis identical to the Q-phonon operator of Eq.2.26

Q=0Q,+Q,, (2.28)

while the antisymmetric coupling

Qms = Qﬂ.’ - CQ’V’ (229)

offers the possibility to describe mixed-symmetry statethe Q-Phonon scheme [Pie98b]. The constant ¢ ensuregortality to
the symmetric state. The one-phoncm; Bccurs naturally by actin®,,s on the ground state

|25) = NinsQms|07)- (2.30)

Besides the symmetric multi-phonon states of Eq.2.27 tlvasts an additional class of multi-phonon states causeddoyipling
of the symmetric and the mixed-symmetric one-phonon states

) =ND(QuQ)Pl0F)  with J=0,1,2,3,4. (2.31)
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Figure 2.2: The symmetric and the mixed-symmetric one phonon states act as building blocks of collective nuclear structure. Shown
are the experimental signatures for mixed symmetry states.

Since the phonon®, andQ,, are distinguishable from each other, two-phonon statésquiantum numberstland 3™ are allowed.
As in the case of the IBM-1, it has been shown that also for BM-R the Q-Phonon scheme gives a good approximation for the
IBM-2 wavefunctions assuming good F-Spin. The Q-Phonoesehmakes the importance of the &nd 2, states apparent, they
act as building blocks of collective nuclear structure.urégg2.2 displays the multiphonon structures in vibratiamatlei in the
Q-phonon scheme. Also shown are the expected decay pexpedincerning M1- and E2-transitions.

In summary the experimental signatures for a one-phonodrgpale mixed-symmetric state are

« enhanced M1-matrixelement to thé af the order of~1uy
» weakly collective E2-transition to the ground state.

In the following the IBM-2 is not used for interpreting the 830 °2Zr and**Mo. The calculations are done in the QPM which
is outlined in the next section. It is not easy to setup a dtadive connection between the MSS defined in the IBM-2 ared th
corresponding state of the QPM which shares the aforemmtdiproperties. Hence, in this thesis the identificatiornefMSS in
the framework of the QPM is simply done by searching for aestdtich exhibits the two crucial properties.

12



2.2 The Quasiparticle Phonon Model

The Quasiparticle Phonon Model (QPM) is a phenomenologinaroscopic model. It uses a separable foiicethe particle-hole
channel making it possible to include all relevant singietiple states for describing collective excitatiom no effective charges
are necessary to reproduce electromagnetic transitiengttrs. The golden horse of the QPM is the coupling of oneyphatates
to two- and three-phonon states - a feature which is uniqtiest@PM. The next section describes technical aspects @@ ®M

tackles the nuclear many-body problem followed by a se@hmut transition operators with a special focus on M1-items being
important for MSS.

2.2.1 General formalism

The phenomenological hamiltonian used in QPM calculat@mgains four parts

Hapm = Hgp + Hpair + Hi + Hp, (2.32)
where:

* Hy, is the single-particle hamiltonian usually taken as a W8aden potential,

* Hi absorbs the short range pairing correlations in the parpalticle channel,

e H,, represents a separable multipole interaction in the peviicle channel,
* Hg, is a separable spin-multipole interaction in the partluide channel.

The QPM equations are obtained by a step-by-step diagatializof the hamiltonian. In the following each of these step
examined in detail and realistic examples are providediecase of?Zr. The discussion is limited to even-even nuclei and natura
parity states, therefore the last teh,, - being only important for unnatural parity states - is nohgidered here. Additional
information can be found in Ref. [So0l92].

First an appropriate mean-field potential is chosen - separatelgrétons and neutrons - to account for parts of the longgan
interaction. The common choice in case of the QPM is a Woodx$aotential of the form

Ut(r) =

Yo midl Ve | 1% 2.33
1+ e(r—RG)/ag _,u2c2 rdr 1+e(r—RfS)/al‘L; s | +V(r). (2.33)

V. represents the coulomb potential gmdhe reduced mass. All parameters are fitted to obtain a $eitescription of the pro-
perties of nuclei in a given mass region with the restricti® = R7, & = &), and R, = R}. Of course this treatment reflects the
phenomenology of the QPM approach, however in principledtid be possible to use a mean-field potential obtained irfa se
consistent way using Hatree-Fock and Skyrme Forces [Sol9®3% thesis considers the nucfézr and “*Mo. The Wood-Saxon
parameters used to calculate the properties of these rarelshown in Tab.2.1. In Fig. 2.3 is presented the resultimglesparticle

Vo Ro g (fm) Vis
(MeV) (fm) (MeV)
neutrons -44.70 5.802 0.6200 -9.231
protons -56.70 5.577 0.6301 -9.609

Table 2.1: Parameters of the Woods-Saxon potential used to calculate the properties of “2Zr and **Mo.

spectra for neutrons (a) and protons (b). To obtain the gratmite configuration one simply fills in the available numdfenucle-
ons from the bottom to the top accounting for the pauli ppheiAt this stage the model is called independent shell irami can
describe only some properties of magic nuclei. For givingaistic description of nuclei the residual interactioulified in the last
three terms of Eq. 2.32 has to be taken into account.

Monopole pairing is known to be by far the strongest resiéhtakaction. This property of the nuclear force manifestseveral
fundamental experimental signatures like tHegBound state in even-even nuclei, the odd-even mass staggethe different level
densities of even-even and even-odd (odd-odd) nuclei. &iving force tends to couple like nucleons to spin-zeropeausing
nuclear superfluidity conceptually very similar to the sdipéity found in solid state physics. The main theoreticall to account

1 Aseparable force is defined §§r;,r,) = V(r)V(r,).
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Figure 2.3: The single particle spectra for neutrons (a) and protons (b) calculated with the Woods-Saxon parameters in Tab. 2.1. The
single particle energies are counted relative to the depth of the potential in Eq. 2.33 neglecting the second term.

for this effect is the BCS theory developed by Bardeen, Coapd Schrieffer in 1957. As an ansatz for the nuclear grotaie s
wavefunction is chosen, which reflects the superfluid-attaraof nuclei

BCS) =] Jew+viafahio), (2.34)

k>0

where k runs over the whole single particle bafi$,is the vacuum state arldrepresents the time-reversed state of.&,in a
spherical basis k = (n, j, I, m) arld= (n, j, |, -m). The square of the coefficients and v, can be interpreted as the probability that
the state k is either empty or occupied by a nucleon pair. IM@EBIculations pairing correlations are absorbed instgend term
Hpair Of EQ.2.32

n,p
Hpair = — 0G0 Y /2 + DEJ' + Dl al,Joolal_a’Too, (2.35)
T i’

where
+ ot — A + ot
[aj aj,]w = Z ijj,m,ajmaj,m,. (2.36)
m,m
Cfn‘l‘j,m/ is the common Clebsch-Gordan coefficient. The structureeopairing hamiltonian is very simple and assumes that mmnop

le pairing is of zero-range and state-independent as itatlday the constant matrix elemenj.OG In principle the latter assumption
is not fully justified and more refined treatments are recormted like using a density dependent pairing force [SevO8jvéver
the QPM is able to account for the main properties of sphiemigelei and therefore this treatment seems to be acceptable
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The ansatz for the BCS ground state exhibits the importargataof having no distinct particle number. Of course thia sad
assumption for calculating the properties of finite nucléierefore the variational principle - the common methoddtedmine the
coefficients y and v, - has to be applied under the constraint that

(BCS|N|BCS) =N. (2.37)

This can be easily implemented by using Lagrange multifisa The corresponding equation for calculating the B@&ngd state
reads

5 {(BCSIHSP +H,q; IBCS) — )L(BCSINlBCS)} =0, (2.38)

A is the chemical potential or fermi levek. the energy which is on average necessary to add an addipartile. The result of
this minimization procedure are the well-known BCS equegiazvhich allow to determine the coefficientsand v,. It is very useful
to introduce so called quasiparticles via the Bogoliubansformation

af :=wa —via;
k k% kK
+. 4 (2.39)
e uka7—< Vkak.

This definition allows to rewrite the BCS ground state as

BCS) ~ [ J(axaplo). (2.40)
k>0

On the one hand the BCS formalism allows to interpret pagvingeracting particles aon-interacting quasiparticles which is a

highly efficient way to account for pairing correlations & tother hand the price one has to pay is the loss of the diganticle

number. In Fig. 2.4 is presented the BCS ground stat&af - neutrons (a) and protons (b) - calculated within the Qe

non-zero occupation probabilities for single-particieels above the fermi-surfadehighlights the important feature of the pairing

force being able to scatter pairs of nucleons over diffefatiells. Therefore the fermi-surface is dissolved in dej@mce of the

pairing matrix element @. The pairing constantsn(@ and G are fitted to odd-even mass differences in the neighbourticten
Examining Eq.2.40 makes clear that the BCS ground stateeanrsidered as the quasiparticle vacuum

ax|BCS) =0, (2.41)
analogously af0) is the vacuum of particles. Hence, in even-even nuclei tuasiparticle excitations can be written as
l¢) = a;;af,|BCS). (2.42)

Similarly to the particle-hole excitation spectrum in theépendent shell model one can introduce a quasiparticieaggn spec-
trum relative to the BCS-ground state with the pleasantfeatat pairing correlations are already included. On ¢fftenand-side
of Fig. 2.5 is shown the occupation probability for the {2®2d; ,) two-quasiparticle states and on the right-hand-side die f
lowest two-quasiparticle excitations 1AZr. The quasiparticle energies can be calculated from teéficients y and v, with the
equation

€= /A2 +(E; —A.)? (2.43)

where E is the single-particle energy from the Wood-Saxon potéatid A ; is the so called pairing gap
)

In the third step of the diagonalization procedure,Hs included being responsible for the mixing of quasip#etstates. In the
quasiparticle representation the hamiltonian of Eq. 2882k written as

np =+1

A A
N ITTTIES 2y S PR IRCEA! 2.45)
T TP j,m Au TP

where the multipole operator is given by

. f(x) (+)

Zm{ =~y + (D lafall ) —v “IB.(jj"; Au)}, (2.46)
B.(jj’ ;lu)=2( 1y Cf,ﬁf],m,a]ma],m, (2.47)
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The reduced matrix elemerﬁ f= (jllilf{(r)Yl(Q)llj’) contains the radial dependencg(rj of the residual interaction. The

following combination of Bogollubovs coefficients areliotiuced & ) = u;vy =+ uyv; and \5 ) = u;uyF v;vi.. The QPM uses a
separable interaction in the particle-hole channel. Thiumption |s an over3|mpI|f|cat|on of the nuclear force, fott as bad as

it seemsg.g. in Ref. [Knu76] it was shown that more realistic matrix elentgecan be approximated to a reasonable extend with a
separable force. The advantage in using a separable faroesisormous simplification concerning technical and nurakdaspects
when diagonalizing the hamiltonian of Eq. 2.45. Of courbe,dim is to diagonalize the hamiltonian exact, becauseeoiitimite
dimension of the eigenvalue problem this is prohibited.rigteo to find a suitable truncation scheme, one can write thengt state

or any other state in the following way

") = CJ|BCS) +Zcml afaf[BCS)+ D Cr atatafat|BCS) + (2.48)

m,i,n,j

The first and the second term should contribute with the &rgmplitudes from a perturbation theory viewpoint motivgtthe
ansatz for a set of operators which project the groundstatheexcited states

Qfu= ZZW A PP G D e (A PN B (2.49)

This approach is called Quasiparticle Random-Phase Appation (QRPA). From Eq. 2.49 one sees immediately I&CS) #
0, so the simple BCS-vacuum is not equivalent to the QRPARvac Instead, four, eight, twelve etc. quasiparticle caméijons
are expected to appear in the QRPA-vacuum causing a so tadledlated ground state’.

The QRPA equations for determining the coefficietﬁtg, (forward amplitude) ang’, (backward amplitude) can be obtained
in many ways. The most elegant one is the Equation of Motiothatkdiscussed in Ref. [Shu07]. An other one is to apply again
the variation procedure

5{<QRPA1qum|QRPA> — (@:/2) [Z{( = (070 - 2] }= 0, (2.50)
Ji’

where|QRPA) is the QRPA-vacuum ang,; the energy of the i-th phonon with multipolarify The explicit equations can be found
in most nuclear structure textboolesd; Ref. [Shu07]). The forward and backward amplitudes fulfi# hormalisation condition

DL = 8l 1= 2606 (2.51)

ji’

The amplitudes are nomalised for some historical reasotgatdt is worth pointing out that the QRPA solutions contegilective
- eg. the [Z*]RPA and the [3]zp4 - as well as non-collective solutions namely nearly pure-twasiparticle excitations which are
not included in the space of the IBM. To avoid misunderstagslit should be mentioned that in the QPM language everyisnlu
of the QRPA equations is called a phonon, in contrast to tbengérical model of Bohr-Mottelson or the IBM, where onlyleative
excitations are referred to as phonons.

Diagonalizing the hamiltonian of Eq. 2.45 in the space of-phenon states, given by the solutions of Eq. 2.50, yields

H=>" Q] Quu +Hin (2.52)
Aui

As indicated by the presence @f,,,, the QPM-hamiltonian is not completely diagonal in the gpaicthe one-phonon states. The
off-diagonal termH;,, is responsible for the crucial mixing between the differphbnons. Its origin can be traced back to the
presence oB.(jj’; Au) in Eq. 2.45. Therefore the most general wavefunction canriteew as a mixture of one-, two- , three- etc.
phonon states

. . D )
N=43"st Qh + Y 2 [Qf,Qf 1+
Vi) {Z QL Zﬁ 1091

: 2.53
+ Z Tla?»ﬁSY?»(J) [ + + A+ ] + | RPA) ( )
1106 QasQﬁst st ’
a3<pP3<rs asf3rs
where
5a3ﬁ3¥3 = 5a3/53 + 5a3¥3 + 5ﬁ3¥3 + 250‘3/53 5a3¥3‘ (2.54)

Most of the RPA and QRPA calculations include only one-phostates since a coupling to two- and three-phonon stategloate
the whole calculation drastically concerning numericakall as technical aspects. However two- and three-phoradassare known
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to have a pronounced influence on the properties of low-Igiages. For example the Ztate in even-even nuclei is without two-
and three-phonons states too high in energy, only after plioguto more complex configurations it is pushed down in gner
Therefore in many calculations - which stay on the one-phdawel - a direct comparison to experiment is difficult. Hoe QPM
the situation is different. Since it uses a separable forgkich allows an enormous simplification of the calculatioogedure - an
inclusion of up to three-phonon states is possible and oneaapare the results directly to experiment. In order temeine the
coefficients S, D and T in Eq. 2.53 the resulting equations@ffollowing minimization procedure are solved

5{ (Y WDIHRY')) — E; (W(J)Iwi(J))}= 0. (2.55)

Their explicit form is given in Ref. [Ber99]. It is worth pding out that no additional parameters have been introdtedcount
for the phonon coupling. In the following two different tygpef calculations are presented which stop at differentestaig the
diagonlization procedure. The 'QPM results’ contain alifsteps, while the 'QRPA results’ stop after the third step,the
coupling to multiphonon states is not included.

2.2.2 Electromagnetic transition strengths and densities

Besides excitation energies electromagnetic decay iepare an excellent observable for testing model prexdtistand to deepen
our understanding of nuclear structueg. they can give important informations about collective giraena signaled by large
transition strengths. In the following the expressiongifansitions being important for MSS are discussed. In tlasiparticle and
phonon representation the electric transition operaémsforms into

EA
M(E) = Z O WIEAIT { wa Qs+ (- Q )

V24 +1
=) c -m’ _+
+V / Z ]m]’m’( )] aj/m/a‘/m/}

where the single-particle transition matrix elemétEA||j’) = (j||i*Y,r*||j’). The first term corresponds to a one-phonon ex-
change term between the initial and final state, while thers@one is a so called boson-forbidden transitiam,in a pure boson
picture - neglecting the inner fermion structure of the @ayors - this transition would be forbidden. Therepresents effective
charges to account for states outside the chosen model. spabe shell model typical values arg ® 0.5 and ¢ = 1.5. Since the
QPM uses a drastically larger model space containing aéssary states contributing to the transition of inter¢ss, possible to
take the bare values, & 0 and g = 1.The explicit reduced matrix element for a ground statedition of a one-phonon state is

(2.56)

(+)
(Qull-a(EN)IO}, ) =Z “)Z S GliEANL YW+ o7 (2.57)

For the discussion of mixed-symmetry states magneticitrans are of outmost importance. The M1-transition oparags a
similar structure as Eq. 2.56 and contains a boson-forbigdet [Sol92]. This part allows M1-transition which arelfimtden in the
IBM-2. The expression for magnetic transitions with mudtgrity A, between two RPA-one-phonon states with multipolarifigs
andA, is given by

(Qugil 1A (EA)I Q1) ZZ ) Gl IM A4 1s)

T j1j2J3 (2.58)
2‘3 2'2 A
‘ { v Ja } (Q’blmwlm + ¢]213 bl )-

In addition to absolute electromagnetic transition sttesgransition densities constitute an excellent obsdevia give detailed
information about the nature of nuclear wavefunctions.né¢ eestricts to the one-phonon part of the wavefunction riduesttion
density can be written as

pu(r) =8P} (1) (2.59)
with
Nz D)
JrN it (o Ji
Pl =2 =5 (1) (55 + ¢35, (2.60)
JJ
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The two-quasiparticle transition densit';e)éj, can be written as

T
J PIN oy [ a1 # }
PN = (13T (4 (1) )<J 575 |70 ) i py (), (2.61)
p; stands for the radial part of the single-particle wavefioncbbtained from the Woods-Saxon potential of Eq. 2.33 hEao-

quasiparticle transition density has its own specific fadiigpendence. The different radial behaviour is the basjairement for
the new signature for MSS presented in section 5.2.
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3 The Experiment

The electron and proton scattering experiments were peedrat the linear accelerator S-DALINAC in Darmstadt andhat t
iThemba LABS cyclotron located in Somerset West, Southc&frrespectively. The experimental setups and data takingittons
are described in this chapter.

3.1 Electron scattering at the S-DALINAC

This section gives an outline of the S-DALINAC, the electsmattering setup at the spectrometer and the detectonsystehe
focal plane.

3.1.1 The S-DALINAC

The first European superconducting electron linear ac®leS-DALINAC delivers high-quality electron beams sirk®91. It
covers the low-energy range between 2.5 and 130 MeV withentsrup to 4QuA used in a variety of experiments. A schematic
layout of the S-DALINAC is shown in Fig. 3.1. The electrong amitted by a thermionic gun and accelerated electroatigtic

<+ Accelerator Hall —= Experimental Hall -
1 B
= e
-
]
-~ L
5m
A

Figure 3.1: Floor plan of the S-DALINAC with its experimental setups: HIPS @ polarizability of the nucleon @ low energy tagger
NEPTUN (3), QCLAM spectrometer @) and Lintott spectrometer (5).

to an energy of 250 keV. A chopper/prebuncher system opgrati room temperature generates electron bunches. Afdswize
bunches enter the superconducting injector linac congisti several niobium cavities cooled to 2 K. The electrorseacelerated
in the injector up to 10 MeV at maximum and can be directly wstetthe High Intensity Photon Setup (HIPS) [Moh99] for nuclea
resonance flouresence or photoactivation experin@htélternatively, the beam can be injected in the main supetaoting linear
accelerator which provides an energy gain of up to 40 MeVAdkithe electrons are extracted right away to the variousrerents
or - if a higher energy is needed - they can be recirculated ontwice providing a maximum energy of 130 MeV.

In the experimental hall on the right hand side of Fig. 3.1jdawange of nuclear physics questions can be addressedibys/a
experimental setups. The electron beam can be conver@diiemsstrahlung photons and used for studying the pohalityaof
the nucleon) [Yev10] or for (y,y’) experiments at the low-energy photon tagger NEPT@NSav10]. Two spectrometers are
available for electron scattering experiments. The QCLAMcrometer@) [Liit95] offers the possibility to investigate nuclear
current distributions at a scattering angle of L8Bor the electron scattering experiments performed in tthésis, the Lintott
spectromete(5) [Wal78] was used. In contrast to the QCLAM the Lintott offéne possibility to work in the energy-loss mode
resulting in a high energy resolution.
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3.1.2 High-resolution electron scattering facility

The Lintott spectrometer is used for high-resolution etatiscattering experiments. Figure 3.2 presents a schepiature. The
electron beam enters from the left and hits the target platete Pivot point®) of the spectrometer. The scattered electrons
enter the dipole magnet of the spectromé®rwhere they are momentum analyzed and finally hit the focalgp@ with a
position sensitive detector system. The electrons at thigaldrajectory are deflected by 169:-7the so called magic angle - which

Figure 3.2: The Lintott spectrometer at the S-DALINAC. The yellow lines mark the incoming and scattered electrons. The target is
placed at the pivot point @ of the spectrometer. The scattered electrons are momentum analyzed in the spectrometer
magnet @ At the focal plane @ is placed a position sensitive detector system.

was chosen to improve the ion-optical properties of the tspeeter. The solid angle acceptance is relatively smah &imsr.
The Lintott provides a high energy resolution upA&/E = 1.510~*. Some important parameters of the Lintott spectrometer are
summarized in Tab. 3.1.

Electron energy range 20-120 MeV
Momentum acceptance £ 2.1%

Energy resolution 15074
Angular range 33- 165
Angle step 12

solid angle acceptance 6 msr

Table 3.1: Main parameters of the Lintott spectrometer.

The energy resolution in experiments with charged pagi@dimited by the beam energy spread which amounts typitall
AEJE = 1073, i.e for the Lintott spectrometer this factor is one order of niagte larger than the intrinsic energy resolution. The
so called energy loss mode allows to perform scatteringraxpats independently of the beam energy spread. The eteroéthe
beam line are used to project the beam as an extended spat targlt with a size corresponding to the beam energy s@xé&ad
The electrons leaving the target enter the spectrometeightlg different positions and under slightly differenbgles causing a
variaton of trajectories inside to spectrometer magnehdfproperties of the beam line elements are matched witlotheptical
properties of the spectrometer, all electrons excitingdinget nuclei in the same energy state can be focused atriree gzint on
the focal plane making the energy resolution independetiteobeam energy spread.

A picture of the focal plane detector system is shown in Fig. B is based on a modern silicon micro strip detector umit fast
readout electronics allowing a high spatial resolution kigth count rates [Len06]. The focal plane - having a lengtBdotm - is
too large for one single micro strip detector. Therefore foicro strip detectors are mounted together covering thédtal plane.
Each consists of 96 strips with a thickness of 306 and a pitch of 65m. The gaps between them are responsible for the blind
regions seen in the electron scattering spectra (see séclp If necessary the gaps can be filled by changing slighé magnetic
field strength of the spectrometer magnet.
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Figure 3.3: The detector system on the focal plane of the Lintott spectrometer consists of the following elements: Magnetic spectrometer
iron yoke @ vacuum connections of bias signals to the preamplifiers @ vacuum connections of the preamplifiers analog
signals @ detector unit @ vacuum connections of supply voltages and control signals of preamplifiers @ detector case
@ and readout electronics and HV main adaptor @ (slightly modified from Ref. [Len06]).

3.2 Proton scattering at iThemba LABS

The proton scattering experiments were carried out at tbltrgn of iThemba LABS in South Africa. The facility and tb&peri-
mental setup are outlined in this section.

3.2.1 iThemba LABS

A floorplan of the iThemba LABS is presented in Fig. 3.4. Theilfy covers a wide range of applications like prot@) and
neutron therapy?), radioactive isotope productiah), y - spectroscopyi and the high-resolution K600 spectromefgr which
was used for the proton scattering experiments describ#dsrhesis. The particles are initially accelerated using of the two
solid-pole injector cyclotrons (SPC). The first o@ is used for the acceleration of light-ions, while the second(3) is mainly
used for heavy ions and polarized protons. The heart of ttkityes a separated-sector cyclotr@® which consists of four sectors,
each with an angle of 34where the particles from the injectors are further acceddrap to the required energy. The maximum
energy achievable for protons is 200 MeV.

3.2.2 K600 spectrometer

A schematic picture of the light-ion spectrometer K600 usethe proton scattering experiments is shown Fig. 3.5. Tio¢ops
from the separated sector cyclotron enter the scatteriagiber and hit the target 4F). The beam is stopped in a corresponding
Faraday cup. A set of collimatof®) define the solid angle which amounts to 6 msr at maximum. Théesed protons pass a
sextupole magne®) and a quadrupole magn@) used for focusing the beam vertically. Afterwards the pnstenter the firsfs)
and the second dipole magr@ where they are momentum analyzed and finally focused on t# fdane. The detector system
on the focal plane consists of two horizontal and one veicatiwire drift chamber®) for event reconstruction. Additional plastic
scintillators(9) located behind the focal plane are used as a trigger and fiicipadentification. The energy resolution achieved for
protons amounts tAE/E &~ 1-10~%. As in the case of electron scattering the energy resoligiamdependent of the beam energy
spread due to the energy-loss mode.
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Figure 3.4: Floor plan of the iThemba LABS facility in South Africa with its main experimental setups: lon source @ SPC1 injector
cyclotron @ SPC2 injector cyclotron @ separated-sector cyclotron @ radioactive isotope production @ proton therapy
@, neutron therapy @ experiments with charged particles , experiments with neutron beams @ Y-spectroscopy @
K600 spectrometer @ and beam swinger magnet @ (slightly modified from Ref. [New96]).

to Faraday Cup

Figure 3.5: The K600 spectrometer at iThemba LABS: Scattering chamber @ internal Faraday cup for small-angle scattering ex-
periments (2), set of collimators (3), sextupole magnet @), quadrupole magnet (5), first dipole magnet (6), second di-
pole magnet @ two horizontal and one vertical drift chamber and two plastic scintillators @ (slightly modified from

Ref. [New96]).
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4 Data analysis and results

This chapter describes the data analysis and results fpréten and electron scattering experiments discussedsimiaster thesis.
The first part examines the proton scattering experimeftZaand®*Mo. Both experiments were carried out at the iThemba LABS
facility located in South Africa using the high-resoluti®®00 spectrometer. The second part describes the eleataitesng
experiment at?>Zr which was performed at the S-DALINAC using the Lintott 8pemeter. The investigations and conclusions of
the following chapters are based on the results obtainedisrchapter. In addition electron scattering date’tvio described in
Ref. [Kuh05] are reanalyzed.

4.1 Proton scattering

This section is organized as follows. First the data takiogditions are described concerning target propertiestesoay angles,
achieved energy resolutions and measured spectra. Neprdledure how to extract the cross sections and error desnaae
discussed. Subsequently the DWBA analysis performed tigraspin and parity quantum numbers to excited states isnedit!
Finally, the results for the proton scattering experimeait®Zr and **Mo are presented and compared to the results of Refs.
[Sin09, Fra05]. The properties of important transitions discussed and the isoscalar B(E2)- and B(E4)-strengshisbditions are
compared to QPM predictions.

4.1.1 Data taking conditions

The experiments were carried out at the cyclotron of iThemBABS using the K600 spectrometer. Both measurements were
performed during the same beam time in 2005 under identinahkatical conditionsi.e. the maximum available beam energy of
E, = 200 was chosen and the spectrometer angles were variedésefivand 26. In total 14 spectra were measured f&o and

12 for °2Zr. Due to the energy loss mode - which is available at the K&@#ctrometer - the energy resolution amountABa

35 keV. Typically the beam currents varied between 1 angh&@epending on the scattering angle. For thklo experiment a
self-supporting foil enriched to 93®and 1.2 mg/crhareal density have been used. PREr target was also self-supporting with
an enrichment of 93.% and an areal density of 1.3 mg/€nin both nuclei the maximum excitation energy in the analysis~4
MeV. At energies above 4 MeV the level density is too high t&ptee the excited states unambigously. Table 4.1 sumnsaitiee
main experimental parameters of both reactions.

922I’ 94MO
areal density of the targgt 1.3 mg/cnt | 1.2 mg/ent
enrichment of the target | 93.4% 93.%%
energy resolution ~ 35 keV ~ 35 keV
beam energy 200 MeV 200 MeV
beam currents 1-30uA 1-30uA
measured spectra 14 12
evaluated energy range | 0-4MeV | 0-4 MeV

Table 4.1: The main parameters of the *2Zr(p,p’)- and the **Mo(p,p’)-experiments.

Figure 4.1 displays four representative spectra for#fe(p,p)- (upper part) and*Mo(p,p)-reactions (lower part). Important
transition are marked with an arrow. The elastic lines asdestdown with the corresponding factors given in the figdoes
illustration purposes.
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Figure 4.1: Representative spectra of the 92Zr(p,p') and **Mo(p,p’) reactions measured at 200 MeV. Prominent transitions are labeled
with their spin and parity quantum numbers. The elastic transitions are scaled with the corresponding factors given in the
figures.
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4.1.2 Determination of the cross sections and energy calibration

The absolute center-of-mass (c.m.) differential crosti@eof the state of interest was calculated using the foamul

do S Ay cos(0/2)

(0 )=
dQ( em.) N,-AQ-n,-e€

(4.1)

where
* J is the Jacobian to transform the differential cross sestfoom the laboratory to the center-of-mass system,
* Agypis the peak area of the state of interest,
* n, is the number of?Zr or °*Mo target nuclei per unit volume,
« cos(0/2) is a factor to correct the target thickness to an effeative, wherd is the angle relative to the beam
* N, is the total number of protons incident on the target,
« ¢ is the efficiency of the drift chambers (see Fig. 3.5),
* AQ is the solid angle covered by the by the entrance collimatting spectrometer.

In the following some remarks are made to the various questiThe peak areak,, are obtained by fitting the spectra with
the peak fitting software SFit [Fuji]. The physical backgrdurom hydrogen contaminations in the target was estimayedn
empirical smooth function. The line shape was taken to betick to the elastic peak shapes in each spectrum. For esthanly
the height and the position of the centroid were treatedegsgarameters.

The number of target nuclei was calculated using the equatio

t-p-Ny-€q
ng=———-, 4.2
: - (4.2)
wheret is the thickness of the targgt, is the bulk density of the targel, is Avogadro’s constank, the isotopic enrichment
andM is the atomic mass of the target nuclei of interest. In thegmeexperiment the target was placed in the so-calleditians
geometryj.e. the protons pass always the same effective path lemgtim the target which is given by

ter = t/cos(0/2). (4.3)

The cross section were corrected for the detection effi@srec of the multiwire drift chambers and for the dead time of the
electronics. Typically, the total detection efficiency amts to 886. The solid angle covered by the collimator was determined to
be 1.166 msr.

Since no reference measurements are available for endifgsatian in both nuclei, prominent and well known transits were
used to calibrate the spectra. Due to the results of théy(areaction states with well known energy, spin and paritargum
numbers are available which can be used for the calibratioto 8.5 MeV. Hence, the missing reference measurementsoaie n
serious caveat and a meaningful energy calibration can therped up to~4 MeV.

4.1.3 Error estimate

The measured (p,pcross sections contain statistical as well as systentafiars. The total uncertainty of measured cross sections
includes:

« statistical uncertainties in the peak area determina&ia%

* uncertainties in the determination of the solid angl&s

« statistical uncertainties in the determination of theumeglated charge in the Faraday csfi%
* error in dead-time corrections1%

The errors were treated as independent from each other k@ ta be the square root of the sum of the squared systenmatic a
statistical errors.
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4.1.4 DWBA analysis

In order to assign spin and parity quantum numbers to theezkstates, a DWBA analysis was performed in the framewothisf
thesis using the coupled-channel program CHUCK3 [Kunzg diistorted waves in the entrance and exit channels wereatede
by solving the Schrédinger equation with the optical pagnt

2 1d
U(r) = Vc(r) - va (r:Rv:av ) + Vls A (I : S)__fls(raRls:als)
m,c rdr
, (4.4)
. i 1d
+1 va(r’Rv’av)_Vls . (l 'S)__fls(raRls’als) >
m,c rdr

T

considering Coulomb, central volume, imaginary volumén-spbit and imaginary spin-orbit potentials. The nuclpatential form
factors are chosen to have a a Wood-Saxon type given by

T—Rk -1
fk=(1+exp( o )) s (4.5)

with radiusR,, = r.A/® and diffusenesa,. The Coulomb potential was taken to be of standard form

ZyZe(3—(r/R:)%)

V=4, A 0T (4.6)

whereZ, is the charge of the projectil, is the charge of the target aRg is the Coulomb radius. The optical potential parameters
are displayed in Tab. 4.2 féfZr. For **Mo a slight modification of the parameters was necessarypanameters were fitted to
the elastic cross sections starting from the set of Ref.§2che transition potential was taken to be the derivadivihe optical

Woods-Saxon potential LS potential
V (MeV) r(fm) a((m) | V(MeV) r(fm) a(fm)
Re 17520 1.257 0.750 -2.484 1.021 0.787
Im -10.980 1.253 0.822 1.853 1.020 0.592

Table 4.2: The parameters of the optical potential used for 2z7r,

potential weighted with a spin dependent factor i.e. for a given spin the calculated angular distributions héeesame shapes
regardless of the microscopic structures of the considetds.

The angular distributions of the cross sections are useddigrm spin and parity quantum numbers to the excited stakes.
requirement for an unambiguous spin-parity assignmeritarptesent work were: Agreement between theory and expeatriover
the complete measured angular range. The requirement éoitatitze spin-parity assignment was: The position of tre firaxima
between theory and experiment are in agreement. Otherwisgiantum numbers are assigned. At 200 MeV the protons aitera
mainly isoscalar [Fra85] with the target nuclei and excaural-parity states, i.e. from the spin quantum number follows directly
the parity quantum number. It would be possible to extradgsascalar transition strength for each state from the dfyant

) do O &P do DWBA
== . 4.7
= (@), (@), @
and compare it to predictions of the QPM. In this thesis a nfiandamental way was chosen to compare QPM results to the data
which is described in section 4.1.7.

For most of the states the one-step cross section of thecttelemodel is sufficient and the experimental cross sestane
reasonably well described. The comparison between thewtyre experimental data is shown in Fig. 4.2 and Fig. 4.3%8r and
in Fig. 4.4 and Fig. 4.5 fot*Mo.

However, there are two exceptions. For the symmetric queadeutwo-phonon states i#fZr and °**Mo the description by a
pure one-step excitation fails, due to large two-phononpmments in the wave functions. For all other states two-ptepesses
can be neglected. This is especially the case for gmén?“Mo which is claimed to have a cross section shape pointing to a
two-phonon nature in Ref. [Bur07]. However, the deviatiémsn a one-step cross section shape at higher scatterigsaace
due to the excitation of the}6(2872.4 keV) which is close in energy to th§ 22870.0 keV). The 6 cross section has its first

1 Natural-parity states are defined as states its spin anty paei connected by the relation= (-1Y .
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maximum approximately at the first minimum of th& @ross section. Therefore, the enhancement of ;herﬁss section seen at
larger scattering angles can not be attributed to the tvamph nature of this state. Indeed at smaller scatteringeanghhere the
6, should contribute only weakly to the total cross section ugene-step cross section achieves a good descriptios.is hi
agreement with the results of Ref. [Bur75]. Two-step preesswill play only a role for nearly pure two-phonon stat&s for the
25 in**Mo and the 2 in *2Zr.

The second exception is the mixed-symmetry statéhfo (and to a smaller extend the MSS%#Zr). Due to its isovector cha-
racter the cross section shape differs significantly frottective model predictions. In order to describe theseesta microscopic
treatment is needed. This is the main topics of this masésigrand will be discussed in chapter 5.

In the following sections the results of the coupled-chésmaealysis is discussed f8tZr and**Mo. In total 19 unambiguously
and 2 tentative spin-parity assignments could be mad&#br For 3 states no spin could be assigned. ¥dto 17 angular distri-
butions of cross sections could be measured with 13 unambgly and 2 tentative assignments. Each of the angulaitdisoms
is shown and all transitions are discussed. It should beiorexd that - expect for some states’fiMo - no new spectroscopic
information could be obtained from the present proton edaty experiments. Both nuclei are already measured irr dihgron
and (n,hy) reactions with better energy resolutions. The aim of thagkwis not to obtain new spectroscopic informations but ® us
the data for new insights in the properties of mixed-symynstates. This will be discussed in the following chapters.

Tables 4.3 and 4.4 display the observed excited states analstiigned quantum numbers féZr and “*Mo, respectively. In
Figs. 4.2-4.5 the experimental cross sections are compaieallective model predictions. Each transition is disagsin detail.

4.1.5 Proton scattering results for 72zr

No E, E, E, N N J | (do/d) e B(EL)g
(keV)!  (keV)®  (keV)? (mb/sr}  (s.p.u.¥
1 [ 937(1) 935 9345(1) 2F 2 2F 7.59 15.5
2 | 1496(3) 1495 1495.5(1) 4t 4t 4t 0.48 6.6
3 | 1849(1) 1847 1847.3(1) 2* 2t 2 1.91 2.4
4 | 2062(2) 2053 2066.6(1) 2t 2 2t 1.0
5 | 2187(3) 2182 2186.3(1) 2+ (2t) 2F
6 | 2339(1) 2334 2339.6(1) 3 3 3 9.41 35.2
7 | 2394(4) 2393 2398.4(1) 4t 4t 4t 0.47 1.7
8 | 2490(3) 2482 24859(22) 5 5 5 0.42 10.0
9 | 2749(2) 2757 2747.9(2) 3= 3 3
10 | 2814(4) 2823 2819.6(1) 2t 2 2t 0.23 0.5
11 | 2859(3) 2869 2864.7(2) 4t 4T  4* 0.32 4.3
12 | 2948(5) 2963 2957.7(5) 67 (67) 6T 0.07 4.0
13 | 3047(3) 3055 3057.5(3) 2+ 2F @ 2F 0.24 0.7
14 | 3181(2) 3187 3178.3(2) (4") 4T 4" 0.20 2.3
15 | 3236(4) 3248 3236.9(6) (4t) 4t  4* 0.16 1.9
16 | 3264(2) 3273 3262.9(4) 2t 2t 2" 0.85 0.8
17 | 3329(3) 3345 5 5 0.21 4.0
18 | 3366(5) 3382 3"
19 | 3450(1) 3452 3452.2(1) 3= 3 (20 1.08 5.0
20 | 3494(3) 3491 3500.1(3) 2t (3) 2+ 0.23
21 | 3603(4) 3587
22 | 3643(3) 3634
23 | 4184(3) 4181 3= 3 0.28 0.9
24 | 4410(5) 4397 2t 2t 0.38 0.3
! this work
2 Ref. [Sin09]

3 Ref. [Fra05] and NNDC

Table 4.3: Results of the DWBA analysis 92Zr(p,p’) experiment. The energy, spin and parity quantum numbers are compared to the
results of Ref. [Sin09] and Ref. [Fra05]. The excitation energies of Ref. [Sin09] are accurate within 10 keV at ~2 MeV and 20
keV at ~4 MeV. The quantity (do/d2) .y iS the cross section at the first maximum of the corresponding state. The states at
2187 keV and 2749 keV belong to °zr.
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The 2™ states at 935, 1853, 2814 and 3264 keV
The cross sections are described well by the collective impdelictions assuming a spin of 2 and a positive parity. This
agreement with the results of Refs. [Sin09, Fra05].

The 2t state at 2062 keV
Due to the two-phonon character of this state, its crosssecan not be described by one-step processes alone.

The 2" state at 2187 keV
Due to a remaining abundance’8Zr in the target, this is the first excited 2n °°Zr located at 2196.3 keV. Only collective states
like the first 2" and first 3 can be seen in the spectra. Contributions from other Zr psstéhar’®Zr can be neglected.

The 21/3~ doublette at 3047 keV
The observed transition is a doublet of the fate at 3057.5 keV and the 3tate at 3039.8 keV which cannot be resolved. This
explains the deviations in the excitation energy compaceRédf. [Fra05] and the deviations of theory and experimenargier
scattering angles. The cross section is described bestshynasy a spin of 2 and a positive parity. Therefore thesfate is much
weaker excited.

The 2t state at 3494 keV
The angular distribution is described best by assumih@® quantum numbers. The state can be identified with thst@e of
Ref. [Fra05] at 3500.1 keV. In contrast to this result Rei(®] made a tentative assignment of {3

The 2" state at 4410 keV
The angular distribution for a'2states fits best in agreement with Ref. [Sin09]. The excitedinergy is out-of-range of the (fy)
dara.

The 3™ states at 2339, 3450 and 4184 keV
Assuming quantum numbers 3jives the best fit to all three states. This is in agreemerit {@in09]. The (n,fhy)-reaction of
Ref. [Fra05] assigns 3for the state at 2339 keV, a tentative assignment 6j {@r the state seen at 3452.2 keV. The third state is
out-of-range of this experiment.

The 3™ state at 2749 keV
Like the 2" state at 2187 keV this 3state belongs t&°Zr being located at 2747.9 keV.

The 4™ states at 1496, 2394 and 2859 keV
The cross sections are described well assuming spin aniy garwhich is in agreement with Refs. [Sin09, Fra05]. The state at
2394 keV forms a doublet with the Jtate at 2339 keV which could be resolved.

Thetentative 4" states at 3180 and 3236 keV
Only the position of the maxima correspond to the theorkpicadictions for the angular distribution of 4 4tate. Serious deviations
can be found at larger scattering angles which are not uttdetsTheoretical angular distributions of other multgrities do not
improve the description. However, in Ref. [Sin09] and NND&Hostates have been clearly assignedastétes.

The5™ statesat 2490 and 3329 keV
Both states can be described with the angular distributfan® state. It would be desirable to measure a larger angulaerang
order to make these conclusions more reliable. The reg@in agreement with Ref. [Sin09]. Only the state at 2490 ke¥%eien in
Ref. [Fra05].

The 6" state at 2948 keV
The cross section shape points to'asdate. In agreement with the results of Refs. [Fra05, Sin09]

The states at 3366 and 3643 keV
No quantum numbers could be assigned for the cross sectitre states at 3366 and 3643 keV. In Ref. [Sin09] eaB3382 keV
is seen which may correspond to the state at 3366 keV.
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Figure 4.2: Comparison between angular distributions of the collective model to experimental data of the 92Zr(p,p’)-reaction.
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4.1.6 Proton scattering results for Mo

No E, E, E, F T T | (do/dQ),.,
(keV)!  (keV)?  (keV)? ( mb/sr }
1 | 871(1) 871 871.09(1)] 2 2F 2F 10.02
2 | 1573(2) 1573 1573.72(1) 4 4t 4F 1.03
3 | 1861(4) 1864 1864.3(1) 2" 2 2F
4 | 2062(4) 2068 2067.4(1) 2+ 2t 2F 0.76
5 | 2394(4) 2393 2393.1(1) 2+ 2¢ 2F 0.28
6 | 2534(1) 2534 2533.8(3) 3= 3 3 7.59
7 | 2608(2) 2611 26105(3) 5 5 5 0.47
8 | 2769(2) 2770 2768.2(2) 4T 4T 4% 0.52
9 | 2865(2) 2870.0(2)| 2* 2t 0.23
10 | 3008(2) 3014 3011.52) 3= 3 3 0.37
11 | 3382(2) 3396  3389.5(7) 5- 5
12 | 3452(2) 4% 0.32
13 | 3531(9) 3534.3(2) 2t
14 | 3633(2) 24 0.20
15 | 3798(3) 3802 3792.8(3) 2+ 2F 2F 0.31
16 | 3996(3) 3995 2t 2t 0.22
17 | 4146(4) 4139 2t 2t 0.23
1 this work
2 Ref. [Pig92]

3 Ref. [Fra03] and NNDC

Table 4.4: Results of the 94Mo(p,p’) experiment evaluated in this thesis. The energy, spin and parity quantum numbers are compared
to the results of Ref. [Pig92] and Ref. [Fra03]. The excitation energies of Ref. [Pig92] are accurate within 2 keV at ~2 MeV
and 5 keV at ~4 MeV. The quantity (do/d2),,,« iS the cross section at the first maximum of the corresponding state.

The 2t states at 871, 3798, 3996 and 4146 keV
Assuming a spin of 2 and a positive parity give a best fit to thadThis is in agreement with the results of Ref. [Pig92]. In
Ref. [Fra03] the states at 871 and 3798 keV are also identiie?i states, while the states at 3996 and 4146 keV are out-okrang
of this experiment.

The 2" at 1861 keV
Like the 23F state in”?Zr two-step processes contribute to the shape of the croisséndicating large two-phonon components in
the wave function. Ref. [Pig92] as well as Ref. [Fra03] mai assignment for this state.

The 2t at 2062 keV
The angular distribution of the cross section deviate®asly from the one for a2state. However, in Refs. [Pig92, Fra03] the state
was unambiguously identified as & &tate. Indeed the deviations can be explained by consgldrémicroscopic structure of this
state and are due to its isovector nature. This will be thie tojpchapter 5..

The 2" at 2394 keV
The state is close to the Gstate at 2423 keV. This doublet can not be resolved. Thergtdrlarger scattering angles - where the
contributions of the 6 state become important - data points are not available. Atlsmscattering angles the angular distribution
points to a 2 state which is in agreement with Refs. [Pig92, Fra03].

The 2" at 2865 keV
Like the state at 2394 keV this state is close td state at an energy of 2872 keV. Thé State is located at 2870 keV according to
Ref. [Fra03]. Of course, this doublet can not be resolvedhddeat larger scattering angles the contributions of thetéte become
important and enhance the absolute cross section. At snsakiétering angles a pure one-stépcoss section describes the data
best. This result is in sharp contrast to Ref. [Bur07] whibéritified this state as a two-phonon state. Consideringahgibutions
of the 6" there is no sign, in the present data, for a two-phonon state.

The tentative 2" state at 3633 keV
The angular distribution can not be described by any thealetross section. However, the location of the first maximheing at
small scattering angles indicates agate. This state is not seen in Refs. [Pig92, Fra03].

The 3™ state at 2534 keV
The angular distribution indicates a 3tate in agreement with Refs. [Pig92, Fra03].
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The 27/3™ doublet at 3008 keV
The state is a doublet formed by & &tate at 2993 keV and a Jtate at 3011 keV. This doublette can not be resolved. Thelang
distribution is described best by assuming a spin of 3 andtivegparity. This points to a collective 3tate.

The 41 states at 1573 and 2768 keV
In agreement with Refs. [Pig92, Fra03] the angular distidims indicate a 4 assignment for both states.

The tentative 4" state 3452 keV
The cross section shape is described best assumirigstate. Due to the deviations at smaller scattering anglseaotentative
assignment is possible. The state was not seen in Refs 2Hg803].

The5™ state at 2608 keV
In agreement with Refs. [Pig92, Fra03] the angular distiduindicates a 5 state.

The states at 3382 and 3531 keV
No spin and parity assignments could be made for these shateef. [Fra03] the first one is identified as a State and the second
one as a 2 state.
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Figure 4.4: Comparison between angular distributions of the collective model to experimental data of the 94Mo(p,p’)-reaction.
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Figure 4.5: Comparison between angular distributions of the collective model to experimental data of the 94Mo(p,p’)-reaction.

4.1.7 Comparison to QPM results

All angular distributions of a given spin presented in th& Eections have very similar shapes (expect for the two itapbstates
mentioned before). Hence, the main experimental observadtessible is the magnitude of the cross sectiomsnformation
about the isoscalar transition strengths. In principleatild be possible to obtain from tiﬁ coefficients defined in Eq. 4.7 the
isoscalar transition strengths. However, this quantityighly sensitive to the chosen set of optical model pararaeted assumes
the validity of the collective model form factors which istrfally justified. The final aim is to compare the extractedsisalar
strengths distributions to results of the QPM. This can beedan a more fundamental way. The theoretical cross seatambe
calculated by using directly the nuclear structure resfltie QPM and a microscopic effective projectile-nucleneriaction. Four
ingredients are necessary to obtain a theoretical crotissersing the program DWBAOQ7 [Ray07]:

(i) the transition form factors provided by the QPM,

(i) the transition amplitude for inelastic proton scaittgris provided by the free nucleon-nucleon t-matrix of Feshove, [Fra85]

which can be written in coordinate space as

t(r)=to(r) +t;(r)d, - G,
+ (1T Ty + to:(r)(G1 - G2)(T1 - T2)
+t15(r)L - S+ t15.(r)(L - S)(T, - T2)
+ tr(r)S12(F) + t 1 (1)S12(F)(T1 - T2)

(4.8)

(iii) an optical potential calculated from this interagtjo
(iv) single particle wave functions obtained as solutioha Wood-Saxon potential (see Tab. 2.1).

The values of first maxima of the calculated and measuredprstattering cross section are compared with each othéwein t
following figures. This procedure is carried out for the quemble and hexadecapole states’¥@r (see Fig. 4.6) and for the
hexadecapole statesiMo (see Fig. 4.7). In addition the distributions of the qugmie transition strengths f#Zr and**Mo are
compared to each other in Fig. 4.7. In general the QPM achiasatisfying description of the cross section maxima aewktbre

of the isoscalar transition strengths.

35



71 (p,p) @200 MeV ot 2 (p,p) @200 MeV 4t

% 10 g 0 1r E
= ~
< )
£ £
S [
< <

'k : : IIII : I . W —1 :I : ]

o | PM | 1 | QPM il
E Ir 1 E

S g w'f E
2 <
ST I . S

10° E ! ' ' I - E 10° E ' ' E

. 92Zr(oz,a’)@?)f) MeV 1 Zr (a,0) @35 MeV 1
2 1wk E 3
5 &

\é‘; L i é: 1F 4
) | | | )

10" k A N N I E 10" E N N N N 1

0 1 2 4 5 0 1 2 3 4 5

 (MeV) E, (MeV)

Figure 4.6: Comparison between measured cross section maxima of quadrupole (Ihs) and hexadecapole (rhs) states in 227 to QPM
predictions and the isoscalar transition strengths deduced in Ref. [Sin09].

) | "Mo(p.p') @200 MeV 4t ]

Z
=)
&
g
)
<

10.1 o 1 1 1 1 ] T T T T

; ; ; ; o ;
, +

R 1 F QPM | — ol Zr(p,p )@200 MeV 2" |
E <
g 't 1 £ 1
g T I
3 © I

10° k ) \ E 10k " } I I I ; g

! ! ' o
\o(p,p) @31 MeV _ Mo(p,p')@200 MeV
5 op ] % 10} ]
Z c!
E S _
= | = |
al I 1 10" E . I I. IIII E
10 L L 0 1 3 4 5

0 1 3 4 5
 (MeV) « (MeV)

Figure 4.7: Comparison between measured cross section maxima of hexadecapole states in **Mo to QPM predictions and to the isos-
calar transition strengths deduced in Ref. [Pig92] (lhs). The right-hand-side compares the isoscalar strengths distributions

of ®2zr and **Mo.

36



4.2 Electron scattering at 27y

This section is organised as follows. First the data takimgddions are discussed concerning target propertiesn legeergy and
scattering angles. The measured spectra are shown. Negedoenposition of the spectra and the procedure how to obtain
absolute cross sections are outlined. Finally, the sidisind systematic uncertainties are discussed and thkksrase presented.

4.2.1 Data taking conditions

The experiment was performed at the S-DALINAC using the diinspectrometer during a beam time in 2007. The beam energy
was chosen to cover the first maximum of the quadrupole fartofa and amounts to 63.5 MeV. In total four spectra werertake
under scattering angles 6f= 6%, 81°, 9% and 117. For the measurements a self-supporting target of 1.3 nfgéreal density

and an enrichment of 93% was used. In the energy-loss mode the achivied energy tesoamounts taAE ~ 30 keV (full width

at half maximum). Typically, the beam currents were abquA1The main parameters of tféZr(e,€) experiment are summarized

in Tab. 4.5. The measured spectra are shown in Fig. 4.8. Tine §pots in the spectra are due to the limited size of theastiip
detectors (see Fig. 3.3).

areal density of the targdt 1.3 mg/cnd
enrichment of the target | 93.4%

energy resolution ~30 keV

beam energy 63.5 MeV

beam currents 1uA

evaluated energy range | 0 - 2.4 MeV
scattering angles 69, 81°, 93, 117

Table 4.5: The main parameters of the “2Zr(e,e’)-reaction.

4.2.2 Determination of the cross sections

The decomposition of the spectra was performed with therprod=IT. In the most general case the fitting function coasi$ta
polynomialB(x) which describes the instrumental background and a fungin) which is assumed to describe thh individual
peak. Here, the parametedabels the excitation energy. The whole spectrum can bd fittth the function F(x)

F(x) :B(x)-l-z ¥ (). (4.9)

An instrumental background is absent in the measured spddie shape of the functign(x) - which must take into account the
Gaussian form of the peak itself as well as the radiativediz to electron energy losses in the target - was assumedjivdreby

exp(—In2-(x — x0)*/Ax?)  x <xq
y(x)=yo-{exp(—In2-(x —x)*/Ax3)  xo<x <x5+nAx, (4.10)
Dl/(DZ +x—x0)y X >XO+T)AXZ

with
* X, the position of the peak maximum,
* Yy, the counting rate at the peak maximum
* AX, , the half widths at half maximum fdi, < x, andE, > x,, respectively,
« 1) the starting point of the radiative tail in units Afx,,
v the exponent of the hyperbolic function of the radiativé tai

* D; and D, determined from the condition of a smoothly differentiabmnection of the second Gaussian function and the
hyperbolic function at the intersection poing + nAx,.
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Figure 4.8: The measured spectra of the 2Zr(e,e’) reaction. Prominent transitions are labeled with their spin and parity quantum
numbers.

The peak areas are determined by an integration of the madiéns up to a cutoff limit of ;. = xo+5Ax;. The missing peak
areas are estimated by applying corrections called Scheniing bremsstrahlung; and ionization correction§;. The Schwinger
correction accounts for the emission of real photons anérfiesion and absorption of virtual photons. The bremskstnghcorrec-
tion is due to effects which cause an asymmetric distortfah® peak. These are caused by small angle scattering frectrehs
and nuclei other than the nucleus of interest. The ioninat@rection describes the energy loss of the electronitettyet due to
atomic excitations and ionizations.

The final peak area is given by

A=Ay - 05T (4.11)

whereA;,, is the peak area obtained from the integration of the modudtfon y; up to the cutoff limit. In the present analysis all
parameters were fixed to the properties of the elastic pealy. tBe counting rate/, and the peak positior, were treated as free
parameters for each peak.

In principle it is possible to calculate the cross sectioaroéxcited state using Eqg. 4.1. In contrast to proton saadgtére electron
scattering process is dominantly electromagnetic andldstie scattering cross section can be calculated with la &daguracy in
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the framework of Quantum Electrodynamics. Hence, it isgref] to determine the inelastic cross secﬁ(%%)in relative to the

do
do A, 100 (do
— ) =t (2 (4.12)
dQ in Ael € dQ el

elastic cross sectlo(1d—Q o
whereA,; andA;, are the areas corrected for dead time and radiative pracéssthe elastic and inelastic peaks, respectively. It is
necessary to account for the isotopes enrichmgsince the elastic cross section contains contributiotlseofucleus of interest as
well as other stable isotopes liR&Zr for the case of2Zr. The area of the inelastic peak corresponds only to thiensof interest.
The elastic cross section were calculated using the phésestle PHASHI [Béahr]. The charge density of the groundestais
approximated by a three-parameter Fermi distribution. Jdrameters were taken from Ref. [Jag74].

4.2.3 Error estimate

Since, the absolute cross sections of the inelastic tiansitvere calculated relative to the elastic peak one avoiributi-
ons of systematic errors in the determination of the soligleand the accumulated charge in the Faraday cup as weliges ta
inhomogeneities. The total uncertainty of the cross sedétioludes

« statistical uncertainties in the peak area determin&tid¥
« error in the dead-time correctionl%
« inaccuracy in the calculation of the elastic cross secti@fo

The errors were treated as independent from each other kma ta be the square root of the sum of the squared systenmatic a
statistical errors.

4.2.4 Form factor results

The measured absolute cross sections of the excited statdeaonverted into form factors by calculating the ratithwhe cross
section for Mott scattering. The final results for the symmmetnd mixed-symmetric states are given in Tab. 4.6. Tharpaterg
stands for the momentum transfép, is the beam energy ar@ilgives the scattering angle.

q By 0 IF(ZDIF x107*  [F@2H ) x107*
(fm™1)  (MeV) (deg)

0.35 63.5 69 3.98 0.07 2.02+0.04
0.41 63.5 81 51¢0.11 2.67+0.08
0.46 63.5 93 5.3 0.11 2.95+ 0.08
0.54 63.5 117 7.940.23 4.23+0.17

Table 4.6: Transition form factors for the symmetric and mixed-symmetric states of 927r. The errors include only the uncertainties in the
peak area determination.
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5 An alternative view on one-phonon quadrupole
mixed-symmetry states

The main experimental signature for assigning a mixed-sgtrimcharacter to a2state is a strong M1 transition to thg Btate
as discussed in section 2.1.2. This thesis presents forrgtdifne an additional signature which manifests the différisospin
character of the 2 (FSS) and Es (MSS) by a comparison of their charge and matter transigalii.rElectron and proton scattering
cross sections are analysed to obtain experimental inf@nsaabout these quantities.

This chapter is organized as follows. First, the results gfRM calculation for®?Zr are presented and compared to various
experimental observables. Based on these results, théad#ee new signature is developed in the framework of the QRIskt
- to check its validity - the charge and matter transitioniirafithe FSS and MSS are measuredi@r, where the MSS is already
identified based on absolute M1 transition matrix elemenkt® new signature motivates a novel explanation for theirord
effective forces used in quadrupole collective models amdHe general formation mechanism of mixed-symmetry stakhis
is presented in section 5.3. Finally, some semi-quantéatonsiderations on the evolution of mixed-symmetry statehe N=50
region are discussed, based on a QRPA calculation [Pon10].

5.1 QPM results for °2zr

Since the IBM-2 does not work very well near closed shells @siders spin contributions to M1 transitions only in aerage
way [Hey10], microscopic approaches are needed to inastipe properties of mixed-symmetry state¥@r. The shell model is
the superior model for describing low-energy excitatioeantlosed shells. However, since the aim of this work is szdle proton
and electron scattering cross sections and to study - abeddime clear in section 5.3 - the role of the Giant QuadruRelonance
(GQR) on the formation of MSS, a QRPA based approach is faer The first point would in principle be possible in thelshe
model, but requires extensive theoretical calculatiofieidng the procedure of Ref. [Sag87]. The latter point istpbited, due to
the limited model space of the shell model. The QPM is a veitakle QRPA approach for these purposes, since it incluaes t
coupling of one-phonon to two- and three-phonon states;iwhie known to be very important for the description of lavergy
excitations.

The QPM calculations were performed following the procedof section 2.2. The parameters of the Woods-Saxon patentia
used to obtain the single-particle basis were fixed to thpeat@s of neighbouring nuclei and are given in Tab. 2.1. Strength
of the pairing force was fitted to odd-even mass differencekthe strength of the residual interaction was determinatescribe
the B(E2) value and the excitation energy of tHes?ate. No additional parameters are needed to include thgling to multi-
phonon states. Since the QPM uses in contrast to the sheélma@ingle-particle basis being sufficiently large to futfie energy
weighted sum rules, no effective charges are necessargtabe the experimental B(E2) values. Magnetic transiteme calculated
assuming a spin quenching factorgqf=0.6 .

state E (keV) structure
Exp QPM
25 | 934 1025 91%[27 1(rpa)
2y | 1847 1983 91%[23 1(rpa)
2y | 2066 2043 | 17%[2] Irrpay + 13%[ 27 Trrpay + 54%[2] ® 2] I1zpay

Table 5.1: The structure of the three lowest 27 states in °2Zr in terms of QRPA phonons. The 2? and 2; states are nearly pure
one-phonon states, while the 2; is dominantly a two-phonon state with noticeable one-phonon contributions.

The wave functions of the three lowest &tates are shown in Tab. 5.1 and Tab. 5.2. Thar 2 states are dominated by the first
and second RPA phonons, respectively. The contributioreghafr one-phonon, two-phonon and three-phonon stategssdHan
10%. The first and second RPA-phonons are mainly formed by the sam two-quasiparticle components £2d® 2ds,),, and
(19y/2®19y,,),- In case of thé 2] 11zpa) bOth components are in-phase and for[t2&]zp4; out-of-phase forming the microscopic
analogue of the symmetric and mixed-symmetric one-quadieyphonon states defined in the framework of the IBM-2.

Indeed, as shown in Tab. 5.3, both states are connected byrg 911 transition. Besides the two dominant two-quasipiart
components, both RPA phonons contain many two-quasifad@nponents (not shown in this table), which contributéhsmall
amplitudes to the wave function, but are large in number dhth-phase. They are mainlyfi2o-excitations and belong to the
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GQR as will be discussed in the next sections. SurprisitiglyGQR admixture in the wave function is mainly responsibtehe
enhanced B(E2) values of th¢ 2nd 2 states ir*Zr.

(2] 1 irea) (25 Ttreay
01 ® O Y ¢ % Y ¢ %
26, 25 ), 120 0.16 7098| 076 011 2830
(20,/,® 35, 2), 019 007 291| 037 005 13.09
(205 2® 1Gy2), 020 011 265| 023 008 476
(1gy/2® 199/2)p 0.51 0.19 11.03| 0.8008 0.0892 31.66
(1fs/2 ® 2Dy /), 023 010 4.47| 02866 0.0464 8.00
(232 ® 2D1/2), 023 009 447| 03059 00442 9.16

Table 5.2: Wave functions of the [2] ]zpa) and [23 J(gpaj-phonons in #2Zr. ¢ and ) are the forward and backward amplitudes defined
in Eq. 2.49. The numbers in percentage label the contribution of each two-quasiparticle state to the norm of Eqg. 2.51. Both
states are dominated by two two-quasiparticle components which are in-phase for the [ZT][RPA] forming a symmetric state
and out-of-phase for the [2;] [rpa] forming a mixed-symmetric state.
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Figure 5.1: Comparison of the calculated and measured excitation energies of the low-lying states in 927r. The QPM provides an
excellent description of the excitation energies.

The %* state has a different structure. Its main amplitude is agivoron component formed by the first RPA-phonon. However,
the contributions of the ?] [rP4]~ @Nd ['{][RPA]-phonons are appreciable and indicate deviations fromradwic phonon picture.

The validity of the QPM predictions and the wave functionsTab. 5.1 and Tab. 5.2 can only be tested by a comparison to
experimental data. Since fAZr a large amount of complementary experimental obsersadbeing sensitive to different parts of
the wave functions - is available, a detailed test can beoprdd.

Figure 5.1 presents a comparison between measured andhtadcaxcitation energies of the five lowest states. The Q&M r
produces the experimental energies with an accuraeyl®0 keV. The comparison between experimental and calcu&2eand
M1 transition strengths is shown in Tab. 5.3. Again the QPbaats well for the decay properties of the symmetric andeghix
symmetric Z states.

Finally, Tab. 5.4 proves, that the QPM is also able to acctarthe g factors of the FSS and MSS [Wer08]. This quantitegiv
valuable informations about the main components in the iiawetion. The negative g factor of the FSS indicates an agiqioée
contribution of the (2¢, ® 2ds/,), two-quasiparticle component to its wave function. Thistdea is nicely reproduced by the
wavefunctions of Tab. 5.2.
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B(E2)(W.u.) B(M1)(u3)

J—J Exp QPM| Exp QPM
2f —-0] | 6.4(6) 5.9
27 —-0f | 344 26
2f -0 | <0.005 0.1
2y —2f 0.37(4) 0.64

Table 5.3: Comparison of the calculated and measured transition strengths in 927r. The symmetric and mixed-symmetric states are
connected by a strong M1-transition.

9 )u,) | Exp | QPM
g(2]) -0.18(1) | -0.09
g(23) | 0.76(50)| 0.31

Table 5.4: Comparison of the calculated and measured g-factors in ¥2Zr [Wer08].

In summary the QPM accounts very well for the properties efitiwest states iff Zr and describes with a reasonable accuracy
a large body of complementary experimental data. This gitresg evidence for the validity of the wave functions giweidab.5.1
and Tab. 5.2. Based on these successful calculations orteyaafurther analysis of the properties of the FSS and MS%82n

5.2 One-phonon mixed-symmetry states in electron and proton scattering

In order to find a new experimental signature for proving tiffleent isospin character of the FSS and MSS, the tramsttensities
of the 2% (upper part) and 2. (lower part) in®*Zr are examined in Fig. 5.2. The transition densities areutaled using the
wavefunctions of Tab. 5.1 and Tab. 5.2 which account - asegerav the previous section - for a large amount of experimefza.
The proton and neutron transition densities are shown atgarFor both states the maximum of the neutron transtt@nrsity 6
fm) is displaced to the exterior compared to the maximum efaitoton transition density~5 fm).

The corresponding one-body operator allows a decompositi@ach full transition density (solid lines) in two piecéscol-
lective part stemming mainly from the GQR (dotted lines) #relcontribution of the largest valence two-quasiparticimponents
(dashed lines)i.e. (2ds,,®2ds,) in case of neutrons and (Jg®1gy,,) in case of protons. The key point is the different radial
behaviour of each transition density. An out-of-phase tingmf the neutron valence contribution to the GQR - as fer MiSS -
will cause two effects:

(i) firsta reduction of the full neutron transition densitjtwrespect to the FSS, due to the negative sign of this damhimautron
component. As a consequence the matter transition depsity.{ = P, + o), will be shifted to the interior,

(i) and second a shift of the full neutron density to the eaclinterior due to the subtraction of the specific shape ef th
(205, ® 2ds,),,-part having a maximum atlarger radius than the GQR.

For the FSS this effect is reversed and the transition deissshifted to the exterior. Both effects contribute colnélseto areduction
of the matter transition radius when going from the FSS to the MSS. By asttthecharge transition radii will essentially béhe
same, since in both states the (§g®1go,,),-part couples in-phase to the GQR. The maxima of the GQRaflivalence transition
densities are marked with vertical lines in Fig. 5.2 to higif this effect. Figure 5.3 displays the matter transitiemsities for both
states. The matter transition density of the MSS is displé@éhe interior compared to the FSS, as expected from th&aenations
made above. To quantify these conclusions, Tab. 5.5 shausehsition radii of the charge, neutron and matter traomsdensities
defined as

(5.1)

wherep(r) is the corresponding density. As expected, the chargeiti@nsadii are nearly the same, while the neutron and matter
transition radii differ by 0.207 fm and 0.152 fm, respedijve

In summary the different coupling of the (¢ ® 2ds,),-configuration to the GQR causesensitivity of the matter transition
radii to the different isospin character of the FSS and MSS. This can be considered as an alternativéonarove the mixed-
symmetric character of the MSS, independently of M1 tréositnatrix elements.

How can these model dependent predictions be verified erpatally? Obviously, the matter transition radii of the FS%l
MSS has to be measured, but in addition it is necessary tif testcharge transition radii are really the same. Otheswise can
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Figure 5.2: The proton and neutron transition densities weighted with r* for the symmetric (top) and mixed-symmetric state (bottom).
Every full transition density (solid lines) is decomposed in two parts: The contribution of the largest configuration of Tab.5.2
(dashed lines) and the remaining parts stemming mainly from the GQR (dotted lines). The proton transition densities are
very similar for both states and differ only in magnitude. The full neutron transition density for the MSS is shifted to the
interior in comparison to the FSS, due to the out-of-phase coupling of the (2ds,,®2ds ,)-configuration to the GQR. The

vertical lines mark the positions of the maxima.

Re(fm) | R, (fM) | Rpauer(fm)
2t | 4762 | 5.162 4.992
2° | 4683 | 4.955 4.841
AR [ 0.074 | 0.207 0.152

Table 5.5: The charge, neutron, and matter transition radii of the FSS and MSS in 927y and their differences AR.

not be sure, if the displacement of the matter transitioii imdue to a change in the neutron transition densities redigted - or
if maybe a change in the proton transition densities of bites is responsible for this effect.

Apparently two probes with a different sensitivity to pmogoand neutrons are needed to study this. Electron scattatritow
momentum transfers is known to be very sensitive to the ehransition radius [Hei83]. Therefore, the data from sec#.2
is compared in Fig. 5.4 (Ihs) to DWBA form factors calculateing the charge transition densities of Fig. 5.2 with theecof
Ref. [Hei83]. The QPM achieves an excellent descriptiomefdlectron scattering data points concerning magnituder@mentum
transfer dependence showing the validity of the chargesitian radii in Tab. 5.5.

To illustrate the sensitivity of the electron scatteringadi® the charge transition radius at least qualitativehg can form the
ratio of both form factors using the expansion given in Rid&iB3]

F(2+

ro@)  V/BE2E)-(1-(q?/14R5 +..)

F2La)  /BE2D-(1—(¢*/14RE +..)

(5.2)

43



(r) (e fm)

T Py
N

r(fm)

Figure 5.3: The matter transition densities (sum of proton and neutron transition densities) of the symmetric and mixed-symmetric
states. Since 800 MeV protons interact dominantly isoscalar with the target nuclei, these densities are 'seen’ by the proton.
The transition density of the mixed-symmetric state is shifted to the interior in comparison to the symmetric state.
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Figure 5.4. The formfactors of the symmetric and the mixed-symmetric states compared to DWBA calculations employing the QPM
transition densities (Ihs). Both formfactors have very similar shapes indicating approximately the same transition radii. On
the right hand side is shown the square root of the ratio of both formfactors.

whereR, andR; are the charge transition radii of the symmetric and mixgdreetric state, respectively. The expansion is only
meaningful for light nuclei, due to the uncertainties in @@ulomb correction factors caused by the strong Coulomé fieheavy
nuclei. However, forming the ratio offers the possibilityldecome approximately independent of both Coulomb cooreéactors,
since they should cancel to some degree [Hei83]. In caseual énsition radii, the ratio of Eq. 5.2 would bdenpentent of g.
Indeed, the five data points shown in Fig. 5.4 exhibit a nezohstant value over the measurgthnge (note that the valueg@t= 0

is given by the ratios of the B(E2) values according to Eq).5 Be solid black line shows the ratio of the QPM form factoeing
nearly constant. The solid blue line is calculated with EQ. &sing the experimental transition strengths and asspyanibitrary
values of R, = 5.2 fm and R, = 5.0 fm. Clearly, the sharp slope does not match the expetahdata. Therefore, the electron
scattering results point to very similar charge transitiaahi in agreement with the values given in Tab. 5.5.

44



T T
92 1 +
10° [ Zr(p,p )@800MeV ® 2 .
+
* 2 (x3.5)
— ~~
2 10 % 7
~ ~~
e <
g g
~— ~—
G 1F G
= =
~ ~
) o)
e . e
107
1 1 1 1
0 1 2 0 1 2
fm’! fm!
q(fm”) q(fm ")

Figure 5.5: The cross sections of 800 MeV proton scattering for the symmetric (filled red circles) and mixed symmetric 2% states (green
stars) taken from Ref. [Bak75]. The cross sections calculated within the QPM using the effective interaction of Ref. [Fra85]
achieve a good description of the experimental data and reproduce the crucial shift, which is due to the isovector nature of
the mixed symmetric state. The figure on the right hand side illustrates the dependence of the cross sections on the sign of
the (2ds,,®2d;s,),, configuration. For a detailed explanation see text.
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Figure 5.6: The shift in the cross sections can also be found in the 200 MeV proton scattering data analyzed in this thesis. On the left
hand side are shown the cross section for *2Zr and on the right hand side for ?4Mo. Even only a few data points are available,
the shift can clearly be seen in both cases. In %Mo it is much stronger which can be attributed to the lower collectivity of the
MSS compared to ?2Zr.

The left hand side of Figure 5.5 displays the proton scaigedross sections measured at 800 MeV which are taken from
Ref. [Bak75]. Due to the strong nuclear force the interactietween the incident proton and the nucleus takes maialyepht
the surface, consequently proton scattering is highlyigemso the size of the matter transition radius [Wam10btBns interact
dominantly through the isoscalar central channel of thectiffe nucleon-nucleus force at an incident energy of 80V [fea85].
Hence, the sum of the neutron and proton transition dersttyei important quantity. Clearly, as expected, the feataf¢he (p,p)
cross sections of the MSS are shifted to highealues as compared to those of the FSS indicating a largéentegtnsition radius
of the symmetric state. The QPM describes both cross seati@sonably well pointing to the validity of the matter sition radii
given in Tab. 5.5. For calculating the cross sections thee @@/BA07 [Ray07] has been used taking the widely used t-matri
parametrization of Franey-Love [Fra85] as an effectivgqutile target interaction.
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The right hand side of Fig. 5.6 illustrates the sensitivityhe proton scattering cross section to the sign of the (&PRd; ),
configuration. Besides the cross sections of the FSS (refldind MSS (green line), Fig. 5.6 shows the cross sectioe (big) for
the transition density of the MSS where the sign of the, (281205, ),, configuration has been artificially switched from minus to
plus forming a 'symmetric state’. As a result the cross seci$ displaced to smaller g-values and nearly coincidels thi¢ cross
section of the FSS. Hence, in the framework of the QPM thergbdeshift can be clearly attributed to the isovector nabfrthe
21 state.

In conclusion the electron and proton scattering data stupipe QPM values of the matter and charge transition ragdérgin
Tab. 5.5. Since, the difference in the matter transitioii imdue to the different isospin character of both statas,is an alternative
way for identifying the 2 in **Zr as the MSS.
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Figure 5.7: Comparison between the cross section of the MSS and all other quadrupole states in **Mo. The solid lines are drawn to
guide the eyes. The cross section are scaled to the data point at 6, ,,, = 7.69° of the 2f+s.

Can this shift be found in other proton scattering data aradenas well? On the left hand side of Figure 5.6 is presertted t
proton scattering data of chapter 4 measured at 200 MeV.ilease limited data points the shift in the cross sectionsdaarly
be identified. In addition on the right hand side one can seeribss section of the FSS and MSSiMo. Also in this case the shift
is clearly visible being even stronger thar’#iZr. These additional examples point to a very robust natfitkeonew signature for
a mixed-symmetry state. In addition the observed shifiralto measure for the first time the ative signs between the GQR and
the two large valence two-quasiparticle components, sindeange of sign of the proton component would cause diffedgerge
transition radii and a shift of the matter transition dentitthe exterior. This is an observable not accessible imgaspectroscopy.
It is very interesting that such an observable can really basured directly, although other observables like the B{trength are
insensitive to this quantity.

The most interesting and promising consequence of the wx$ehift in the matter transition radii is displayed in Fsg7. The
proton scattering data of the MSS%tVo are compared to all othef"Xstates measured in the experiment of section 4.1.6. A total
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number of eight quadrupole states has been identified. Jte & two-phonon state with a very different cross sectiopsitue
to two-step processes, hence it is not included in the disosFor a better illustration the MSS is compared to stagdew 3
MeV (upper part) and above 3 MeV, separately. Figure 5.7 sinted to the first maximum, since not for alt 2tates proton
scattering data are available at larger scattering angltkout any exception the cross section of the MSS is shifted strongest to
larger scattering angles indicating a smaller matter transition radius compared to all other 2+ states in “*Mo. This is a surprise,
because most of the"2states are non-collective having B(E2) values which areoupvb orders of magnitude smaller than the
ground state transition of théZi.e. the admixture of the GQR is small. Therefore, the mattesitaom radii of these non-collective
states depend on their single-particle components whightcause very different transition radii. However, thdtstfithe matter
transition radius of the MSS due to its isovector nature istsong that it dominates all other effects. This is a very ontgnt
observationlt will allow to identify the MSS solely by measuring proton scattering cross section, although absolute M1 transition
strength are not known. Remembering the results 8fZr, the shift can be expected to increase at larger scagtarigles making
this effect even more apparent than in Fig. 5.7.

It would be very interesting to study the properties of thié sthiong an isotopic chain. The Mo-chain is a promising deate.
The next heavier nucleus 8Mo. Here, a MSS is already identified from M1 matrix elemefiise B(E2) value of the MSS
decreases from 1.6 W.u. Mo to 0.08 W.u. in”®Mo, i.e. the shift can be expected to be even stronger th&fNto (clearly, the
shift becomes stronger with decreasing collectivity of 8S). In®® Mo no MSS is known so far and the shift offers the possibility
to identify for the first time a MSS in this nucleus. One mayretteink of investigating the deformed nucletfMo and try to
study the evolution of the MSS from nearly spherical to defed nuclei. It should be noted that the (ir)areaction - one of the
main experimental methods to obtain information about B(Mdlues between two excited states - becomes uncertain thieen
level density is high (because of its non-selective exoitatechanism at low neutron energies). Measuring protatiesing cross
section with a high energy resolution up to the second minminaith a sufficient number of data points might be an alteveatid
study the properties of MSS in heavier nuclei away from aasteells.

In addition it is questionable if the B(M12 — 2" ) strength is a unique experimental observable to identifis in deformed
nuclei, since it is decreasing with increasing square ofifermation parameter (see Fig. 5.12). It is not clear wdrethis decrease
can be attributed to a 'washing out’ of the MSS or maybe a itratchange in the 2 state is the reason. The B(M1) strength
depends on the structure of both states and cannot answejuibstion. In contrast the proton and electron scatterimgscsection
depend only on the structure of a single excited state. Bras important advantage. Whether the idea of the shifyrealtks in
more deformed nuclei, can only be decided by experiment.
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5.3 Effective forces in quadrupole collective models and the formation mechanism of mixed-symmetry states

So far three things could be learned from the observed shiftéton scattering: First, the different isospin chamaofehe FSS
and MSS in”2Zr has been proven in an alternative way independent frogireleagnetic transition matrix elements. Second, the
relative signs between the valence components and the GQBeeam measured for the first time. Finally, Fig. 5.7 proves e
small matter transition radius is a unique feature of the M®&®h no other 2 state shares, hence it can be used to identify a MSS,
without knowledge of the B(M1: 2. — 27) strength.

Besides these pleasant points, the shift gives experiinevidence for having three main building blocks contribgtito the
wave functions of the FSS and MSS: The GQR, a main proton andia meutron two-quasiparticle component. In addition, the
strong B(M1) strength between the FSS and MSS proves thagstnixing between the two latter components. In collectaiernce
space models like the IBM-2 this mixing is caused by an effegtroton-neutron interaction. This force is a key ingeadifor the
IBM-2 and is responsible for many nuclear structure phemamesulting from configuration mixing like deformation aplthse
shape transitions. However, in the IBM-2 a microscopidiigsttion for this effective force between bosons is stilksing. The new
experimental results obtained in the last section motsvatsimple picture for the 'microscopic’ origin of this forc@ur aim is not
to calculate the various parameters of the IBM-2 Hamiltontaut to give a qualitative understanding of the origin a$ &ffective
force.

As already mentioned in the latter section the GQR congbudtrongly to the transition densities shown in Fig. 5.2sTh
surprising feature is examined in detail in this sectiomstiFig. 5.8 delivers a proof for the admixture of the GQRlia wave
function and sheds light on the consequences for the alsBI{E2) values. Subfigures (1) and (Il) display a decompasitf
the B(E2) values of the FSS and MSS in the contributions ofvimeous proton two-quasiparticle components. Startinthat
lowest two-quasiparticle configuration the contributidneach is summed up. The full B(E2) values are reacheg28 MeV.
Two-quasiparticle components at higher energies con&ibagligibly. (The transition strengths of Tab. 5.3 diffieam the values
in Fig. 5.8, since here are shown the corresponding valuethéone-phonon stateise. the coupling to multi-phonon states is
neglected.) The B(E2) values are essentially composed fin@mrsources, the valence space part which is located at lenges
and a higher lying part located between 17 - 23 MeV. This hidyiag part is formed by Bw two-quasiparticle states and belongs
to the GQR [Pon10]. The admixture of the GQR excee86% of the B(E2) value of the FSS andb65% in case of the MSS, while
its contributions to the wave functions is less thés Hence, the dominating part of the collectivity (colledins used here in the
sense of large B(E2) values) arise from a coupling to the GQRimg both states to one-phonon states (in the IBM-2 seRse).
the B(M1) value the situation is different. Here, the vakespace is entirely responsible for the large B(M1) vaIue.GBQIZ\,.

Due to the limited size of the model space, the GQR is not deduin valence space approaches like the shell model and the
IBM-2. These models can account for the B(E2) strength stiagnfinom the low-energy parts in Fig. 5.8. The parts of thehhig
energy mode are included effectively by using effectivergbs, which are typically fitted to the experimental B(E2¢sgths. On
the contrary the QPM - covering a model space being largegmtwufulfill the energy-weighted sum rules - can account ffar t
valence part as well as the contribution of the GQR. As a auresgce the QPM does not need any effective charges.

The presence of the GQR in the wave functions of quadrupdlective states raises the question abougéseral role for effec-
tive forces used in nuclear structure models describing low-lying collective states such as the IBM-2. This topic will be addressed
qualitatively in the spirit of an effective field theory (Ef-"EFTs are a concept of fundamental importance in physittslwoad app-
lications in many different areas such as Fermi theory arichOPerturbation theory in elementary particle physice[V¥, Gas85],
the BCS theory of superconductivity in solid states phygstga94] or in the construction of an effective nucleon-eoal potential
as a low-energy phenomenon of QCD in nuclear physics [Kol®Bg basic idea is to ’integrate out’ the high energy seatar a
take its contributions approximately into account by a fewgmeters in the effective theory at lower energies. Thasanpeters
are usually determined from experiment. Therefore eachiEBily able to describe phenomenon at a specific and suffigiew
energy scale. This procedure can be formally carried ouhbyse of the renormalization group. The decoupling of msyat both
energies is a necessary requirementa clean separation of energy scales must be given.

The proton-neutron interaction is believed to be respdas$iy the development of configuration mixing, collectyvénd finally
for the formation of the FSS and MSS. In a phenomenologicignge space approach like the IBM-2, which describes langly
collective excitations, a simplified Hamiltonian can betten as:

X
Hipuma = €:Ngy + €,Nq, +2KQ%7 - Q" (5.3)

wheree,, andn,, (p = 7 or u) are thed-boson energies and numbers. The crucial proton-neuttenaiction is codified in the

third term withQﬁ’J being boson quadrupole operators. An increase of the otterastrengthx will start to mix the unperturbed
proton and neutron boson states and will finally cause theadle FSS and MSS connected by a strong M1-transition @s se
in experiment. This parameter is usually fixed empiricatlyekperimental data without considering its microscopigiorwhich
determines its strength.

To shed light on the 'microscopic’ origin of this effectivetéraction we consider a different theoretical approaeimely the
QPM. In the spirit of EFTs, the QPM can be viewed as the 'coteptheory’ including the ’high-lying’ degrees of freedom.
In contrast the IBM-2 is the effective theory valid at loweegies, where the correlations outside the IBM-2 model spae
effectively taken into account.
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Figure 5.8: The decomposition of the absolute B(E2)- and B(M1)-values in the contributions of the various two-quasiparticle states.
The B(E2)-values of the FSS (I) and MSS (ll) are mainly formed by two-quasiparticle configurations in the energy range 17
- 23 MeV. This part of the wave function belongs to the GQR. In contrast the B(M1)-value is exclusively formed by the two
large two-quasiparticle configurations (2ds,, ® 2d5/2)n and (19,2 ® 1g9/2)p being low in energy.

In order to obtain a deeper understanding of the mechanisisirgathe formation of both states within a full space moike |
the QPM we introduce a simple '3-state model’. As a startiompwe take the lowest proton and neutron two-quasipar&CS
states at energies of 1.917 and 3.172 MeV respectively agiful QPM calculation fof?Zr andin addition the Giant Quadrupole
Resonance (GQR) at 11.8 MeV. As in Landau-Migdal theory pfigthe interaction between the GQR and the two-quasipartic
states is given by a simplefunction:

Vo =g (al6(¥ — 7)IGQR)

5.4
- gfdr-rz pulF) - Poga(r) 64

wherea refers to the protonp() or neutron f) two-quasiparticle state. The paramegeis the interaction strength anl,, pgor
stand for the transition densities. The equation pointsdivext relation between the collectivity of the GQR and thedute value
of the matrix element. Finally, the following Hamiltoniamdiagonalized:

GQR -V, -V,

Hy,=| -V, ¢ 0 (5.5)
-V, 0 €n

€gqr: € ande, stand for the unperturbed energies. The results of thisleisgheme are confronted with the full QRPA calculation
in Table 5.6. The main propertié®. formation of symmetric and mixed-symmetric states, neuttominance of the FSS, B(E2)-
and B(M1)-values are reproduced in this simple approach.3Fstate model accounts for the essential physics.

The crucial result is that the two collective states FSS aS&Mre formed in the '3-state model’ solely by a coupling ®@EQR.
The contribution of the GQR to the wave functions is smalt, $ince the matrix elemer07 ||E2||GQR) is ~6 times larger than
the one of the main proton two-quasiparticle state, the By@&Rie is mainly produced by the GQR as already discussasd efflect
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Figure 5.9: Shown are the results of the '3-state model’ described in the text as a function of the coupling strength g. The dotted vertical
line marks the coupling strength which describes the data most suitably.

observable full QRPA 3-state 3-state QRPA
2 2 | o2 oz | o2 2
(2055 ® 2d55), 71% 28% 50 % 50 % 76 % 22%
(192 ® 109/2), 11% 32% 40% 50 % 24.% 74%
E(Z) 1457 keV 1081 keV 1421 keV
E(2) 2536 keV 2485 keV 2498 keV
B(E2:2{ — 07) 166 efm* 181 efm* 259 éfm*
B(E22] — 0)) 84 efm* 60 &fm* 170 éfm*
B(M1:2" — 27) 0.63u2 0.86u2 0.87u%
AR harge 0.07 fm 0.00 fm -
AR, ter 0.21 fm 0.22 fm -

Table 5.6: Comparison of wave functions (top) and selected observables calculated in the full QRPA to the 3-state model and the

3-state QRPA model discussed in the text for 92 7r. The two simple models reproduce the essential features of the full QRPA
calculation. The sign of the main neutron component of the MSS is in all three cases negative.

has been recognised previously by [Sag87]. The GQR not airigdthe collectivity in the states but also causesixding of the
two dominant two-quasiparticle states. In a valence-space approach like the IBM-2 this is achidyethe effective proton-neutron
interaction codified in the third term of Eg.5.3. An enhaneatrof the interaction strengthis equivalent to an increased coupling
strength g to the GQR. The dependence of different obsawai the coupling strength g is shown in Fig.5.9. In effecfield
theory language the proton-neutron quadrupole intemnadtidghe IBM-2 can be thought of being dominantly mediatedtsy high
energy mode GQR. Since the energy scale of low-lying calledtructure is~1 MeV and the isoscalar GQR is typically atlO
MeV a clean separation of scales is given justifying thiswdeint.
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Although the '3-state model’ is successful in reproducing tnain features of the full QRPA calculation, it cannot bpested
to be valid at larger coupling strength g, since ground stateelations become important here. In order to includentitae QRPA
equations have been solved, using the same ansatz as inst&e3nodel’j.e. the GQR at higher energies and one proton and one
neutron two-quasiparticle state. This model is labelest:&e QRPA in the following. The nuclé?Zr (Tab. 5.6),’*Mo (Tab. 5.7)
and”®Mo (Tab. 5.8) are calculated within this approach and coeubdo full QRPA calculations. The unperturbed energy of the
GQR in all three nuclei is the same at 11.8 MeV. The unpertlith®-quasiparticle energies - taken from a BCS calculatiare
in ®2Zr e, = 1.917 MeV anct, = 3.172 MeV, in”*Mo €,= 1.917 MeV anct,, = 2.698 MeV and if®Mo ¢, = 2.194 MeV anck,,
= 2.698 MeV. The coupling strength to the GQR g was fixed to #iaeswhich describes the full QRPA results best. The cogplin
strength increases slightly from g = 1082°fZr to 1120 in®*Mo and 1168 if®Mo. In all three nuclei the essential features of the

observable

full QRPA
% 2%

3-state QRPA
2 %

(205, ® 2d5)5),,
(19,2 ® 199/2),

43 % 56 %
39% 36 %

49 % 50%
48 % 49 %

E(Z) 938 keV 1099 keV

E(Z.,) 2252 keV 2172 keV
B(E2:2" — 07) 407 efm* 483 efm*
B(E22} — 0)) 52 &fm* 79 éfm*
B(ML1:2T —2)) 0.92u%, 1.27u2

Table 5.7: Comparison of the full QRPA calculation to the 3-state QRPA model described in the text for ?4Mo. The simple model
achieves a reasonable description of the QRPA results.

full QRPA calculation are well described. First, FSS and Mi8nons are formed with very similar amplitudes comparetedull
QRPA results. Very interesting is the predicted proton d@mnée of the FSS and the neutron dominance of the M&3n. This
is discussed in the next section. The energies of the syrimagidl mixed-symmetric RPA-phonons are in reasonable agreeand
especially the behaviour of the energy shifts when goingfriuclei to nuclei are similar to the QRPA results. However2Zr

both B(E2)-values are a factes2 larger than the full QRPA results.

observable

full QRPA
% 2

3-state QRPA
2 %

(205, ® 2d5)5),,
(192 ® 199/2),

31% 67 %
67 % 23%

34% 65%
62 % 34%

E(Z) 810 keV 1057 keV

EZ',) 2426 keV 2326 keV
B(E2:2" — 07) 542 eéfm* 631 &fm*
B(E22} — 0)) 23 &fm* 35 &fm*
B(M1:2" —2]) 0.67u3 1.17u3

Table 5.8: Comparison of the full QRPA calculation to the 3-state QRPA model described in the text for “Mo. Again, the simple model
achieves a reasonable description of the QRPA results.

This discrepancy maybe attributed to the importance ofrdthe-quasiparticle components in the wave functions, nolided
in the very small model space used here. Indeed, the wavéidoraf the MSS in Tab. 5.2 exhibits contributions ®#0% from
two-quasiparticle configurations, which are not includedhe (2d,, ® 2ds),),,, (18,2 ® 19y,2), - modelspace. Therefore one
cannot expect to describe these states correctly. In avdeahiieve better results of the '3-state QRPA model, theehsgace must
be enlarged to include the configurations known to be impbitathe wave functions of Tab. 5.2. These refinements of3kstate
QRPA model are currently on their way. Surprisingly, thestate model’ - which uses the same small model space - ¢xhibiter
agreement with the QRPA results. This behaviour is not wsided and is probably accidental. F6Mo and?®Mo the description
of the B(E2) values is much better and close to the full QRPAIts. This is remarkable for such a simple model approactedd,
here the contribution of the (2d, ® 2ds),),- and (1g,, ® 19y,,), - configurations is larger than #Zr. Very interesting is the
behaviour of the '3-state QRPA model at low coupling stringi(see Fig. 5.10). The B(E2) value of the MSS is larger tharone
of the FSS. This matches the situatior’#Zr where the B(E2)-value of the MSS is indeed a faet@ larger than the one of the
FSS. It is very promising that such an uncommon feature isritegle in this simple approach.
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Figure 5.10: Shown are the results of the '3-state QRPA’ model mentioned in the text as a function of the coupling strength g for 24 Mo.
The dotted vertical line marks the coupling strength which describes the full QRPA results at best.

5.4 The evolution of one-phonon quadrupole mixed-symmetry states

The '3-state QRPA model allows a simple explanation for éhelution of the MSS irf?zr, **Mo and®*Mo. The experimental
B(M1) value increases from 0.37(4, in **Zr [Fra05] to 0.56(5)u2 in **Mo [Fra03] and finally decreases to 0.17(2} in
°®Mo [Les07]. What is the mechanism behind these sharp changles B(M1) strengths? The behaviour is surprising, bee#ius
MSS are expected to be collective excitations and typiaaily assumes a very smooth change of the properties of dedlestates
when going through the nuclear chart. However, in Fig. 5vais shown that the B(M1) strength is mainly determined byt
main two-quasiparticle components and hence has a simglielp nature. Clearly, changes in the B(M1) strength rbesguided
by an interplay between these two main components.

The full QRPA calculation as well as the '3-state QRPA modgdroduce the variation in the B(M1) values qualitativedge
Tabs. [6-8]), although both overpredict the experiment@VB) value. The B(M1) strength has its largest value whenrtizn
proton and neutron amplitudes are balanced and as largesaiblgoin the MSS and FSS states. So the wavefunctions fer thi
‘optimal case’ would be

2= 112 (8012® 15370y + (20520 25,0
(5.6)
|21J\r/[ss> = 1/\/5((1g9/2 ® 1g9/2)p - (2d5/2 ® 2d5/2)n) .

Apparently, the wave functions 6fMo are closest to this case explaining its large B(M1) valne??Zr and *°Mo either the
neutron or proton two-quasiparticle component domindtesmave function of the;SZ This unbalance reduces the B(M1) value in
comparison t3*Mo. The '3-state QRPA model offers a simple explanationtfis behaviour. Figure 5.11 displays the contribution
of the proton and neutron configurations to the wave funstiohthe FSS and MSS as functions of fiference of the two-
quasiparticle energies AE = By, (205, ® 2ds3),,) - Eagp (1092 ® 10g/2),). The value g = 1120 obtained fétMo was used as
coupling strength.
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Figure 5.11: The two main components calculated in the '3-state QRPA’ model as a function of the energy difference of the neutron
and proton two-quasiparticle energy. The proton two-quasiparticle energy has been fixed to the value in the Mo chain at
2698 keV. The coupling strength is kept constant to the value of g=1120.

At a large energy difference the proton-neutron interacti@diated by the GQR is not strong enough to fully mix bothesta
hence the FSS is neutron and the MSS is proton dominatedeGoastly the B(M1) value is relatively small. This changdsew
the energy difference decreases. The proton-neutroraiiten (which is kept constant here) is now strong enoughixatine two
unperturbed states almost completelyand @00 keV the optimal case of Eq. 5.6 is reached (of course, @R &so contributes to
the wavefunctions, but its amplitude is always smaller @#fn). If AE continues to decrease the effect of avoided level crosakes
place and the FSS becomes proton and the MSS neutron dodhilate to the unbalance in the proton and neutron components
the B(M1)-value decreases again.

The vertical lines mark the energy differenc&& in °2Zr, “*Mo and®®Mo. The slightly different values of which were used
in the calculations of Tabs. 6-8 have only minor effects anamplitudese.g. changing the value of from 1120 to 1168 changes
the amplitudes by less thate Therefore Fig. 5.11 offers a qualitative understandinthefdifferent B(M1) strengths in the three
nuclei. Due to the proton subshell at Z=40 the proton twosgpaaticle configuration is high in energy causing a largergyn
difference AE in °2Zr. Consequently the B(M1) value is small. The neutron demae of the FSS is experimentally confirmed
by the negative g-factor of -0.18(1) as well as the protonidancte of the MSS with a positive g factor of 0.76(50). Thergpe
difference in”*Mo has nearly the optimal value resulting in a large B(M1gsgith. The increased importance of the proton two-
quasiparticle configuration in the FSS is in agreement wighnhuch larger g-factor of 0.274(75). Unfortunatly no g gdaof the
MSS in**Mo is known. The nucleu$®Mo is already beyond the optimal mixing point and the FSSrsrgfly proton dominated
here, while the MSS is predicted to be neutron dominateds décreases the B(M1)-value again. Indeed, the experihgefaetor
of the FSS increases to 0.419(38) proving the increasedrtampze of the proton configuration. Table 5.9 summarizeg tfaetor
results. It would be of outmost importance to obtain infatisraabout the g factor of the MSS #iMo which is not known so far
to really check its neutron dominance. This could be donbeatRutgers/Yale g factor setup’ at the university of Yale.

9(2/ ) () 9(2))(un) B(M1)(uy)
Exp full QRPA Exp full QRPA Exp full QRPA
27r | -0.18(1) -0.09 | 0.76(50) 0.31 | 0.37(4) 0.64
%Mo | 0.274(75) - - - 0.56(5) 0.92
%Mo | 0.419(38) - - - 0.17(2) 0.67

Table 5.9: Comparison of calculated and measured g factors and B(M1:2," — 2) strengths in 2z, *Mo and “°Mo.

Starting at the beginning of an isotopic chain, the incrediske neutron two-quasiparticle state from nucleus toewslcaused
by an increase of the neutron pairing gap) coming closerddd¥vest proton two-quasiparticle state seems to be a venyrmam
feature not limited to the Mo-chain. Hence, the simple pietf avoided level crossing seems to be a very general E2afuMSSs
and points to a 'washing out’ of MSSs and a decrease of thegponding B(M1) strength when approaching more collective
nuclei. In the Cd-chain a decrease of the B(M1)-strengtlsspredicted in a large-scale shell-model calculationd®4. However,
experimental data is still missing at the beginning of thaichAt midshell in''2Cd and!''*Cd experimental data is available and
the B(M1) strength amounts to 0.09&@ and 0.089(9;),%, respectively. These are much smaller values than obsénvit
N=52 chain. If one accepts that the B(M1) value'®%fCd has a similar magnitude as¥tzr, **Mo and”®Ru, the decrease of the
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B(M1) strength is also present in the Cd-chain. Very intémgsy, the proton and neutron amplitudes of the MS$'#Cd has been
extracted from inelastic hadron scattering by Pignaeell. [Pig88]. The neutron amplitude dominates which is in agresrwith
the expectations from the avoided level crossing.

Of course, the picture of the avoided level crossing is organingful when the (1g,® 1g,,,),- and (2@ ,,® 2055 ),,- configu-
rations are dominating in the wavefunctions. This is thedas’*Mo, “°Mo and partly for’2zr, but for more collective nuclei like
“8Mo other two-quasiparticle states should play an impontalet Hence, one better takes the avoided level crossirtyeddriving
force’ behind the decrease of the B(M1) strength in the N=%flan, but there might be other effects which also play aromamt
role.
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Figure 5.12: The excitation energies of the FSS (green), MSS (red) and their energy difference (blue) over /NN, (lhs). N, and N,,
are the valence proton and neutron numbers counted to the nearest closed shell. On the right hand side is shown the
dependence of the B(M1)-value on the square of the deformation parameter. The dashed blue line is drawn to guide the
eyes.

A very common case in nuclear structure physics is the fragatien of a specific state.¢. the scissors mode). In experiment
one possibly observes only one fragment and misses andttiswould also 'decrease’ the observed transition stferigbwever,
it is worth mentioning that*Mo, “°Mo, °2Zr as well as-'2Cd and!'!*Cd are measured using the (iyareaction. This method gives
rather complete information about the M1-transitions ® BES up tov 3.5 MeV. Hence, the decrease of the B(M1)-strength in
“®Mo, 1'2Cd and''*Cd is really a nuclear structure effect and can not be at#ribto fragmentation.

The simple picture of the avoided level crossing in the &esQRPA model is confirmed by the full QRPA calculation (sere
when the '3-state QRPA model is not valid, the avoided lereksing is still a feature of the full QRPA calculation)wibuld be
very useful to have a shell-model calculation - the superiodel for these low-lying states - for the nuclei in the N=8@ion to
confirm this picture. Unfortunately, in the shell-modeladhtion of the Cd-chain [Boe07] no information about thes@fanctions
is given. It would be very helpful to redo these calculatigmaybe in a J-scheme code) in order to analyse them. Thestseff
are justified, since the question if the MSS is 'washed outtmwhpproaching more collective nuclei is of course at thetheda
MSS investigations. It is also in strong contrast to the IBM¢ich predicts a nearly constant B(M1) value (at least ettiree
analystically solvable limits). Probably, the assumptidrequal proton and neutron boson energies is a problem. dhemlways
obtains perfect mixing of the proton and neutron components

Itis not clear yet if the effect of avoided level crossing caally be applied to explain the behaviour of the MSS in otkgions
of the nuclear chart. But a decrease of the M1 strength hasdise observed in the Xe chain in Ref. [Coq10]. Unfortunatkeése
measurements were done using the method of Coulomb egoitatiich does not allow to detect alt Ztates up te-3 MeV. Hence,
one can not be sure if one misses fragments at higher energies

The sensitivity of MSS to the two-quasiparticle energidersfthe possibility to fit pairing matrix-elements usedie shell-
model to the properties of MSS. This was recognized in Ré&(J9 where the pairing matrix elements were fine-tunedgitie
properties of MSS. Hence, MSS can be expected to improveae@pment of effective interactions in the future.

Finally, Fig. 5.12 displays some systematics of the progedf MSS and FSS. On the left-hand side is shown the enertieof
2f+S (green line), the energy of thé;g(red line) and their energy difference (blue line) in deparak of the square root of the valence
proton times the valence neutron numbers (taking care aftmlls). This is motivated by the results of Ref. [Hey86]jsthargues
that the properties of MSS depend on this quantity. All MSSaif. 5.10 are included. The smooth dependence on this tuanti
surprising and not understood. On the right-hand side iwshbe B(M1) strength in dependence on the square of the mefayn
parameter. Again all MSS of Tab. 5.10 are included excepthferMSS in the Mo, Ru and Zr chains. Their properties are maybe
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different due to the subshell closure. One finds a linear\eheaon the deformation parameter which is not understoudi ia
contrast to the findings for the scissors mode [Hey10]. Aaothteresting feature of MSS - not shown here - is the simeltas

decrease of the B(M1) and B(E2) values of the MSS. This isiledicted by the '3-state QRPA model and is probably cotetkc
to the predicted neutron dominance.

55



[oTboD ‘8031d] sarelrs AnawwAs-paxiw Jo sanjadoid eluswiiadxe jo Arewwns :0T°S a|gel

- (e8€)617°'LS - 1212 0052~ €€ Pdorr 8v'L

(ST)L°2S - 9v6T< 00€z< 7S¢ Xzt €6'9

€101 - G/9T< 7902< 68€ Xz z€9

(£1)20T°0 (z81)L0°TE (6)680°0 T99T 6122 855 POyt 99'G

(€)zso (v)6e (€)10 €6ST SYTC Zss 3Dg¢r 99'g

(120 (r9)9°zv (Tvo0 89T 1212 evy X gzr 99'g

- (e)zoe (2)660°0 9/GT 7612 819 POzt 62'S

(L)szo (92)z’ee (9)9T°0 vT9T 0STZ 9€5 X et 06t

(@oz (89)6e'€E (r)ozo vovT 6902 509 eq,c; 06t

(8T)89°0 (eT)6°0E (G¥)LvT 0 96GT ov1e 0SS WSg, 06'v

W)Lt (rET)ES VT (w10 9/€T €L02 169 PNyp1 Ly

(81)29°0 (sT)oez (9)zz0 8TET 9867 899 X zer 14

(9T)eve 1zt (@810 8T¥T 1022 68. 8Dgg¢; 14

(2)80°0 (€)202 (€)LtT0 0€€T 9602 8./ OWgg 4

- (609)VT LT - Z6€T ¥66T 209 eqg,; or'e

@12 (r1)12'6T (€)ozo TTET 6212 818 Bdger or'e

(€)9T (Q)T8t (e2)8L0 G61T ¥82e €e8 NY g or'e

(zLo (TT)est (@oc0 00TT Lv6T Lv8 Xyper €8¢

(@81 (T)ot (8)9s0 96TT 1902 1.8 OW,pg €8¢

()82 (€)6'v (e)reo 47 TL9T 616 1Z46 z

wve (9)v'9 w)Le0 216 Lv8T GE6 1Z46 4
(n'm) (n'm) (& (naM) (naM) (naY)

(fo« "ziza)g (fo< Zza)a (fz < "{zTn)g ({23-("j2)3 ("2)3 (23 SYETNIN “‘NEN

56



6 Summary and outlook

This work contains one main results. A new signature wasddanidentifying the quadrupole one-phonon mixed-symmetate
(MSS) independently of M1 transition matrix elements. Tlearsignature is based on a strong reduction of the mattesitiam
radius of the MSS compared to othef &tates. This reduction is directly connected to its isamecature. Proton scattering data
have been analysed to obtain experimental informationstahis quantity. Using the new method the quadrupole MS32n and
%4Mo have been unambiguously identified.

In addition the new signature allows to measure for the fins¢ tthe relative signs between the two main proton and neutro
two-quasiparticle components and the GQR. To obtain thpegmental observable it was necessary to measure - beékelastter
transition radii - the difference of the charge transitiadir of the fully-symmetric state (FSS) and MSS. This waselaging
electron scattering data measured at S-DALINAC and evedliat the framework of this thesis. The results show thdt#r and
“4Mo the main neutron components is out-of-phase to the GQRewie main proton component is in-phase. It is remarkaimé t
such an quantity can really be measured, since other olidesviike the B(M1) strength are insensitive to this qugntitwould
be interesting to investigate a nucleus where the main prmdonponent can expected to be out-of-phase to the GQR amadine
neutron components in-phase. This would cause an enlargé@mtransition radius of the MSS and a difference in thegha
transition radii,i.e. the situation is the opposite comparedi@r and®*Mo. Promising candidates can be found in the Zn-chain.

Finally, the experimental results obtained from proton atettron scattering prove that the FSS and MSS are formelrbg t
main building blocs: The GQR, a large proton and a large pautvo-quasiparticle component. This observation matisatsimple
picture on the microscopic origin of the effective protagutron interaction used in quadrupole collective modéks the IBM-2
- a question which has not been answered so far. From aniedfdigld theory viewpoint the GQR can believed to mediats thi
force by coupling to the valence-space components. A sindgdate model’ using this idea gives surprisingly goodesgnent
with full QRPA calculations. However, the validity of thidea must be further tested. The next obvious step is to enlaegmodel
space and to include more than just two two-quasiparticepaments in the valence space. These refinements are tureder
way. The newly developed 'three state model’ predicts tlip@rties of FSS and MSS in the N=50 region to depend cruaialy
the energy difference of the lowest proton and the lowestraruwo-quasiparticle state. This results in a neutron idance of
the MSS when going fro*Mo to “®Mo which is in agreement with the predictions of the full QR&4#culations. It would be of
outmost importance to verify these predictions experimignand to measure the g-factors of the MSS4o and”®Mo (at least
the sign). This could be doreg. with the 'Rutgers/Yale g-factor setup’ at the universityYafle.

An other interesting feature of MSS observed in this thesthé deformation dependence of the B(M1) strength. The B(M1
strength decreases linearly with increasing square oféf@hation parameter. The behaviour is opposite to thessnode whe-
re B(M1) strength increases linearly with increasing squarthe deformation parameter. The underlying reason isindérstood
yet.
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