
Miniforschung – Controlling
the Goniometer at QCLAM
with EPICS
Conducted from 26.09.2011 to 21.10.2011
by Henno Lauinger
Tutor: Jonny Birkhan, Simela Aslanidou

Contents

1 Aim of the project 2
1.1 Goniometer at QCLAM . 2

2 Motor Testing Device 3
2.1 Construction . 3
2.2 Local control: CAN Bus . 3
2.3 Remote Control: EPICS and CSS . 5

2.3.1 Experimental Physics and Industrial Control System – EPICS 5
2.3.1.1 Structure of an IOC . 6
2.3.1.2 Channel Access and IOC Commands . 7

2.3.2 Building an Input/Output Controller . 7
2.3.3 Configuring an IOC . 8

2.3.3.1 Editing the Database with the Visual Database Configuration Tool 9
2.3.4 Creating a New IOC . 10

2.3.4.1 Create Basic Folders and Files . 10
2.3.4.2 Add CAN driver support . 10
2.3.4.3 Automatically Add Template . 11
2.3.4.4 Adding Substitutions . 12
2.3.4.5 Set File flags . 13
2.3.4.6 Compiling . 13

2.3.5 Controll System Studio . 14
2.3.6 Important Folders when Working with EPICS on the Svn Server 14

2.4 Issues . 15

3 New Connections in the Top Plate 15

List of Figures 18

Bibliography 18

4 Attachments 18
4.1 Syntax Used in this Document . 19

4.1.1 Diff Syntax . 19
4.2 Compiling from Source Code in Linux . 20
4.3 Subversion and the IKP server . 20

4.3.1 Workflow . 21
4.3.2 Svn Folder Structure . 22

1

1 Aim of the project
At QCLAM coincidence experiments are conducted, where electons and other particles are emitted. While
the electrons are detected in a drift chamber in the focal plane, the other particles have to be detected in
a full room angle of 4π . The mounting and motion of these detectors is provided by a goniometer.

Aim of the project is to be able to control the motors of the goniometer with EPICS. To be able to do so
one must understand the basics of EPICS, build a device to test how to control a motor that is connected
to a computer via a CAN bus and control it with EPICS.

Furthermore the goniometer has to be rewired, so the connections in the top cover will be realised with
new plugs.

This report should give an overview over what has been done so far and an introduction on how to work
with EPICS.

1.1 Goniometer at QCLAM

(a) Sketch of the goniometer. The red circles mark
the position of a motor.

(b) Detectors for additionally emitted par-
ticles in a partial room angle.

Figure 1: Sketch and image of the goniometer.

2

In the scattering chamber of QCLAM electrons are scattered on a target where protons, α-particles,
deuterons and other charged particles can be seperated.

Ape, e1 xqB (1)

In this experiment the exact positions of the x-particles are meassured in a full room angle of 4π. Since
the corresponding detectors only cover a partial room angle as shown in figure 1(b) they need to be
rotated around the target to reach a 4π angle. This is achieved by three of the motors shown in figure
1(a), the fourth moves the target ladder into the scattering chamber. The trajectories and energies of the
electrons are meassured in drift chambers in the focal plane of the spectrometer.

In the past years problems have piled up until it was decided to change some parts of the instrumentation,
for example the connections of the motors and steppers. Additionally the motors are wanted to be
controllable over the network with a graphical user interface, which will be achieved with EPICS.

2 Motor Testing Device

2.1 Construction

The testing device for a remotely controlled motor has been built from an old printer. A new motor
(Faulhaber 1624 E 012 S) with built in stepper was attached and switches added near both ends of the
track. A thin metal plate with slightly bent ends was put on the bottom of the slide so that it would
slowly press the switch and be able to move off it.

A micro controller was programmed in the electronics workshop [2], where the additional objects were
also put to the printer. The board is referenced as motctl in the header files cps_can.h.

The circuit board is supplied with 24 V, that are regulated to a maximum of 12 V via pulse width mod-
ulation (PWM), since the motor has a working voltage of 12 V. The motctl board has a temprature chip
that can be easily used to test commands that should get information from the board.

The board is connected with an ethernet cable to a CAN bus, that can be connected to a computer with
a USB cable. Communication between computer and micro controller is realised with CAN commands,
explained in section 2.2.

2.2 Local control: CAN Bus

Communication between computer and microcontroller is realised with CAN commands. Even EPICS
will use these commands, but then the user doesn’t have to take care of it. The drivers [3] that are
needed for linux can be installed with the help of a tutorial [4], some additional command line utilities
will be needed, too [5].

There may occur problems while installing the CAN drivers. If the file popt.c is missing you need to
install the package libpopt-dev with the command sudo apt-get install libpopt-dev. To perma-
nently set the bitrate of the adapter you have to add it to a config file, e.g.

sudo echo "options pcan bitrate=0x0014" >> /etc/modprobe.d/pcan.conf

To download the CAN utilities you need to have the package subversion installed. The utilities have to
be compiled with

3

(a) The motor on the right moves a belt that is connected to a slide. [1]

(b) The motor
is connected to an
adapter circuit board
that is connected to
the mtctl board.

(c) The motor is screwed
to the back of the printer.

(d) Mtctl board with microcon-
troller, temperature chip and
RJ-45 sockets for connection to
the CAN bus. [1]

Figure 2: Testing device built from parts of a printer.

cd <svn download folder>/trunk/can-utilities

make

sudo make install

All connected CAN adapters can be shown with cat /proc/pcan. They’re called can0, can1,
can2 and so on. Everytime an adapter is connected to the computer it has to be activated with
sudo ifconfig can0 up before commands can be sent. The red LED should blink now. Now you
can show all messages of all CAN adapters with the command candump any from the CAN-utilities. A
command can be sent with cansend <can name> <command>.

Every command consists of the address, the type of the command and optional data.

<address><type>[#<data>]

The address begins with 06 if a command will be sent and with 07 if an answer is expected. The following
three numbers identify the device. They consist of the number of the power supply and the number of

Henno Lauinger 4

the slot in the crate, where the device is put. Even if the device isn’t inside of a crate, there are DIP
switches on the circuit board, that give those numbers.

<#power supply/crate> * 0x40 + <#position in crate> * 0x02

The number of the crate or power supply is encoded with 6 bits, the number of the position with 5
bits. The command type is encoded with 13 bits, e.g. 00f to move the motor to a certain position. All
commands can be looked up in the header file of the micro controller. The hexadecimal numbers of the
data bits are switched in pairs, i.e. they consist of <LowByte><MiddleByte><HighByte>, e.g. instead of
0x12 89 EF you send #EF8912. To move the motor 100 steps if it’s connected to power supply number
1 at position 1 you send

cansend can0 0604200f#640000

to move it 65792 steps if its position is 2 at power supply 1 it is

cansend can0 0604400f#000101

A full list of commands can be found in the CAN header file in

svn://130.83.133.64/acs/devices/firmware/nut/trunk/inc/cps_can.h

The commands that reffer to the test device are listed as motctl.

2.3 Remote Control: EPICS and CSS

All remote control is realised with EPICS. CSS is a GUI that connects with one or multiple IOCs and
was used to build a visual interface that controlls the motor. In a later conversation it turned out that
S-DALINAC and DESY are the only institutions that still use CSS, which also shows some amount of
errors. For future developments one may consider to use the SNS control system BOY from Oak Ridge
National Laboratory [6].

2.3.1 Experimental Physics and Industrial Control System – EPICS

The idea of EPICS is to be able to control your experiment remotely over the ethernet. An EPICS system
consists of the database (DB) – the experiment with all controlling and messuring devices and a server
that’s connected to them and has an input/output controller (IOC) installed on it –, the channel access
(CA) – the physical network and all network protocols – and the operator interfaces (OPIs) – computers
with a user interface that can communicate with the IOC over CA.

Every computer that is part of the EPICS system or uses it in any way needs an EPICS base installed
on it. You can download the source from the official webpage [7] or from the IKP svn server in
acs/frameworks/epics/base/trunk. The EPICS base has to be compiled and installed as explained
in section 4.2, but before that some system variables must be set:

export EPICS=<TOP>

export EPICS_HOST_ARCH=<host arch>

export EPICS_BASE=<TOP>/base

where <TOP> is the folder that contains epics and <host arch> can be linux-x86 (32 bit Linux),
linux-x86_64 (64 bit Linux), etc. Since these variables have to be set every time something EPICS

Henno Lauinger 5

related is compiled it is useful that they are set every time the computer is booted. In Ubuntu there’s
a file called .bashrc that is executed whenever a new terminal is opened, so also on logon. The user
related file is located at ~/.bashrc (~/ is the home folder of the user, e.g. /home/user), the system wide
file is located at /etc/bash.bashrc but you need root privileges to edit it.

2.3.1.1 Structure of an IOC

An IOC contains information about how to address which process variable (PV). A PV can be a physical
variable, like a current or a voltage, or a calculated value, like a power. It is stored in a record, that
contains all information that belongs to the PV, like its value (VAL), the engeneering unit (EGU), high
and low operating ranges (HOPR and LOPR), a status (STAT), for example if it has already been set, if an
alarm has been occured and so on. Each value of a distinct information is called a field.

A PV – and therefore a record – can have different types: It can be a calculated value (calc), an analog –
decimal number – input (ai) or output (ao) or a digital – ‘integer’ – input (longin) or output (longout).
Long refers to the memory size of the number, in this case four bytes. But every record needs a unique
name since this is the way EPICS can tell them apart and how you address the record you want to get
information from.

Each record has a field called SCAN that tells it when it should be processed. If its value is Passive it is
only processed when the value of the record (the VAL field) is changed, for example by a user. A time
– like 10 s or 0,2 s – means that the record is processed every ten or 0,2 seconds. I/O Intr tells it to be
processed every time the hardware sends new information.

The information about how the record communicates with which hardware is set in the OUT field of an
output record or the INP field of an input record. The syntax is

@<can interface> {06/07} <crate id> <slot id> <command> <skip> {s/u}<size> <timeout>

with the following variables

• <can interface> the name of the can interface the hardware is connected to, e.g. can0 or can1

• 06 or 07 is the code for sending or receiving information as explained in section 2.2

• <crate id> and <slot id> are the number of the crate and the slot of the hardware like in section
2.2 but not calculated to the hexadecimal number

• <command> is the hexadecimal number of the command; section 2.3.2 shows that it is of better use
to use the word placeholder of the command and replace it with a script later on

• <skip> is a decimal number of how many bytes should be skipped; this is important when reading
for example only the fifth byte

• {s/u}<size> is the signed or unsigned size of the value that will be sent or read; <size> can be
0 if no information is sent or read, c for character (1 byte), s for short (2 byte), m for mid (3 byte,
added since it is often needed) or l for long (4 byte)

• <timeout> in seconds tells the record after which amount of time it should set an error state if
nothing has been sent or read

The first example in section 2.2 would look like this

OUT = "@can0 06 01 1 15 0 um 50"

VAL = "100"

If another record should be processed after processing a record, its name has to be put into the FLINK
field. This can be used to calculate the power after current and voltage have been read. To re-

Henno Lauinger 6

fer to the value of a field in another record one can use <record name>.<field name>, for example
motctl1:getPosition.VAL for the position of motor 1 on the motctl board.

A full list of record types and their fields can be found in [8]. More examples on how to create records,
especially for the controll of the test device can be found in section 2.3.3.1.

2.3.1.2 Channel Access and IOC Commands

As mentioned before, the built-in tools to access the database in EPICS are called channel access. They
can be found in <epics base>/bin/<host arch>/. The most important ones are

caget <record name>[.<field name>]

caput <record name> <value>

camonitor <record name>

caget prints the value of a field of a record, default is VAL, caput updates the VAL field of a record to
a new value and camonitor prints information about a record every time something is changed. These
tools can be used from every workstation that has an EPICS base installed on it and is connected to the
server with an IOC over the network, or from the server itself.

The IOC binary (located at <IOC base>/bin/<host arch>/<IOC name>) has a built-in command line,
too, which can of course only be used on the server. Some useful commands are

• help [<command>] prints all commands or information and syntax for one command

• dbl lists all record names in the database

• dbpr <record name> [<level>] shows some fields of a record, dependant on the information
level

• dbpf <record name>[.<field name>] <value> changes the value of a field of a record, default
field is VAL

• dbLoadDatabase <.dbd file> loads a database definition file

• dbLoadTemplate <.substitutions file> loads a database that is created by replacing variables
in template files with information from the substitution file

The last two commands are usually executed by a script in <IOC base>/iocBoot/<host arch>/st.cmd.
More information about the template and the substitution file can be found in section 2.3.3.

2.3.2 Building an Input/Output Controller

If you want to build an IOC, be able to list and test the built-in commands or to learn how to work with
CSS, the quickest way is to compile the example server in the EPICS base package. The report of Dirk
Martin [9] gives a quick tutorial.

If you allready have a configured IOC you can compile it with

cd <IOC base>/trunk

make clean

make

and run it with

cd <IOC base>/trunk/iocBoot/<host arch>

./st.cmd

Henno Lauinger 7

If you want to create an IOC for a new experiment the easiest way is to copy and customise an existing
one. The IOCs of the IKP can be found at

svn://130.83.133.64/acs/frameworks/epics/iocApps

You need an account to access the files on the svn server. Since you have to compile a tudSocketCan
driver and you need the header files of the micro controllers it is recommended to download all files
with

cd <svn base folder>

svn co svn://130.83.133.64/acs

The files can be updated with svn up. The tudSocketCan driver can be compiled with

cd <svn base folder>/acs/frameworks/epics/support/socketCan/trunk

make clean

make

sudo make install

2.3.3 Configuring an IOC

The best way to understand how to configure an IOC is to try to understand an existing one. Basically
an IOC is configured with .dbd and .db files and with the start script st.cmd.

The .dbd (database definition) files define the fields of the different record types. It’s usually sufficient
to use an existing one. The .db files define all records of PVs that will be contained in the IOC. The start
script can be found at <IOC base>/trunk/iocBoot/<host arch>. Its main purpose is to start the IOC
and load the database definition, the database files and the SocketCAN driver.

If there are a lot of PVs in your database you might want to generate them from templates. The templates
contain variables for names, addresses, limits and values, that are replaced by the names in a substitu-
tion file located in <IOC base>/trunk/<name>App/Db. The substitution is executed in the start script.
Variables in the templates located in <svn base>/acs/frameworks/epics/iocApps/templates/trunk
look like $(name) or $(can_interface), the structure of the substitution file looks like

file "db/motctl.template" {

{

name = "motctl1"

can_interface = "can0"

crate_id = "01"

slot_id = "1"

scan_fast_single_device = "1 second"

scan_slow_single_device = "10 second"

}

{

name = "motctl2"

can_interface = "can0"

crate_id = "01"

slot_id = "2"

Henno Lauinger 8

scan_fast_single_device = "1 second"

scan_slow_single_device = "10 second"

}

}

This generates all records from db/motctl.template twice, once for each device on the CAN adapter.

2.3.3.1 Editing the Database with the Visual Database Configuration Tool

The best possibility to edit the template files is with the java editor Visual Database Configuration Tool
(vdct). It can be downloaded from the web [10] or from the IKP package sources:

echo "deb http://debianfai.ikp.physik.tu-darmstadt.de/epics.nsls2.bnl.gov/

squeeze main contrib" >> /etc/apt/sources.list

echo "deb-src http://debianfai.ikp.physik.tu-darmstadt.de/epics.nsls2.bnl.gov/

squeeze main contrib" >> /etc/apt/sources.list

sudo apt-get update

sudo apt-get install nsls2-archive-keyring

sudo apt-get update

sudo apt-get install visualdct

The editor can be run with vdct or more convenient with a .dbd file allready loaded, e.g:

java -cp /usr/share/visualdct/VisualDCT.jar

-DEPICS_DB_INCLUDE_PATH=$EPICS_DB_INCLUDE_PATH com.cosylab.vdct.VisualDCT

--dbd-file <IOC base>/trunk/dbd/<name>.dbd

Vdct shows a graphical Layout of all records of a template, their fields and the connections between
them. If one record refers to the value of another one or if there is a record name in the FLINK field,
there will be lines connecting the records. Only fields that differ from the default value will be shown
in the overview. By double clicking a record all possible fields are shown, including a short description
when selected.

This provides a clearer possibility to change a database than by editing the text file.

Figure 3 shows an example of connected records in vdct, in this case setting the position of the test
motor in $(name):setPosition of type longout, telling it to process $(name):calcSlideTarget of type
calc afterwards – by putting this name into the FLINK field – which then converts the target position
from steps to centimeters. The field CALC contains a formular with A and B which are taken from INPA
and INPB. INPA reads the position in steps from the other record, INPB contains the slope set in the
substitution file.

Note that the example shows a .template.pre file, which is usually edited, and thus contains variables
like $(name) and $(slope), which are set in the substitutions file. When the IOC is compiled with
make the pre-template file is copied to <IOC base>/db/<template-name>.template and the command
placeholder (in this case CMD_SET_DAC) is replaced with the controlbyte (in this case 15). This is done
automatically by a script. When the template is loaded into the IOC all variables are replaced with the
values defined in the substitution file, which finally makes the file understandable for EPICS.

Henno Lauinger 9

Figure 3: Two connected records in VDCT that set a position of the slide in steps and convert it to cen-
timeters. In the left record – $(name):setPosition – the field OUT reads @$(can_interface) 06
$(crate_id) $(slot_id) CMD_SET_DAC 0 um 0.

2.3.4 Creating a New IOC

There are some binary files delivered with EPICS base, that can help create a new IOC. Some scripts have
to be copied and some files changed to your needs.

2.3.4.1 Create Basic Folders and Files

First of all the directories for the new IOC have to be created – in a file browser or with

mkdir <svn base>/acs/frameworks/epics/iocapps/<IOC name>

mkdir <svn base>/acs/frameworks/epics/iocapps/<IOC name>/branches

mkdir <svn base>/acs/frameworks/epics/iocapps/<IOC name>/tags

mkdir <svn base>/acs/frameworks/epics/iocapps/<IOC name>/trunk

Then the source code for the IOC can be created with

makeBaseApp -t ioc <IOC name>

executed from <IOC base>. Afterwards the iocBoot folder can be created with

makeBaseApp -i -t ioc -a <host arch> -p <IOC name> <host arch>

2.3.4.2 Add CAN driver support

To add the socket-CAN driver support, <IOC base>/configure/RELEASE has to be edited (information
about the syntax used can be found in section 4.1.1):

Henno Lauinger 10

If using the sequencer, point SNCSEQ at its top directory:

#SNCSEQ=$(EPICS_BASE)/../modules/soft/seq

+SOCKETCAN=$(TOP)/../../../support/socketCan/trunk

+CAN_INCLUDE_DIR=$(TOP)/../../../../../devices/firmware/nut/trunk/inc

+

EPICS_BASE usually appears last so other apps can override stuff:

EPICS_BASE=/usr/lib/epics

The two folders have to exist on the computer that compiles the IOC. There are also changes in
<IOC base>/<IOC name>App/src/Makefile:

motctlTest.dbd will be made up from these files:

motctlTest_DBD += base.dbd

+motctlTest_DBD += tudSocketCan.dbd

Include dbd files from all support applications:

#motctlTest_DBD += xxx.dbd

Add all the support libraries needed by this IOC

#motctlTest_LIBS += xxx

+motctlTest_LIBS += tudSocketCan

motctlTest_registerRecordDeviceDriver.cpp derives from motctlTest.dbd

motctlTest_SRCS += motctlTest_registerRecordDeviceDriver.cpp

and in <IOC base>/iocBoot/<host arch>/st.cmd:

Load record instances

dbLoadRecords("../../db/<IOC name>.db","user=<user name>")

+devSocketCanInit

+

iocInit()

Start any sequence programs

2.3.4.3 Automatically Add Template

make has to know where the pre-template is located and where it has to be copied. Add the template
folder to <IOC base>/configure/RELEASE:

Henno Lauinger 11

SOCKETCAN=$(TOP)/../../../support/socketCan/trunk

CAN_INCLUDE_DIR=$(TOP)/../../../../../devices/firmware/nut/trunk/inc

+DBTEMPLATES=$(TOP)/../../templates/trunk

+

EPICS_BASE usually appears last so other apps can override stuff:

EPICS_BASE=/usr/lib/epics

and the name of the templates to <IOC base>/<IOC name>App/Db/Makefile:

Create and install (or just install) into <top>/db

databases, templates, substitutions like this

#DB += xxx.db

+DB += <template name>.template

#--

If <anyname>.db template is not named <anyname>*.template add

In the same file the rule for the replacement of the command placeholders has to be added:

#--

ADD RULES AFTER THIS LINE

+../O.Common/<template name>.template: $(DBTEMPLATES)/<template name>.template.pre

+ cd ../O.Common && $(TOP)/<IOC name>App/Db/replaceCmds.pl -I

$(CAN_INCLUDE_DIR)/cps_can.h $< $@

Of course the script, that does the replacement has to be copied to the given location (or the location has
to be changed in the rule above).

cp /frameworks/epics/iocapps/gun/trunk/gunApp/Db

’<IOC base>/<IOC name>App/Db/replaceCmds.pl’

The IOC gun is just one location of the script. Every other IOC should have it, too.

2.3.4.4 Adding Substitutions

Place the <IOC name>.substitutions file in <IOC base>/<IOC name>App/Db/ and tell make that it
should copy it when it compiles. Add to <IOC base>/<IOC name>App/Db/Makefile

Henno Lauinger 12

databases, templates, substitutions like this

#DB += xxx.db

DB += <template name>.template

+DB += <IOC name>.substitutions

#--

If <anyname>.db template is not named <anyname>*.template add

Finally change st.cmd to tell the IOC to load your template with the substitutions:

You may have to change motctlTest to something else

everywhere it appears in this file

-#< envPaths

+< envPaths

+cd ${TOP}

+

Register all support components

-dbLoadDatabase("../../dbd/<IOC name>.dbd",0,0)

+dbLoadDatabase("dbd/<IOC name>.dbd",0,0)

<IOC name>_registerRecordDeviceDriver(pdbbase)

Load record instances

-dbLoadRecords("../../db/<IOC name>.db","user=<user name>")

+dbLoadTemplate "db/<IOC name>.substitutions"

devSocketCanInit

If there are multiple substitution files the last line has to be added for every one of them and the Makefile
needs to know all their names (step one in this section).

2.3.4.5 Set File flags

If you are working on an svn server you might want to ignore all files generated automatically during
compiling with svn propset svn:ignore <file>. Also <IOC base>/iocBoot/<host arch>/st.cmd
and <IOC base>/<IOC name>App/Db/replaceCmds.pl have to be executable:

svn propset svn:executable <IOC base>/iocBoot/<host arch>/st.cmd

svn propset svn:executable <IOC base>/<IOC name>App/Db/replaceCmds.pl

2.3.4.6 Compiling

Now the IOC is ready to be compiled and started:

Henno Lauinger 13

cd <IOC base>

make

<IOC base>/iocBoot/<host arch>/st.cmd

Compiling will copy the pre-template, replace the command placeholders and copy the substitution files
to the IOC working directory. st.cmd will then start the IOC, load the paths to the .dbd file, templates
and substitutions and will load them into the IOC, that will then show its command line and start
working.

2.3.5 Controll System Studio

Controll System Studio (CSS) is an IDE to create graphical user interfaces (GUI) that can interact with
an EPICS database.

First of all the IP address of all IOCs has to be set in CSS Ñ Preferences. . . Ñ General Ñ Network Connec-
tions Ñ Add Host. . . . Then the connection can be tested with a probe. A probe is a meter that shows the
value of a PV and refreshes every time its value changes. It can be added via CSS Ñ Diagnostic Tools Ñ

Probe and just needs the full name of the PV to operate.

A complete GUI can be created with File Ñ New Ñ Other. . . Ñ Display Ñ Synoptic Display. It should
appear as a new tab with the name <display name>.css-sds in the last active part of the window. A list
witch objects should be on its right side, if it’s not it cann be added with the arrow button in the upper
right corner or via Window Ñ Show View Ñ Other. . . Ñ General Ñ Palette. If the Widget Properties won’t
show up, usually below the editor, they can be added via Window Ñ Show View Ñ Other. . . Ñ Synoptic
Display Studio Ñ Widget Properties. The whole layout can be rearanged, for example by changing to the
Display Development perspective (Window Ñ Open Perspective. . . Ñ Other. . . Ñ Display Development).

Somewhere in the middle of the window should be a grey space, the editor. Objects or widgets can be
added by selecting it from the palette and drawing a frame on the editor where and how big it should
be. A window will pop up and prompt for a PV name and a behaviour. The PV name is the full name of a
PV on an IOC, the behaviour can be chosen from a drop down list (I couldn’t find any differences in the
two options). Some tweaks can be made in the widget properties but most of the times it should already
work.

The display can be started by saving the file and clicking the green Display in Run Mode button.

More information can be found in [9], [11] or in CSS via Help Ñ Welcome Ñ First Steps.

2.3.6 Important Folders when Working with EPICS on the Svn Server

Section 4.3.2 shows gathered information about important folders and files you will need on the svn
server. Except for the creation of a brand new IOC only very few files are edited:

• <...>/iocApps/templates/<template name>.template.pre is the pre-template file that con-
tains all information about records on the IOC. There can be multiple pre-templates, also located
in subfolders.

• <...>/iocApps/<IOC name>/trunk/<IOC name>App/Db/<substitutions name>.substitutions
contains the substitutions that can be edited.

• <GUI name>.css-sds is the graphical user interface that can be located anywhere on a computer.

All other files and folders are either automatically updated by scripts or contain permanent information.

For the use of an IOC it is important to know what the folders in <...>/iocApps/<IOC name>/trunk/
(from here on called <IOC base>) contain. This is shown in figure 4. Folders that begin with O. are

Henno Lauinger 14

created during the compilation of the IOC. If something would be edited ther it will be lost the next time
the IOC is compiled. All Makefile and RULES files are created when the IOC is created and control the
compiling.

Figure 4: Folder structure of an IOC

Most information about EPICS has been taken from [9, 12, 13], information about the hardware and
communication via a CAN bus are from [2].

2.4 Issues

There are still some issues with the test device. When the motor gets the command to stop it has still
got some momentum. Usually this is no problem, because when it sopped it will move slowly backwards
until it reaches the target position within a given range. But if it is sent near an end switch the slide
might press the switch. It then moves slowly in the positive direction, regardless of which switch it
pressed, and when the switch is released the current position is defined as the new zero. This causes the
slide to get stuck if it reaches the switch on the far end. Furthermore the switches might get pressed –
by accident or on purpose – even if the slide is in the middle of the track. This also defines a new zero
position and the device has to be rebooted to find the real zero position.

It would also be a nice feature to be able to stop the motor in case something goes wrong.

15

3 New Connections in the Top Plate
Since the soldered connections to the motors easily break when the top plate is taken off there has been
a draft for new connections. The idea is to glue the cricuit boards directly into the top plate and attatch
sockets to it. The cables can be plugged in and out when removing the plate.

To test if the adhesive would be able to endure the vacuum inside the goniometer a small replica of the
top plate was built. It contains just one hole from the new draft, where two half cylinders were put inside
and fixed with the adhesive. The adhesive was put on the circuit board which was slid into the leftover
slit. It was attached to a frame with clamps to give the adhesive enough time to harden and to be able
to seal holes in the layer of adhesive.

When the adhesive hardened a vacuum pump was pressed onto the plate and started to see if the
adhesive would rip.

Apart from some problems with the seal of the vacuum pump the test went well. The adhesive could
hold the pressure of the vacuum pump so one can assume that it will be able to endure the vacuum in
the goniometer.

As a result of the test it was decided to first weld the half cylinders into the top plate and then glue the
circuit boards that already contain one half of the electronics on it into the slits. The other electronics
will be soldered onto the boards afterwards. It is necessary to put a thic layer of adhesive on the circuit
board that there won’t be created any holes when the circuit board is wobbled. It’s also important to pay
attention that the conducters on the board don’t touch the top plate because this would cause a short
circuit later on.

Henno Lauinger 16

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

20.

5
0
.

1
.

35.

49.

10.

10.

35.

2
4
.5

2x

(a) Blueprint for the mechanical workshop made with xfig.

(b) Milled hole in top plate (left) and glued circuit board inside
it (right).

Figure 5: New fittings for the connections in the top plate.

Henno Lauinger 17

List of Figures
1 Sketch and image of the goniometer. [1] . 2

2 Testing device built from parts of a printer. Partly [1] . 4
3 Two connected records in VDCT . 10
4 Folder structure of an IOC . 15

5 New fittings for the connections in the top plate. 17

Bibliography
[1] Personal communication with Jonny Birkhan.

[2] Personal communication with Uwe Bonnes.

[3] http://www.peak-system.com/fileadmin/media/linux/index.htm, 23.11.2011.

[4] http://2codeornot2code.org/?p=400, 23.11.2011.

[5] http://developer.berlios.de/svn/?group_id=6475, 23.11.2011.

[6] http://sourceforge.net/apps/trac/cs-studio/wiki/BOY, 23.11.2011.

[7] http://www.aps.anl.gov/epics/base/index.php, 23.11.2011.

[8] http://www.aps.anl.gov/epics/wiki/index.php/RRM_3-14, 23.11.2011.

[9] D. MARTIN, Test des Goniometers und seiner Anbindung an EPICS für Elektronenstreuexperimente
am QCLAM-Spektrometer, Miniforschung, IKP, 2010.

[10] http://www.cosylab.com/resources/downloads_/, 23.11.2011.

[11] http://ikpweb.ikp.physik.tu-darmstadt.de/mediawiki/index.php/CSS, 23.11.2011.

[12] Personal communication with Martin Konrad.

[13] Personal communication with Christoph Burandt.

[14] http://css.desy.de, 23.11.2011.

[15] Personal communication with Simela Aslanidou.

[16] http://subversion.apache.org/, 23.11.2011.

[17] http://www.ccp2.ac.uk/svn_workflow.pdf, 23.11.2011.

18

http://www.peak-system.com/fileadmin/media/linux/index.htm
http://2codeornot2code.org/?p=400
http://developer.berlios.de/svn/?group_id=6475
http://sourceforge.net/apps/trac/cs-studio/wiki/BOY
http://www.aps.anl.gov/epics/base/index.php
http://www.aps.anl.gov/epics/wiki/index.php/RRM_3-14
http://www.cosylab.com/resources/downloads_/
http://ikpweb.ikp.physik.tu-darmstadt.de/mediawiki/index.php/CSS
http://css.desy.de
http://subversion.apache.org/
http://www.ccp2.ac.uk/svn_workflow.pdf

4 Attachments

4.1 Syntax Used in this Document

• monosized typeset depicts folders, filenames or commands

• < > sharp brackets contain short explanations for a placeholder, such as the name of a variable or
the path to a folder that can change from one user to another

• [] square brackets contain optional arguments

• { } pointed brackets contain different choices for a nonoptional argument unless they are sur-
rounded by square brackets

• Ñ shows the separation between submenus or items in preference windows

4.1.1 Diff Syntax

diff is a tool used by svn to find and display changes between two files. The logfiles contain all these
changes and look something like this:

Index: trunk/configure/RELEASE

===

--- trunk/configure/RELEASE (Revision 4435)

+++ trunk/configure/RELEASE (Revision 4436)

@@ -24,6 +24,9 @@

If using the sequencer, point SNCSEQ at its top directory:

#SNCSEQ=$(EPICS_BASE)/../modules/soft/seq

+SOCKETCAN=$(TOP)/../../../support/socketCan/trunk

+CAN_INCLUDE_DIR=$(TOP)/../../../../../devices/firmware/nut/trunk/inc

+

EPICS_BASE usually appears last so other apps can override stuff:

EPICS_BASE=/usr/lib/epics

Index: trunk/motctlTestApp/src/Makefile

===

--- trunk/motctlTestApp/src/Makefile (Revision 4435)

+++ trunk/motctlTestApp/src/Makefile (Revision 4436)

@@ -14,12 +14,14 @@

motctlTest.dbd will be made up from these files:

motctlTest_DBD += base.dbd

+motctlTest_DBD += tudSocketCan.dbd

Include dbd files from all support applications:

#motctlTest_DBD += xxx.dbd

Henno Lauinger 19

Add all the support libraries needed by this IOC

#motctlTest_LIBS += xxx

+motctlTest_LIBS += tudSocketCan

motctlTest_registerRecordDeviceDriver.cpp derives from motctlTest.dbd

motctlTest_SRCS += motctlTest_registerRecordDeviceDriver.cpp

This example shows two changed files: trunk/configure/RELEASE and trunk/motctlTestApp/src/Makefile.
The header of each file contains its location, the old and the new revision and information about the
number of lines of these files. Then a piece of the file follows where changes have been made. The first
character of each line indicates what has been changed:

• (blank or space) indicates no changes in this line. This can be used to locate the surrounding
lines of the file.

• + shows that the line has been added to the new version.

• - means that the line has been removed.

4.2 Compiling from Source Code in Linux

A lot of software is only distributed as source code and you have to compile the binary files for your
system structure (Linux/Windows/Mac, 32 bit/64 bit) yourself. In Linux you usually use make to compile
the source code. In a command line you first change to the folder with the source, then run the compiler
and tell it to install the software (i.e. copy the binaries and configuration files to the system directories):

cd <source folder>

make

sudo make install

If you changed something in the source code and want to make sure that the changes are applied and
no old files will be kept delete them with

make clean

If make doesn’t work you can also use a different compiler, for example cmake.

These compilers are configured with files called Makefile. They can contain rules about copying and
renaming files, which is used to build an IOC.

4.3 Subversion and the IKP server

Subversion (svn) is a version control system designed to make merging of projects with multiple contrib-
utors easy [16]. Usually an institute has an svn server where all projects are centrally stored. Whenever a
contributor wants to change something on a project he downloads the latest files from the server, makes
his changes, compares his new file with the version on the server in case someone else made changes at
the same time, optionally updates these changes into his file and uploads it to the server.

In Ubuntu it can be installed from the software-center or from the command line with

sudo apt-get install subversion

Henno Lauinger 20

4.3.1 Workflow

If you are new to a project you have to get your copy of the files, this is called checking out

cd <svn base folder>

svn co --username <name> <address>

The address can be in the local network or on the internet. All files will be coppied to the current working
directory, in this case <svn base folder>. To get all files from the IKP server use

svn co svn://130.83.133.64/acs

when you are connected to the IKP network. You may need an account first. You can also check out for
example just epics related folders

svn co svn://130.83.133.64/acs/frameworks/epics

If the username is ommitted the system username will be taken instead. If this user can’t be found on
the server you will be asked to enter a new username.

If you want to check if your copies are still the same as the files on the server you can use

svn status [-u]

to show all files that have been changed. the -u option will show revision and server out-of-date infor-
mation.

To actually show the differences between the files use

svn diff

There is also software with graphical user interfaces that use diff like Meld on Ubuntu or WinMerge on
Windows.

To download any changes on the server to your local machine use

svn update

With most commands you can add the -r <revision number> option to refer to a certain revision of
the project.

When you want to upload your changes to the server you have to tell it first if you added or deleted files,
then commit the changes

svn add <filename>

svn delete <filename>

svn commit

When committing changes you will be prompted for information about the changes and should describe
it for other contributers to understand these changes.

Henno Lauinger 21

4.3.2 Svn Folder Structure

Important main folders and files:

• acs/devices/ contains files that have something to do with hardware

./firmware/nut/trunk/inc/cps_can.h is the header file of hardware made by Mr. Bonnes;
it contains the word placeholders for commands that control a device

• acs/frameworks/ contains EPICS related files and user interfaces made with CSS-SDS

./epics/base/ contains source and binaries of the EPICS base

./epics/iocapps/ contains all IOCs that are used at the IKP

./templates/ contains all template files for the IOCs

Each project folder contains three folders:

• branches/ contains released versions of a project. Only bugfixes should be applied there but no
new development.

• tag/ can contain tags for the project.

• trunk/ is the folder with the development version of the project. Most of the work will take place
there.

More detailed information about svn can be found in [17] or with the command svn help [<subcommand>]
in a command line.

Henno Lauinger 22

	Aim of the project
	Goniometer at QCLAM

	Motor Testing Device
	Construction
	Local control: CAN Bus
	Remote Control: EPICS and CSS
	Experimental Physics and Industrial Control System – EPICS
	Structure of an IOC
	Channel Access and IOC Commands

	Building an Input/Output Controller
	Configuring an IOC
	Editing the Database with the Visual Database Configuration Tool

	Creating a New IOC
	Create Basic Folders and Files
	Add CAN driver support
	Automatically Add Template
	Adding Substitutions
	Set File flags
	Compiling

	Controll System Studio
	Important Folders when Working with EPICS on the Svn Server

	Issues

	New Connections in the Top Plate
	List of Figures
	Bibliography
	Attachments
	Syntax Used in this Document
	Diff Syntax

	Compiling from Source Code in Linux
	Subversion and the IKP server
	Workflow
	Svn Folder Structure

