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Abstract 
 

Inelastic electron scattering spectra for the nuclei 32S, 48Ca, 
58Ni, and 90Zr measured at 180° have been analyzed to search for 

excitations of natural-parity states in the excitation region up to 

7 MeV. Numerous cases were found by comparison with the available 

spectroscopic information and the cross sections were deduced. The 

experimental data for this work were obtained at the QCLAM 

spectrometer of the superconducting Darmstadt electron linear 

accelerator S - DALINAC using a system for the detection of 

scattered electrons at 180°. For all studied transitions cross sections 

and transverse form factors have been calculated. 

A PWBA analysis including Coulomb distortion for 32S has 

been carried out. The extracted transition strength for the second E2 

transition to a 2+ state Ex = 4.282 MeV in 32S amounts to 

B(E2) = (51 ± 15) e2fm4 and is in good agreement with photon 

scattering data. A shell model calculation using the unified sd-shell 

(USD) residual interaction suggests a purely transverse character of 

the measured cross sections for this transition. The momentum 

transfer dependence is reasonably described, but quantitatively 

overpredicted by a factor of 6.5. 

In 58Ni a preferable excitation of 2+ states is observed. DWBA 

calculations with Quasiparticle-Phonon Model (QPM) wave functions 

predict the dominance of the transverse over the longitudinal cross 

sections. Experimental and theoretical cross sections agree 

qualitatively rather well, but quantitatively a theoretical 

overestimation by a factor 10 is observed. 
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In 90Zr a preferable excitation of 3– states is observed. A 

fragmentation region around 6 MeV is located for the B(E3) strengths. 

Quasiparticle-Phonon Model calculations overpredict the cross 

sections by a factor 2 – 3. 
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Анотація 
 

Спектри непружного розсіювання електронів для ядер 32S, 
48Ca, 58Ni та 90Zr поміряні для кута 180 градусів були 

проаналізовані з метою пошуку рівнів збудження у 

енергетичному інтервалі до 7 МеВ. Було знайдено чисельні 

випадки шляхом порівняння з доступною спектроскопічною 

інформацією та був визначений перетин розсіювання. 

Експериментальні дані для цієї роботи були отримані на 

спектрометрі QCLAM на суперпровідниковому лінейному 

прискорювачі електронів S–DALINAC у місті Дармштадт 

(Німеччина) з використанням системи для реєстрації розсіювання 

на 180 градусів. Для усіх розглянутих переходів були розраховані 

перетини розсіювання і поперечні форм-фактори. 

Для 32S був проведений PWBA аналіз, що включає 

кулонівське викривлення. Отримана інтенсивність переходу в 

стан 2+ при Е = 4.282 МеВ для 32S, яке дорівнює 

B(Е2) = (51 ± 15) e2fm4, що добре узгоджується з даними для 

фотонного розсіювання. Розрахунки за оболонковою моделлю з 

використанням уніфікованої sd-оболонкової залишкової взаємодії 

припускають виключно поперечний характер виміряних 

перетинів розсіяння для цих переходів. Залежність від переданого 

імпульсу досить непогано описана, але з чисельним 

перевищенням на фактор 6.5. 

Для 58Ni спостерігається переважне збудження 2+ рівнів. 

DWBA обчислення з використанням квазічастинково-фононної 

хвильової функції передбачає перевагу поперечного перетину 

розсіяння над повздовжним перетином. Експериментальні та 
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теоретичні перетини в залежністі від переданого импульсу 

розсіяння досить непогано узгоджуються, але з чисельним 

перевищенням на фактор 10. 

Для 90Zr спостерігається переважне збудження рівнів 3–. 

Концентрація сили В(Е3) розташована навколо 6 МеВ. 

Квазічастинково-фононні розрахунки перевищують 

експериментальні перетини розсіювання на фактор 2 – 3. 
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1. Introduction 

Nuclear structure studies using electromagnetic probes 

provide valuable information on the nuclear charge, current and 

magnetization densities [1, 2]. There are several reasons why electron 

scattering is a particularly powerful tool for studying nuclear structure 

[3]. Firstly, the basic interaction between the electron and the target 

nucleus is well known. It is the interaction of the charge and current 

density of the nucleus with the electromagnetic field of the passing 

electron. Secondly, the interaction is relatively weak, with a coupling 

constant of the order of  α = 1/137. It is the main advantage in 

comparison with strongly interacting particles, where the coupling 

constant is the order of unity and where the scattering mechanism 

cannot be clearly separated from structure effects in the target. In 

electron scattering the cross section can be immediately related to the 

transition matrix elements of the local charge, to the current density 

operators and to the structure of the target nucleus itself. 

There is also an advantage of electron scattering over another 

widely used electromagnetic probe, real photon scattering. For a fixed 

energy loss ω of the electron, the three-momentum q, transferred to 

the nucleus, can be varied as function of the four-momentum qµ : 

0222 >−= ωµ qq . But with real photons for a given energy transfer 

there is only one possible momentum transfer since the mass of a real 

photon is zero: 0222 =−= ωµ qq . 

The investigation of the structure of the nucleus with inelastic 

electron scattering is one of the most important applications of the 

superconducting Darmstadt electron linear accelerator S-DALINAC at 
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the Institute of Nuclear Physics of the Darmstadt University of 

Technology [4, 5]. Due to its modern concept the S-DALINAC is a 

high-quality source of continuous electron beams with energies up to 

130 MeV. For a momentum analysis of the scattered electrons in 

nuclear physics experiments the so-called QCLAM spectrometer [6] 

can be used. Due to its large solid angle and momentum acceptance 

this spectrometer is well suited for (e,e'x) coincidence [7] and 180° 

scattering experiments [8 - 10]. 

The longitudinal form factor usually dominates the cross 

sections for electric transitions, and there are only a few data on 

transverse form factors [11]. Electron scattering at 180° is unique for 

detecting the latter because of the strong suppression of longitudinal 

excitations including the radiative tail dominated by elastic scattering. 

Thus, electron scattering at 180° serves as a filter for transverse 

excitations and has been widely used for the investigation of magnetic 

excitations which are of purely transverse character [12]. 

Study of selected magnetic transitions [13 - 15] and M2 

resonances [16, 17] is of particular interest at the S-DALINAC, where 

experimental data on 32S, 48Ca, 58Ni, and 90Zr have been taken. The 

purpose of the present work is an analysis of these data at low 

excitation energy, i.e. Ex ≤  7 MeV, searching for electric transitions. 

Such transitions are identified and analyzed in comparison to 

microscopic shell model (32S) and Quasiparticle-Phonon Model 

(58Ni, 90Zr) calculations. 

The work is divided into six chapters. The theoretical basis for 

an analysis of inelastic electron scattering cross sections and the 

above-mentioned models is presented in the second chapter. The third 

chapter provides a brief description of the experimental setup where 
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the present experiments were carried out. The data analysis is 

presented in the fourth chapter and a discussion with comparison to 

the model approaches in the fifth chapter. A short summary closes the 

thesis. 
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2. Electron Scattering 

2.1  Scattering Cross Sections 

The general electron scattering process is usually calculated 

assuming a single virtual photon exchange as shown in Fig. 2.1. 
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Fig. 2.1: Feynman diagram for lowest order (e,e') scattering process. 

 

In this approximation, for any electromagnetic interaction 

with the nuclear system one needs only two independent structure 

functions to completely characterize the nuclear response to a single 

photon. Since higher-order terms, that is, the exchange of more than 

one virtual photon, involve higher powers of the fine-structure 

constant α, which characterizes the strength of the electromagnetic 

interaction, we expect this lowest-order diagram generally to account 

for most of the amplitude in electron scattering [18, 19]. Consider an 

electron initially with 4-momentum k1µ scattering to k2µ while the 

target with initial 4-momentum P1µ goes from an initial state | i >, to a 

final state | f >, with a final momentum P2µ. The 3-momenta P and k 

and the associated energies E and ε are defined by Pµ = (P,iE) and 
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kµ = (k,iε). In the process a virtual photon with 4-momentum 

qµ = k1µ - k2µ = P1µ - P2µ is exchanged. This involves an energy 

transfer ω and 3-momentum transfer q, with q2 = q2 – ω2 ≥ 0. Thus 

electron scattering is restricted to the kinematic region where q2 ≥ ω2. 

Neglecting the electron mass (i.e., me << ε1 or ε2) and nuclear 

recoil, the cross section in the Plane Wave Born Approximation 

(PWBA) for this process can be written [20] 
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The operators )(ˆ qM coul
λ , )(ˆ qT el

λ , )(ˆ qT mag
λ , are the Coulomb, electric and 

magnetic operators of multipolarity λ, respectively. The quantities Ji 

and Jf are the initial and final total angular momenta of the target 

nucleus. 

 

2.2 Form Factors 

The cross section can also be expressed in terms of the nuclear 

form factor F as 

),(4 2 θπσσ qFf
d
d
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Ω

.           (2.4) 
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The factor 
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is the Mott cross section for scattering from a unit point charge while 

the recoil factor frec is given by 
1
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where MT is the mass of the target nucleus. 

In the Plane Wave Born Approximation the nuclear form 

factor can be decomposed into two terms as 
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where the three-momentum transfer is related to the incident energy 

Ei, final energy Ef, and scattering angle θ  by 

c

EEEE
q ffii

h

2)cos1)((2 +−−
=

θ
.              (2.8) 

The longitudinal (FL) and transverse (FT) form factors are each 

dependent on q, but not on θ. This decomposition is due to the 

separation of the four-vector nuclear current density ( ))(ˆ,ˆ)(ˆ xixJ ρµ (x)J=  

into components parallel and perpendicular to the momentum transfer 

q. The component parallel to q corresponds to an interaction of the 

electron with the nuclear charge density ρ, whereas the component 

perpendicular to q involves the contribution of the nuclear convection 

current density (x)jN
ˆ  and magnetization density (x)µNˆ  since 

(x)µ(x)j(x)J NΝ ˆˆˆ ×∇+= . 

All the nuclear structure information is contained in the form 

factors 
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The longitudinal and transverse form factors may be separated by 

fixing q and varying θ (Rosenbluth separation). Since the transverse 

current carries angular momentum ±1 along q while the Coulomb 

interaction carries angular momentum 0 along q, they lead to different 

final nuclear states and do not interfere. 

The Coulomb operators are defined using the vector spherical 

harmonics MYλ  and the spherical Bessel function )(qxjλ  of order λ 

∫ Ω≡ )(ˆ)()()(ˆ xYqxjdxqM x
Mcoul

M ρλλλ ,     (2.11) 

where λ = 0, 1, 2. We can also define transverse electric and magnetic 

multipole operators with natural parity, λπ )1(−=  and unnatural parity, 
1)1( +−= λπ , respectively, 
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In the expansion, Eq. (2.10), only 1≥λ  occurs, since the photon is 

massless and carries its spin ±1 along, or opposite to, its direction of 

motion and thus we have =λ 1, 2, 3, … with corresponding 

multipoles, carrying opposite parity. Hence the selection rules for the 

nuclear matrix elements follow from the angular momentum and 

parity properties of the multipole operators. From the properties of the 

Coulomb operator )(ˆ qM coul
λ  we have 

λπ )1(−=∆ , 

ifif JJJJ +≤≤− λ .             (2.14) 
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Since the sum in Eq. (2.9) starts with 0=λ  we have the possibility of 

exciting a monopole transition 0+→ 0+ with electrons. The selection 

rules for electric and magnetic transitions are defined by the following 

expressions 
λπ )1(−=∆              transverse electric, 

1)1( +−=∆ λπ            transverse magnetic, 

ifif JJJJ +≤≤− λ , 

1≥λ .           (2.15) 

The cross section can be written [21] in terms of the quantities 

),( qXLB  (X = C - Coulomb, E - electric or M - magnetic), which are 

the reduced transition probabilities for the inelastic transitions from 

the ground state of spin Ji to a final state of spin Jf (denoted by 

↑),( qXLB ) and directly related to the matrix elements 

in Eqs. (2.9, 2.10) 
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In these equations 
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2
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2
1
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cEx h=ω ,  cEk i h=1 ,                            (2.20) 

where Ex and Ei are the excitation and the incident electron energies, 

respectively. 
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In photonuclear processes [22] the matrix elements for the 

excitation from the ground state of spin Ji to the excited state of spin 

Jf, ↑)(XLB , can be related to the de-excitation elements ↓)(XLB  by 

↑
+
+

↓= )(
12
12

)( XLB
J
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f

i .                 (2.21) 

The )(XLB  can be related to the transition width Γ  by 
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As an example for an M1 transition 0+→1+ this reduces to  

↑=Γ ),1()]([00387.0)( 3 ωω MBMeVeV .        (2.23) 

In order to obtain Γ  from electron scattering one has to extrapolate the 

measured ),( qXLB  to ω=q , the so-called photon point. In PWBA this 

extrapolation can be done in a fairly model-independent way. If 

qr < 1, then the spherical Bessel functions in the transition operators 

(Eq. 2.12) may be represented by a power series in qr, yielding for the 

reduced transition probabilities ),( qCLB  and ),( qMLB  
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with 1≥λ , and 
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For the transverse electric part 
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If we consider the first terms in the expansion only we have at ω=q  

approximately 

),(),( ωλωλ CBEB ≅ ,             (2.27) 

known as Siegert’s Theorem [23]. 

Instead of the quantities trr >< +1λ  appearing in the above 

equations we can define a convenient “transition radius” Rtr which for 

1≥λ  is given by 
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The equations can now be rewritten in terms of Rtr as 
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2.3 Scattering at 180° 

A particularly attractive experimental tool for investigating 

magnetic and transverse electric excitations in nuclei with electron 

scattering is a detection system capable to measure at 180o. At 180o 
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the transverse contribution remains finite, whereas the longitudinal 

part of the inclusive (e,e') cross section vanishes nearly to zero, greatly 

suppressing the background and increasing the sensitivity for 

transverse transitions (Fig. 2.2). Thus, magnetic transitions, which are 

of purely transverse nature, are strongly enhanced at 180o where the 

elastic radiative tail is largely suppressed. 

 

 
Fig. 2.2:  Longitudinal VL and transverse VT kinematic factors for elastic 

scattering at an energy E0 = 82 MeV. The dashed line represents the 

longitudinal kinematic factor, which is calculated taking into account 

the electron mass me. 

 
Examining Eq. (2.2) we see that, at 180° 

0
2

cos2)( 2
214

4

==
ππ µ kk

q
q

VL ,          (2.34) 

i.e. the longitudinal form factor vanishes leaving only the transverse 

form factor. This could also be inferred from the conservation of 

helicity. If we assume that, at relativistic velocities, the electron spin is 

aligned along or opposite its momentum, then for helicity to be 

conserved in 180° scattering, an electron spin flip must occur. Since 
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the longitudinal interaction cannot cause a spin flip, only the 

transverse electric and magnetic interactions are present. For 

transverse transitions of multipolarity λ, the cross section at 180° is 
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d
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with 41=TV . 

If we take into account the electron mass me, the exact 

behaviour of the longitudinal kinematic factor is described by the 

expression 
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2.4 Higher-Order Corrections 

2.4.1 Radiative Correction 

Since the electron has a very small mass, it scatters easily, 

generating radiation. When the electron scatters off a nucleus it 

interacts with the Coulomb radiation field emitting real and virtual 

photons and also loses energy due to atomic excitation and ionization. 

The experimental data show a broadening of a given peak, associated 

with soft photon production and a lower energy radiation tail resulting 

from hard photon emission. Every peak corresponding to a nuclear 

level has its own radiative tail and hence the tails of all the lower-

lying peaks have to be subtracted from a given peak. After that the 

peak shape must be reconstructed for each level according to its own 

radiative tail. 

The first of the radiative corrections, the Schwinger 

correction, accounts for the loss of the peak area due to those electrons 

degraded in energy due to emission of real soft photons as well as 
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emission and absorption of virtual photons of any energy. 

Bremsstrahlung corrections are for effects which cause an asymmetric 

distortion of the peak due to small angle scattering from electrons and 

nuclei other than the scattering nucleus. The third effect, Landau 

straggling, causes the broadening of the peak due to losses of energy 

from atomic excitation and ionization. The latter two corrections are 

proportional to the square of the target thickness t, while the 

Schwinger correction is linearly proportional to t. 

2.4.2 Coulomb Correction 

In the lowest order process considered we have used Plane 

Wave Born Approximation (PWBA), where the incoming and 

outgoing electrons are described by plane waves. The electron wave 

functions are distorted by the electromagnetic interaction with the 

nuclear charge distribution. Corrections for these distortions, called 

Coulomb distortions, may be calculated explicitly in the framework of 

Distorted Wave Born Approximation (DWBA). The measured cross 

section can be converted into equivalent plane wave values by 

multiplying with a factor, 

[ ]PWBADWBAc ddddf )()( ΩΩ= σσ ,      (2.37) 

and for low momentum transfers the fc values are fairly insensitive 

[24] to variations in the excitation energy and Rtr, and almost 

independent of the nuclear model describing the excitation. 

 

2.5 Shell Model 

In the shell model approximation [25], a real nucleus is 

described by a nuclear Hamiltonian expressed in terms of neutron and 

proton coordinates and a two body interaction of the form 
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∑∑
>

+=
ji

ji
i

i rrVrTH ),()( ,               (2.38) 

where i and j label the nucleons of the nucleus. Assuming that most of 

the effects ),( ji rrV  can be approximated by a central one-body 

potential )( jrU , and the Hamiltonian can be rewritten as 

),()( 211211 rrHrHH += ,            (2.39) 

where 

)()()(1 iii rUrTrH += ,                     (2.40) 

and 

)(),(),( 212112 irUrrTrrH −= .                     (2.41) 

The residual interaction 12H  is assumed to be small so that it can be 

treated by perturbation theory. 

A shell model calculation [26] involves a) the choice of the 

dominant central potential in 1H , b) the calculation of the one-particle 

eigenstates of 1H  and the selection of the orbits of the model from this 

set, c) the construction of the multinucleon eigenstates of 1H  for a 

given number of nucleons and the chosen model orbits, d) the 

specification of the residual two-body interaction 12H  and e) the 

evaluation of the matrix elements of 12H  between the multinucleon 

eigenstates of the 1H  and the calculations of the eigenvalues and 

eigenvectors of this matrix. 

Current shell model studies of sd-shell nuclei [27] are 

characterised by construction of the complete set of basis states that 

are available in the 232125 dsd −−  shells. After “defining the model 

basis space”, the effective single-particle potential for, and the 

effective two-body interaction between, the nucleons considered have 

to be determined. Results of calculations within the active model 
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space must ultimately be “renormalized” to account for the effects of 

excluded configurations in order to yield agreement with the 

experimental values. 

 

2.6 Quasiparticle-Phonon Model 

An alternative microscopic approach particularly useful for 

heavier nuclei is the Quasiparticle-Phonon Model (QPM) [28, 29]. It 

is based on a microscopic theory starting from the quasiparticle basis. 

In the Quasiparticle-Phonon Model excited states in even-even nuclei 

are considered as a combination of one-, two-, …, n-phonon states 

built on the ground-state wave function ψg.s. which is treated as a 

phonon vacuum. Thus, the wave function of the state with momentum 

J and projection M has the form 





+=Ψ +
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+

′′

′′+ ∑∑ JMiLiL
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LiJMi

i
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..]])[[( sgJMiLMJiLiL
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with the definition  

∑
′

+
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′′′

+ >′′<≡
µµ

µµµµ µµ iLiLJMiLiL QQJMLLQQ |][ ,           (2.43) 

where +
iLQ µ  is the phonon creation operator with angular momentum L, 

projection µ, and the Quasiparticle Random Phase Approximation 

(QRPA) root number i. Phonons are constructed as a linear 

combination of pairs of quasiparticle creation +
jmα  and annihilation jmα  

operators with the shell quantum numbers >≡ mjlnjm ,,,|  as follows 
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To obtain the phonon basis (i.e., excitation energies Liω  and 

structure coefficients Li
jj ′ψ and Li

jj ′φ ), the QRPA equations for each πJ  

are solved with an effective Hamiltonian 

respairps HHHH ++= ..  ,            (2.45) 

where the first term describes the motion of independent nucleons in 

the self-consistent average field )(rU , the second term represents the 

pairing interaction, and the last term is the effective residual 

interaction between quasiparticles. The Hamiltonian resH  is considered 

in QPM to have a separable form, with the form factor of the residual 

interaction taken as rrU ∂∂ )( . Among the phonon excitations there are 

both collective phonons such as the low-energy quadupole and 

octupole shape oscillations, and noncollective phonons, even 

practically pure two-quasiparticle modes. 

With the obtained phonon basis, the Hamiltonian (2.45) can 

be rewritten in terms of phonon operators, 

{ }∑ ∑∑
′′′′′′

+
′′′′′′

+
′′′

′′′′
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+ ++=
iL iLiL

iLLiLiL

iL
iL

iL
iLiLLi cHQQQLiUQQH

µ
µµµµ

µ
µµω ..])[(

22
1 .   (2.46) 

The first term in Eq. (2.46) corresponds to the noninteracting phonon 

approximation. The second one describes the interaction between 

different parts of the wave function in Eq. (2.42) with the exchange of 

one phonon. Interaction matrix elements )(LiU
iL
iL

′′′′
′′  are calculated 

microscopically. The wave functions of the excited states in Eq. (2.42) 

are truncated to include terms up to three phonons. After 

diagonalization of the Hamiltonian in Eq. (2.45) on a set of excited 

states described by the wave function (2.42) one obtains the eigen 

energies of these states and their structure coefficients )( νJRi , 

)( νJP iL
Li

′′ , )( νJT iLJ
iLLi

′′′′′
′′ . Since the phonon operators are not ideal bosons, 
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the commutation relations must take into account their fermion 

structure in order not to violate the Pauli principle. In this approach, 

the Pauli principle is taken into account in the diagonal 

approximation, which is both sufficient for this kind of calculation and 

simplifies it. For additional details, see Refs. [30, 31]. 
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3. Experimental Procedures 

3.1  S-DALINAC and Experimental Facilities  

The superconducting electron linear accelerator S-DALINAC 

[Fehler! Textmarke nicht definiert.] is in operation at the Institute 

of Nuclear Physics of the Darmstadt University of Technology since 

1989. It is used for experiments on nuclear and radiation physics and 

since 1996 also as a driver for an infrared FEL [32, 33]. Using the 

high-frequency accelerating method and a dual beam recirculation, a 

continuous beam with energies between 2.5 and 130 MeV can be 

produced. A schematic layout of the S-DALINAC is shown in 

Fig. 3.1. 
 

5 m

Area
250 keV
PreacceleratorChopperPrebuncher10 MeV Injector

Experimental

40 MeV Linac

1st Recirculation Undulator Optical Cavity 2nd Recirculation

To Experimental
Hall

To Optics Lab

 
Fig. 3.1: Schematic layout of the S-DALINAC. 

 

The electrons are emitted by a thermionic gun and then 

accelerated electrostatically to an energy of 250 keV. The required 

time structure of the electron beam for radio-frequency acceleration in 

a 3 GHz field is created by a chopper/prebuncher system operating at 
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room temperature. At the injector entrance the electron bunches arrive 

with a length of 5 ps separated by 333 ps with an average current up to 

60 µA. The superconducting injector linac consists of one 2-cell, one 

5-cell, and two standard 20-cell niobium cavities cooled to 2 K by 

liquid helium. The injector accelerates the beam up to an energy of 10 

MeV. The beam can then enter an experimental area for low-energy 

experiments or can be injected by a 180° bending magnetic system 

into the superconducting main accelerator. It consists of eight 20-cell 

cavities and enables an energy increase up to 40 MeV. 

After passing through the main linac the electron beam may 

be extracted to the experimental hall or it can be recirculated and 

reinjected once or twice. Additionally, in the first recirculation beam-

line an infrared Free Electron Laser (FEL) is located. After at most 

three passes the electron beam with a maximum energy of up to 130 

MeV is delivered to several experimental facilities, schematically 

shown in Fig. 3.2. 

A wide range of electron scattering experiments is carried out 

using the QCLAM spectrometer (Pos. 5) and a high resolution energy-

loss facility with a magic-angle spectrometer (Pos. 6). The QCLAM-

spectrometer has a large angular and momentum acceptance and is 

used for (e,e'x) coincidence and (e,e') at 180° experiments. The magic-

angle spectrometer Lintott operates in the so-called “energy-loss” 

mode that enables to perform high resolution (e,e') experiments 

independently of the energy spread of the electron beam. 

 



 28

 
Fig. 3.2: Experimental facilities at the S-DALINAC. 

Positions: 1 – photo activation and nuclear resonance fluorescence 

experiments, 2 - Free Electron Laser, 3 - high energy radiation 

physics, 4 - Compton scattering off nucleons, 5 - (e,e') at 180° and 

(e,e'x) experiments, 6 - (e,e')-experiments, 7 - optic experiments. 
 

 

3.2  180° Facility 

In addition to the apparatus necessary for performing electron 

scattering at forward angles, 180° scattering requires two additional 

items of beam transport equipment: a “separating magnet”, located 

between the target and the spectrometer, which deflects the incoming 

and 180°-scattered electrons in opposite directions, and a chicane of 

two or three magnets which deflects the incident beam before the 

separating magnet in such a way that the primary beam after the 

separating magnet is on the initial beam axis again. This system is 

illustrated in Fig. 3.3 and details are given in [34]. 
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Fig. 3.3: Schematic view of the 180º system. 
 
 
3.2.1 QCLAM Spectrometer 

The QCLAM spectrometer is a large solid-angle, high-energy 

resolution magnetic spectrometer [35, 36]. It has a solid angle of up to 

35 msr and a momentum acceptance of 20%. It contains two elements: 

a clamshell-type dipole magnet with a deflection angle of 120°, and a 

quadrupole magnet, which provides additional transverse focusing to 

increase the solid angle acceptance. The focal-plane instrumentation 

[37] consists of three multiwire drift chambers (two which measure 

the position in the dispersive direction, and one whose wires are 

rotated by 26.6° in orthogonal direction), a plastic scintillation counter 

serving as a trigger detector and a plexiglas Cherenkov detector for 

background suppression. 

The chambers provide the horizontal and vertical positions 

and the vertical angle of the electron in the reference plane of the 
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detector system. The maximum central momentum of the 

spectrometer is 200 MeV/c. Because the 180° components were 

initially designed for a lower-energy accelerator at the University of 

Illinois, the 180° system is presently limited to a maximum electron 

energy of about 95 MeV. 

 
3.3 Experimental Parameters 

In the experiments four targets were irradiated Li2S 

(28 mg/cm2), 48Ca (10.2 mg/cm2), 58Ni (7.6 mg/cm2), and 90Zr 

(19.8 mg/cm2). The target Li2S represented a foil with natural isotope 

content, i.e. 61.72% 7Li, 4.95% 6Li, 31.67% 32S, 0.25% 33S, 1.4% 34S, 

and 0.005% 36S. The effective thickness for 32S was 17.86 mg/cm2. 

For the 48Ca, 58Ni, and 90Zr targets the isotopic enrichment was more 

than 97%. For each element two or three spectra at the incident 

energies E0 from 42.2 up to 82.3 MeV were measured. This 

corresponds to momentum transfers q from 0.37 fm-1 up to 0.83 fm-1. 

The energy resolution ∆E was between 50 and 100 keV. All spectra 

were measured up to approximately 14 MeV. The experimental 

parameters are summarized in Table 1. In this work the low energy 

region in the spectra up to 7 MeV of excitation energy has been 

analyzed. 

A detailed description of the data extraction procedure is 

given in [38]. For background suppression the so-called time of flight 

method [39] was used. The channel counting rates of the spectra for 
32S, 48Ca and 90Zr were normalized to the angular acceptance of the 

spectrometer and to the charge accumulated in the Faraday cup. Also 

dead time correction was applied. The spectra for 58Ni were 

normalized by comparison to the measurements on 12C [40]. 
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Table 1: The main parameters of the (e,e') experiments at the S-DALINAC. 

Element Thickness 
(mg/cm2) E0(MeV) Ex(MeV) q(fm-1) ∆E(keV)

82.2 0.0 – 14.4 0.77 – 0.83 100 
66.4 3.2 – 14.6 0.62 – 0.65 68 32S 

 
17.86 

 42.2 3.7 – 11.3 0.38 – 0.41 75 
82.1 3.0 – 16.0 0.76 – 0.81 66 
66.4 3.0 – 15.2 0.60 – 0.66 57 48Ca 

 
10.2 

 42.4 3.5 – 11.4 0.37 – 0.41 50 
65.4 0.0 – 11.1 0.60 – 0.66 80 58Ni 7.6 
56.6 0.0 –   9.5 0.52 – 0.57 76 
82.3 3.0 – 16.0 0.77 – 0.82 72 
66.4 3.0 – 15.2 0.60 – 0.66 61 90Zr 

 
19.8 

 42.7 3.5 – 11.0 0.37 – 0.41 55 
 
In this work the following contributions determined the 

systematic error 

• uncertainty with respect to the determination of the 

accumulated charge in the Faraday cup (≈ 5 %), 

• inaccuracy of the solid angle (≈ 7 %), 

• target inhomogeneities (≈ 5 %), 

• error in the dead time correction (< 2 %). 

Thus, the squared averaged total contribution of the instrumental error 

amounts approximately to 10%. In the following tables only statistical 

errors are indicated. 
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4. Analysis and Results 

4.1 Fitting Procedure 

An example of the fitting procedure is presented in Fig. 4.1 

for 58Ni. The spectra correspond to the incident electron energies of 

65.4 MeV and 56.6 MeV. 
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Fig. 4.1: Electron scattering spectra of the reaction 58Ni(e,e') taken at 

E0 = 65.4 MeV and E0 = 56.6 MeV within the excitation energy range 

Ex = 2.8 - 5.0 MeV. The decomposition into peaks and background is 

shown. 

 

The spectra were analysed using the program FIT [41, 42], 

that has been routinely used to analyse data from electron scattering 
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and several other reactions. In this program the fitting function 

consists of a background function plus a sum over individual peaks yi 

that may be represented in terms of the excitation energy x as 

∑+=
peaks

i xyxBxF )()()( ,          (4.1) 

where B(x) is the background function given by a polynomial of 

second degree 
2

210)( xbxbbxB ++= .                   (4.2) 

The background consists of the radiative tails of each line and the 

instrumental background. This and all observable transitions were 

fitted simultaneously. 

The shape of a peak was described by a special function 

integrated in the FIT program, which takes into account the radiative 

tail as well as the Gaussian distribution of the peak. This function 

consists of three parts: a Gaussian rising flank of width σ1, a Gaussian 

dropping flank of width σ2 and a hyperbolic function simulating the 

radiative tail. These three functions are connected to each other and 

form a smoothly differentiable function, which is represented by the 

following expression: 
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where x0 is the energy of the peak maximum, y0 is the counting rate in 

the peak maximum, 2
1σ  and 2

2σ  are the variances of the Gauss 

functions for Ex < x0 and Ex > x0, η is the starting point of the radiative 

tail in units of σ2 and γ is the exponent of the hyperbolic function. The 

factors A, B and C result from the condition of the smoothly 

differentiable connection of the individual functions at the 
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interconnection points x0 and x0 + ησ2. The adaptation of the model 

functions for the spectral lines took place in a given energy interval 

simultaneously with the adaptation of the background polynomial. 

The line shape was determined from the most prominent 

transitions in each spectrum and the same parameters were used for all 

transitions in a spectrum. In addition, relative positions of the lines 

could be fixed. This is particularly useful at higher excitation energies, 

where the level density becomes high. 

The results for all analyzed spectra measured for the nuclei 
32S, 48Ni, 58Ca, and 90Zr are presented in Figs. 4.2 - 4.5. 
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Fig. 4.2:  Analysis of the electron scattering spectra for the reaction 32S(e,e') for 

the beam energies E0 = 82.2 MeV, E0 = 66.4 MeV and E0 = 42.2 MeV 

in the excitation energy range Ex = 0 – 7 MeV. 
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Fig. 4.3:  Analysis of the electron scattering spectra for the reaction 48Ca(e,e') for 

the beam energies E0 = 82.1 MeV, E0 = 66.4 MeV and E0 = 42.4 MeV 

in the excitation energy range Ex = 3 – 7.5 MeV. 
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Fig. 4.4:  Analysis of the electron scattering spectra for the reaction 58Ni(e, e’) 

for the beam energies E0 = 65.4 MeV and E0 = 56.6 MeV in the 

excitation energy range Ex = 0 - 7 MeV. 
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Fig. 4.5:  Analysis of the electron scattering spectra for the reaction 90Zr(e,e') for 

the beam energies E0 = 82.3 MeV, E0 = 66.4 MeV and E0 = 42.7 MeV 

in the excitation energy range Ex = 3 – 6.8 MeV. 
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4.2 Determination of Cross Sections and Form Factors 

In order to determine the peak area, the fit function under each 

peak was integrated. The contributions of the radiative tails to the full 

peak area were calculated with standard formulas for (e,e') radiative 

correction functions [43]. Since the radiative tail stretches in principle 

to infinity, it is necessary to fix an upper integration limit. In the FIT 

program the lower integration limit corresponds to the beginning of 

the Gaussian rising flank and the upper integration limit corresponds 

to 5 widths of the Gaussian dropping flank σ2, i.e. Eupper = E0 + 5σ2. 

This parameter was chosen to minimize the uncertainty in the 

determination of the area under the peak. Then the differential cross 

section is determined by the following expression: 

srfm
N
MN

d
d

A

/1072.1 210⋅⋅⋅=
Ω ρ
σ      (4.4) 

where M [MeV/c2] – the mass of the target nuclei, NA [mol-1] – the 

Avogadro constant, ρ [g/cm2] – the target thickness and N 

[1/C msr] - the peak area normalized to the spectrometer solid angle 

and the current accumulated in the Faraday cup during the 

measurement. 

Under 180° elastic scattering is strongly suppressed for targets 

with ground state += 0πJ  [Eq. (2.2)]. Since in 180° experiments the 

effective scattering angle θeff  is not exactly equal to 180°, an elastic 

line is still visible in the spectra and the relative calculation of the 

inelastic scattering cross section is possible in principle. In this work 

the average effective scattering angle θeff  was 178°. However, a 

variation of 0.1° from θeff = 178° changes the elastic cross section by 

more than 10%. A precise determination of the elastic cross section 

and the relative calculation of the inelastic cross section are thus not 
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possible because the effective angle can be determined only with an 

uncertainty of approximately 0.1°. 

The Tables 2 – 5 summarize the kinematics, the experimental 

cross sections, and the deduced form factors (assuming they are purely 

transverse) for all transitions below Ex = 7 MeV of the targets 

investigated. In these tables Ex is the observed excitation energy, πJ  

the spin-parity of the excited state, E0 is the incident electron energy, 

qeff  the effective momentum transfer, Ωddσ  and |Ft|2 are the 

experimental cross section and the squared transverse form factor, and 

‘Error’ is the statistical uncertainty in the peak area determination. 

The effective momentum transfer qeff is defined by the relation 


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2

52
331 ,           (4.5) 

where Rc is the root-mean-square radius [44], and E0 is the energy of 

the incident electrons. 

The spin-parity identification of observed states is based on a 

comparison with spectroscopic data from the Nuclear Data Sheets 

[45]. In principle, the form factors exhibit a characteristic momentum 

transfer dependence with a maximum at a specific q value 

(respectively a small region of q values) for the transferred angular 

momentum. Due to the small number of experimental points an 

accurate spin-parity assignment of the transitions based on the (e,e') 

data cannot be done. Nevertheless, the comparison to the NDS shows 

the preferable population of 2+ states in 58Ni and 3– states in 90Zr. 
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Table 2: Cross sections and transverse form factors of the inelastic electron 

scattering on 32S under 180°. The excitation energy Ex is determined as 

an average of the excitation energies in all measured spectra. Errors 

indicate the statistical uncertainty of the peak area determination. 

Ex  
(MeV) Jπ  E0  

(MeV) 
q  

(fm-1) 
qeff  

(fm-1) 
Ωddσ  

(fm2/sr) 
|Ft|2 

Error  
(%) 

0 0+ 82.2 0.833 0.915 3.293E-07 0 3.0 

4.281(9) 2+ 
42.2 
66.4 
82.2 

0.406 
0.651 
0.811 

0.483 
0.730 
0.891 

8.935E-08 
6.473E-08 
2.805E-08 

1.201E-06 
2.158E-06 
1.435E-06 

22.7 
10.9 
15.4 

5.017(10) 3– 
42.2 
66.4 
82.2 

0.402 
0.647 
0.808 

0.479 
0.726 
0.887 

6.743E-08 
3.823E-08 
4.103E-08 

9.065E-07 
1.274E-06 
2.099E-06 

21.6 
20.1 
20.8 

5.798(10) 1– 
42.2 
66.4 
82.2 

0.398 
0.644 
0.803 

0.474 
0.722 
0.882 

1.435E-08 
4.308E-08 
4.974E-08 

1.929E-07 
1.436E-06 
2.544E-06 

57.4 
22.2 
10.3 

6.264(11) 2– 
42.2 
66.4 
82.2 

0.396 
0.641 
0.801 

0.472 
0.719 
0.879 

2.202E-08 
4.460E-08 
2.802E-08 

2.960E-07 
1.487E-06 
1.433E-06 

40.3 
15.8 
45.7 

6.432(8) 4+ 66.4 
82.2 

0.640 
0.800 

0.718 
0.879 

2.563E-08 
2.931E-08 

8.543E-07 
1.499E-06 

24.9 
20.2 

6.569(9)  82.2 0.800 0.878 3.658E-08 1.871E-06 15.2 

6.690(13)  82.2 0.799 0.877 2.556E-08 1.307E-06 21.0 

6.803(9) 4+ 82.2 0.798 0.877 3.614E-08 1.848E-06 14.7 
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Table 3: Cross sections and transverse form factors of the inelastic electron 

scattering on 48Ca under 180°. The excitation energy Ex is determined 

as an average of the excitation energies in all measured spectra. Errors 

indicate the statistical uncertainty of the peak area determination. 

Ex  
(MeV) Jπ  E0  

(MeV) 
q  

(fm-1) 
qeff  

(fm-1) 
Ωddσ  

(fm2/sr) 
|Ft|2 

Error  
(%) 

3.844(3) 2+ 
42.4 
66.4 
82.1 

0.410 
0.653 
0.812 

0.499 
0.743 
0.903 

3.072E-08 
4.492E-08 
2.818E-08 

2.667E-07 
9.570E-07 
9.185E-07 

26.1 
7.5 
12.4 

4.507(5) 3– 
42.4 
66.4 
82.1 

0.407 
0.650 
0.809 

0.495 
0.740 
0.899 

1.639E-08 
3.979E-08 
9.167E-08 

1.423E-07 
8.478E-07 
2.988E-06 

42.0 
8.2 
6.8 

4.615(3) 3 
42.4 
66.4 
82.1 

0.406 
0.649 
0.808 

0.494 
0.739 
0.899 

3.692E-08 
8.303E-08 
3.598E-08 

3.206E-07 
1.769E-06 
1.173E-06 

19.0 
5.3 
12.2 

5.14(3)  66.4 
82.1 

0.647 
0.806 

0.736 
0.896 

2.779E-08 
6.241E-08 

5.921E-07 
2.034E-06 

9.9 
8.0 

5.249(20)  82.1 0.805 0.895 1.079E-08 3.518E-07 70.8 

5.297(5) 2+ 66.4 
82.1 

0.646 
0.805 

0.735 
0.895 

3.620E-08 
2.589E-08 

7.713E-07 
8.440E-07 

8.3 
30.5 

5.379(8) 3– 82.1 0.805 0.894 1.439E-08 4.690E-07 22.6 

5.744(13) 5– 82.1 0.803 0.892 6.522E-09 2.126E-07 38.4 

6.097(2) 4– 66.4 
82.1 

0.642 
0.801 

0.730 
0.890 

8.317E-08 
1.143E-07 

1.772E-06 
3.726E-06 

4.8 
5.6 

6.328(6) 2+ 66.4 
82.1 

0.641 
0.800 

0.729 
0.889 

1.279E-08 
9.791E-09 

2.724E-07 
3.191E-07 

19.6 
29.4 

6.688(5)  42.4 0.396 0.481 5.144E-08 4.466E-07 13.4 

6.608(2) 4+ 66.4 
82.1 

0.639 
0.798 

0.727 
0.887 

6.214E-08 
8.860E-08 

1.324E-06 
2.888E-06 

6.6 
6.5 

6.794(5) 2+ 42.4 0.395 0.481 4.471E-08 3.882E-07 14.8 

6.881(2) 2– 
42.4 
66.4 
82.1 

0.395 
0.638 
0.797 

0.480 
0.726 
0.886 

5.918E-08 
6.852E-08 
3.220E-08 

5.138E-07 
1.460E-06 
1.049E-06 

11.6 
5.7 
13.0 

7.002(2) 3– 
42.4 
66.4 
82.1 

0.394 
0.637 
0.796 

0.479 
0.725 
0.885 

9.865E-08 
1.787E-07 
7.595E-08 

8.566E-07 
3.808E-06 
2.475E-06 

9.1 
3.2 
7.3 
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Table 4: Cross sections and transverse form factors of the inelastic electron 

scattering on 58Ni under 180°. The excitation energy Ex is determined 

as an average of the excitation energies in all measured spectra. Errors 

indicate the statistical uncertainty of the peak area determination. 

Ex  
(MeV) Jπ  E0  

(MeV) 
q  

(fm-1) 
qeff  

(fm-1) 
Ωddσ  

(fm2/sr) 
|Ft|2 

Error  
(%) 

0 0+ 56.6 
65.4 

0.573 
0.663 

0.697 
0.787 

4.973E-06 
1.044E-06 

0 
0 

0.6 
1.4 

1.444(2) 2+ 56.6 
65.4 

0.566 
0.655 

0.689 
0.778 

1.525E-07 
9.762E-08 

1.202E-06 
1.030E-06 

5.6 
6.0 

3.036(3) 2+ 56.6 
65.4 

0.558 
0.647 

0.679 
0.768 

8.751E-08 
5.934E-08 

6.909E-07 
6.263E-07 

9.0 
8.9 

3.264(1) 2+ 56.6 
65.4 

0.557 
0.646 

0.677 
0.767 

1.800E-07 
1.268E-07 

1.425E-06 
1.339E-06 

4.9 
5.1 

3.776(4) 3+ 56.6 
65.4 

0.554 
0.643 

0.674 
0.764 

4.571E-08 
5.047E-08 

3.607E-07 
5.320E-07 

15.8 
10.3 

3.898(5) 2+ 56.6 
65.4 

0.554 
0.643 

0.673 
0.763 

3.853E-08 
4.496E-08 

3.046E-07 
4.742E-07 

18.4 
11.6 

4.113(9) 2+ 56.6 
65.4 

0.553 
0.642 

0.672 
0.762 

2.027E-08 
2.408E-08 

1.603E-07 
2.537E-07 

29.6 
19.1 

4.310(15) 4+ 65.4 0.641 0.761 1.876E-08 1.980E-07 31.0 

4.378(11)  56.6 
65.4 

0.551 
0.640 

0.670 
0.760 

2.908E-08 
1.921E-08 

2.292E-07 
2.025E-07 

21.1 
30.7 

4.478(2) 3– 56.6 
65.4 

0.551 
0.640 

0.670 
0.760 

1.404E-07 
1.387E-07 

1.106E-06 
1.465e-06 

8.1 
5.4 

4.767(11) 4+ 65.4 0.638 0.758 1.896E-08 2.000E-07 24.8 

4.957(18)  65.4 0.638 0.757 1.073E-08 1.131E-07 41.9 

5.178(16)  65.4 0.636 0.755 1.234E-08 1.302E-07 36.6 

5.466(11)  65.4 0.635 0.754 1.905E-08 2.001E-07 24.2 

5.575(14) 2+ 56.6 
65.4 

0.545 
0.634 

0.663 
0.753 

1.805E-08 
9.151E-09 

1.427E-07 
9.650E-08 

39.0 
49.2 

5.730(4) 2+ 56.6 
65.4 

0.544 
0.634 

0.662 
0.752 

3.993E-08 
5.464E-08 

3.153E-07 
5.759E-07 

18.0 
9.9 

5.924(1) 2+ 56.6 
65.4 

0.543 
0.633 

0.661 
0.751 

2.031E-07 
1.412E-07 

1.603E-06 
1.488E-06 

4.7 
5.2 

6.032(2) 3– 56.6 
65.4 

0.543 
0.632 

0.660 
0.750 

2.110E-07 
1.340E-07 

1.670E-06 
1.413E-06 

4.5 
5.6 

6.261(2) 4+ 56.6 
65.4 

0.542 
0.631 

0.659 
0.749 

1.236E-07 
1.363E-07 

9.779E-07 
1.437E-06 

7.1 
5.1 

6.424(2) 2+(3–) 56.6 
65.4 

0.541 
0.630 

0.658 
0.748 

2.902E-07 
2.345E-07 

2.292E-06 
2.475E-06 

5.1 
3.8 

6.583(3) 2+(4+) 56.6 
65.4 

0.540 
0.629 

0.657 
0.747 

6.778E-08 
8.194E-08 

5.351E-07 
8.639E-07 

11.9 
8.3 
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Table 5: Cross sections and transverse form factors of the inelastic electron 

scattering on 90Zr under 180°. The excitation energy Ex is determined 

as an average of the excitation energies in all measured spectra. Errors 

indicate the statistical uncertainty of the peak area determination. 
Ex  

(MeV) Jπ  E0  
(MeV) 

q  
(fm-1) 

qeff  
(fm-1) 

Ωddσ  
(fm2/sr) 

|Ft|2 
Error  
(%) 

3.969(8) 5– 82.3 0.814 0.968 1.526E-08 1.248E-07 16.8 

4.250(2) 4– 66.35 
82.3 

0.651 
0.812 

0.803 
0.966 

1.769E-07 
1.349E-07 

9.393E-07 
1.103E-06 

4.2 
4.1 

4.309(13)  42.72 0.411 0.561 4.778E-07 1.051E-07 40.9 

4.487(3) 3– 66.35 
82.3 

0.650 
0.811 

0.802 
0.964 

7.104E-08 
7.616E-08 

3.773E-07 
6.225E-07 

10.0 
9.3 

4.556(7)  
42.72 
66.35 
82.3 

0.409 
0.649 
0.811 

0.559 
0.801 
0.964 

3.145E-08 
2.792E-08 
6.186E-08 

6.919E-08 
1.483E-07 
5.057E-07 

54.4 
23.2 
10.7 

4.671(5) 2+ 66.35 
82.3 

0.649 
0.810 

0.801 
0.963 

2.958E-08 
2.055E-08 

1.571E-07 
1.680E-07 

14.9 
19.0 

4.833(12) 3– 
42.72 
66.35 
82.3 

0.408 
0.648 
0.809 

0.557 
0.800 
0.962 

1.577E-08 
2.647E-08 
2.767E-08 

3.468E-08 
1.406E-07 
2.261E-07 

100.8 
16.6 
12.4 

5.111(2) 3– 
42.72 
66.35 
82.3 

0.407 
0.646 
0.808 

0.555 
0.798 
0.961 

2.303E-07 
1.334E-07 
7.751E-08 

5.067E-07 
7.086E-07 
6.336E-07 

11.7 
5.1 
6.5 

5.367(7)  42.72 0.406 0.553 1.024E-07 2.253E-07 20.3 

5.484(23) 4+ 82.3 0.806 0.958 6.270E-09 5.125E-08 52.6 

5.653(3) 3– 
42.72 
66.35 
82.3 

0.404 
0.644 
0.805 

0.551 
0.794 
0.957 

9.013E-08 
8.913E-08 
5.678E-08 

1.983E-07 
4.733E-07 
4.641E-07 

24.4 
7.4 
8.6 

5.765(11) 3– 66.35 0.643 0.794 1.699E-08 9.021E-08 28.0 

5.811(21) 2+ 42.72 0.403 0.550 2.686E-08 5.914E-05 59.1 

5.929(8) 3– 
42.72 
66.35 
82.3 

0.403 
0.637 
0.804 

0.550 
0.786 
0.956 

2.641E-08 
8.588E-08 
7.536E-08 

5.812E-08 
4.561E-07 
6.160E-07 

64.8 
8.0 
7.3 

6.076(5)  
42.72 
66.35 
82.3 

0.402 
0.642 
0.803 

0.548 
0.792 
0.955 

5.392E-08 
2.428E-08 
2.231E-08 

1.187E-07 
1.290E-07 
1.823E-07 

34.0 
22.6 
18.1 

6.308(3) (2+) 
42.72 
66.35 
82.3 

0.401 
0.640 
0.802 

0.547 
0.791 
0.954 

1.028E-07 
1.038E-07 
6.651E-08 

2.263E-07 
5.462E-07 
5.440E-07 

25.1 
6.3 
6.4 

6.422(2) (2+) 
42.72 
66.35 
82.3 

0.400 
0.640 
0.801 

0.546 
0.790 
0.953 

1.209E-07 
1.232E-07 
7.619E-08 

2.662E-07 
6.619E-07 
6.321E-07 

23.4 
7.6 
10.2 
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5. Model Comparison and Discussion 

5.1 Calculations for 32S 

For an unambiguous multipolarity assignment and an almost 

model independent determination of the transition strength at the 

photon point, a PWBA analysis (see chapter 2.2) can be applied for 

electron scattering data of a nucleus with low Z and at low momentum 

transfer q, as in the case of 32S. In this work a PWBA calculation for 

the second +2 state (Ex = 4.28 MeV) in 32S was performed. The 

experimental cross sections are multiplied by a DWBA correction 

factor in order to include the Coulomb distortion effects. These factors 

were extracted from a comparison of DWBA and PWBA cross section 

calculations for the given kinematics with the code PAMELA [46]. 

Terms up to the order 3=l  were included in the expression 

[Eq. (2.31)]. The transition radii 6
trR  and 4

trR  were correlated [47] with 
2
trR  through the relations 224 )(09.1 trtr RR =  and 326 )(18.1 trtr RR = . These 

coefficients were obtained from the radial moments calculated with 

the code PAMELA. 

In Fig 4.6 the results for λ = 1, 2, 3 assuming an electric 

transition are shown. The multipolarity assignment is based on the 

best 2χ  and the condition of a value for the transition radius 

reasonably close to the root-mean-square charge radius of 32S 

(Rc = 3.23 fm) [44]. The best agreement with the data is achieved 

assuming λ = 2. Here for λ = 1 the transition radius trR  is not defined 

at all. At λ = 3 the 2χ  is smaller than at λ = 2, but the transition radius 

trR  deviates from the root-mean-square charge radius cR  very 

strongly. The transition strength )2(CB  = (51 ± 15) e2fm4 extracted 
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from this analysis is in a good agreement with an NRF experiment 

[48] which provides )2(CB  = (46.4 ± 7.7) e2fm4. 

 

±
±

±
±

±
±

 

Fig. 4.6:  The PWBA analysis for the excitation of the 2+ state at Ex = 4.28 MeV 

assuming an E1 (left), an E2 (middle), or an E3 (right) transition. 

 

The form factors and cross sections data deduced from the 

present experiment provide a good test of the microscopic 

calculations. Shell model wave functions were obtained from the 

unified sd-shell (USD) interaction [49], which has been shown to 

provide an excellent description of static and dynamic properties in 

sd-shell nuclei [27]. For the description of the E2 transition strengths 

effective g factors were employed. The effective g factors are 

available from the empirical fit of Brown and Wildenthal (BW) for sd-

shell nuclei [50]. 

The experimental cross sections for the second 2+ state in 32S 

together with the shell model predictions are shown in Fig. 4.7. The 

dashed, dotted and solid lines represent longitudinal, transverse and 

total cross sections, respectively. These calculations predict a clear 

dominance of transverse over longitudinal cross sections for the 

experimental kinematics. 
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Fig. 4.7:  Cross sections for the E2 transition to the Jπ = 2+ state at Ex = 4.28 

MeV in 32S. The squares present the experimental data. The error bars 

are smaller than the size of the data points. The dashed, dotted and 

solid lines represent the longitudinal, transverse and total cross 

sections, respectively, predicted by the shell model calculation. 

 

In order to extract the transition strength the total cross section 

needs to be scaled to the experimental points. In Fig. 4.8 the total 

cross section normalized by a factor 6.5 is shown. The transition 

strength )2(CB  = 49.14 e2fm4 extracted from this approach is in good 

agreement with the PWBA analysis and the result of the NRF 

experiment. 
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Fig. 4.8: Total cross section for the E2 transition (Ex = 4.28 MeV) in 32S 

predicted by the shell model calculation. The solid curve is normalized 

to describe the data (squares). 

 

5.2 Comparison with Quasiparticle-Phonon Model Calculations. 

Experimental 58Ni(e,e') and 90Zr(e,e') cross sections are 

compared with the prediction of the microscopic Quasiparticle-

Phonon Model (QPM). The basics of the model are described in 

chapter 2.6. The calculations have been performed with wave 

functions for excited stated which include one-, two- and three-

phonon configurations [see Eq. (2.42)]. At present, the calculations 

were restricted to 2+ and 3– states in 58Ni and 90Zr, respectively. The 

one-, two- and three-phonon configurations are built from phonons 

with spin-parity ranging from 1± to 6± and with excitation energies up 

to 15 MeV, 9 MeV, and 10 MeV, respectively. 
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After calculating the transition current and magnetization 

densities of each state the DWBA (e,e') cross sections for the 

excitation of these states were obtained [51]. 

 

5.2.1 Calculations for 58Ni 

For 58Ni the transverse form factors are available only at two 

momentum transfers, and therefore, the discussion is restricted to 

transitions populating += 2πJ  states. Figure 4.9 presents the example 

of longitudinal (bottom), transverse (middle), and total (top) cross 

sections predicted by the QPM at 65 MeV incident energy for E2 

transitions in 58Ni. The results show that at 180° the transverse part of 

the cross section always dominates over the longitudinal, the 

contribution of which is typically restricted to at most a few percent. 

Even for the most collective transition for to +
12  state, the longitudinal 

cross section amounts to 3.8% only. The calculations also show that 

the most prominent transverse transitions do not have the largest 

B(E2) values at the photon point. 

The figures 4.10 and 4.11 compare the theoretical predictions 

of cross sections for E2 transitions with the experimental results from 

the present work for 58Ni, for the range of excitation energy covered 

by the experiment. The experimental cross sections are shown in the 

upper part and the QPM predictions in the lower part of each plot. 
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Fig. 4.9: Longitudinal, transverse, and total cross sections predicted by the QPM 

for the excitation of E2 transitions in 58Ni for inelastic electron 

scattering at 180°. The incident energy is 65 MeV. Note the different 

y-scales of the transverse and longitudinal parts. 
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The location of large E2 transitions is predicted well by the 

QPM calculations for 58Ni in the excitation energy region up to 

5 MeV. Two fragmentation regions are predicted for 58Ni at the 

excitation energies about 3.5 and 6 MeV, which are in agreement with 

the experimental results. While the qualitative reproduction is quite 

good, a quantitative overestimation, i.e. a quenching, by almost an 

order of magnitude is observed. 
 

 

Fig. 4.10:  Comparison of the cross sections for E2 transitions in 58Ni from the 

present work (top) with QPM calculations (bottom). The incident 

energy is 65 MeV. The effective scattering angle is 178 degree. Note 

the different y-scales for the experimental and theoretical cross 

sections. 
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Fig. 4.11:  Comparison of the cross sections for E2 transitions in 58Ni from the 

present work (top) with QPM calculations (bottom). The incident 

energy is 57 MeV. The effective scattering angle is 178 degree. Note 

the different y-scales between experimental and theoretical cross 

sections. 

 
Figure 4.12 shows the comparison of transverse and 

longitudinal cross sections for the two most prominent transitions 

predicted by the QPM in 58Ni as a function of the incident electron 

energy E0. The effective scattering angle θeff is 178°. It becomes 

apparent that the transverse part always dominates over longitudinal 

and peaks at much higher incident energy for each transition. The 

energy dependence is also different between the collective 

( +
12 , Ex = 1.41 MeV) and two-quasiparticle ( +

162 , Ex = 5.93 MeV) 

transitions, which have different structure. The first one is formed due 

to collective surface excitations of a nucleus (charge excitations), 

whereas the second one is a combination of current excitations. 
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Fig.4.12: Comparison of the QPM predictions for the (e,e') transverse (solid line) 

and longitudinal (dashed line) cross sections of the two most 

prominent E2 transitions in 58Ni as function of incident electron energy 

E0. 

 

A comparison of the cross sections for the two most 

prominent E2 transitions in 58Ni as function of the scattering angle θ is 

shown in the Fig. 4.13. For the collective low-lying transition at 

Ex = 1.41 MeV the longitudinal cross section is always dominating 

over the transverse cross section except for backward angles θ ≥ 170°. 

Thus transverse form factors of collective electric modes in the low-

energy spectra can be studied only at angles very close to θ = 180°. 

For the two-quasiparticle transition at Ex = 5.93 MeV the transverse 

part dominates over the longitudinal one already at much smaller 

angles θ ≥ 115°. Thus, the prominent transverse electric quasiparticle 

excitations can typically be studied at scattering angles in the region 
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from about 120 to 180 degrees. Such kind of measurements can also 

be carried out at the high resolution Lintott magnetic spectrometer. 
 

 

Fig. 4.13: Comparison of the QPM predictions for the (e,e') transverse (solid 

line) and longitudinal (dashed line) cross sections of the two most 

prominent E2 transitions in 58Ni as function of scattering angle θ. 

 
5.2.2 Calculations for 90Zr 

In this section the cross sections for the population of −3  states 

in 90Zr are discussed. Experimental data are available at three incident 

energies, which correspond to the momentum transfers from 0.37 fm-1 

to 0.82 fm-1. The figures 4.14 – 4.16 compare the experimental results 

with the QPM predictions of cross sections for E3 transitions in 90Zr 

measured only for Ex > 3 MeV, i.e. the −
13  state at Ex = 2.748 MeV is 

not observed. The experimental cross sections are shown in the upper 

part and the QPM cross sections in the lower part of each plot. 
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Because of the experimental thresholds only a reduced 

number of experimental states can be observed with respect to the 

QPM calculations. Like for E2 transitions in 58Ni, for E3 transitions in 
90Zr the transverse part of the cross section always dominates over the 

longitudinal one. An exclusion is the most collective transition to the 
−
13  state at excitation energy Ex = 3.14 MeV, where the longitudinal 

contribution amounts to 69, 8.6, and 2% at incident energies 42.7, 

66.4, and 82.3 MeV, respectively. 

 

 

Fig. 4.14:  Comparison of the cross sections for E3 transitions in 90Zr from the 

present work (top) with QPM calculations (bottom). The incident 

energy is 82 MeV. The effective scattering angle is 178 degree. 
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Fig. 4.15:  Comparison of the cross sections for E3 transitions in 90Zr from the 

present work (top) with QPM calculations (bottom). The incident 

energy is 66 MeV. The effective scattering angle is 178 degree. 

 

 

Fig. 4.16:  Comparison of the cross sections for E3 transitions in 90Zr from the 

present work (top) with QPM calculations (bottom). The incident 

energy is 43 MeV. The effective scattering angle is 178 degree. 
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The strengths around 6 MeV predicted by the QPM seems to 

be confirmed by the data. The first E3 transition at excitation energy 

Ex = 2.748 MeV is not observed in the experiment, because the spectra 

were measured only at excitation energies above 3 MeV. The two 

lowest transitions observed in the experiment lie at higher energies 

compared to the QPM predictions. They are shifted about by 1 MeV. 

On the average the QPM calculations overpredict the experimental 

cross sections by a factor of 2 – 3. 
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6. Summary and Outlook 

Electron scattering at 180° provides numerous advantages for 

the study of nuclear structure: precise knowledge of the reaction 

mechanism, the ability to vary independently the momentum and 

energy transferred to the nucleus. Scattering experiments provide 

detailed information on nuclear radii, ground state, and transition 

charge densities, as well as the spatial distribution of intrinsic 

magnetic and convection currents. 

An analysis of the available 180° data measured at the 

S - DALINAC provides evidence for electric excitations in all studied 

nuclei at low excitation energy. Comparison to microscopic 

approaches, such as the shell model and the Quasiparticle-Phonon 

Model, shows that the cross sections are almost purely transverse. 

Even for low-energy collective phonons the contribution of the 

longitudinal part usually amounts to a few percent only. The 

momentum transfer dependence of transverse cross sections differs 

significantly from longitudinal ones for each transition as well as for 

different transitions. This fact causes difficulties in identifying 

unknown spin-parity characteristics of observed states. 

The comparison of the experimental data with microscopic 

approaches plays an important role in understanding the structure of 

nuclei. In the present work the model predictions of the form factors 

agree reasonably with the limited data presently available, but 

significant quenching is observed in all cases. 

Based on the present findings, electron scattering at 180° is a 

promising tool to the future experimental projects including the 

measurement of transverse electric transition strengths: 
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1. a detailed mapping of collective low-lying states in spherical 

and deformed nuclei [52 – 54]; 

2. search for a transverse E1 resonance below the GDR, the so-

called toroidal mode [55, 56]. 
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