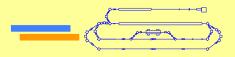



Darmstadt 2008

TU DARMSTADT

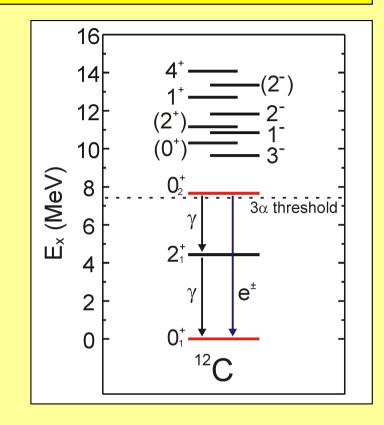
### \_


### **α-Cluster States in Electron Scattering \***

### Maksym Chernykh Institut für Kernphysik, TU Darmstadt

M. Chernykh<sup>1</sup>, H. Feldmeier<sup>2</sup>, T. Neff<sup>2</sup>, P. von Neumann-Cosel<sup>1</sup>, and A. Richter<sup>1</sup>

<sup>1</sup> Institut f
ür Kernphysik, TU Darmstadt
 <sup>2</sup> Gesellschaft f
ür Schwerionenforschung (GSI), Darmstadt

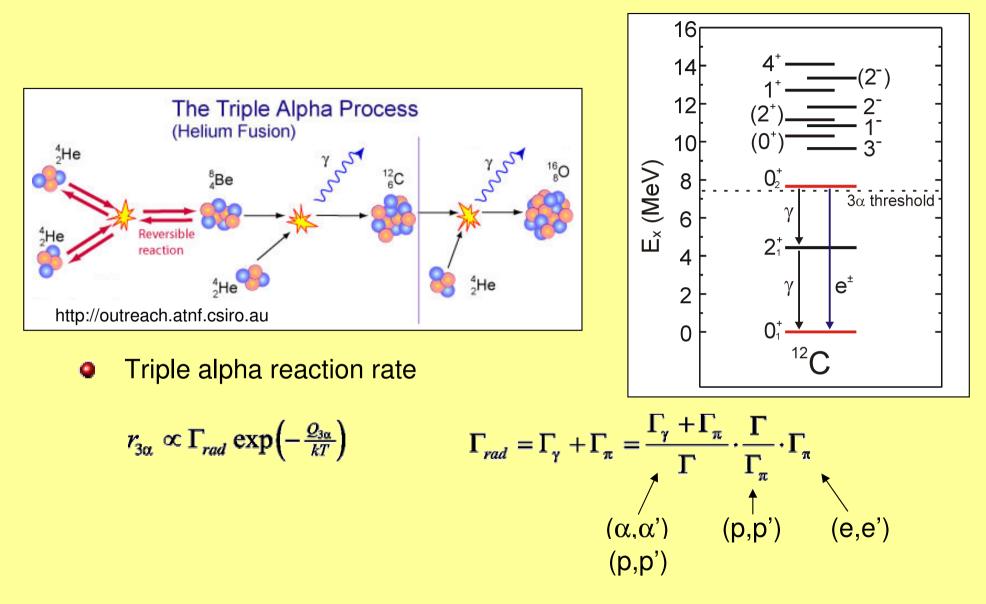

\* Supported by DFG under contract SFB 634





### **Motivation: structure of the Hoyle state**

- Hoyle state is a prototype of α-cluster states in light nuclei
- Cannot be described by shell-model approaches
- α-cluster models predict Hoyle state as a dilute gas of weakly interacting α particles resembling the properties of a Bose-Einstein Condensate (BEC)




 Comparison of high-precision electron scattering data with predictions of FMD and α-cluster models

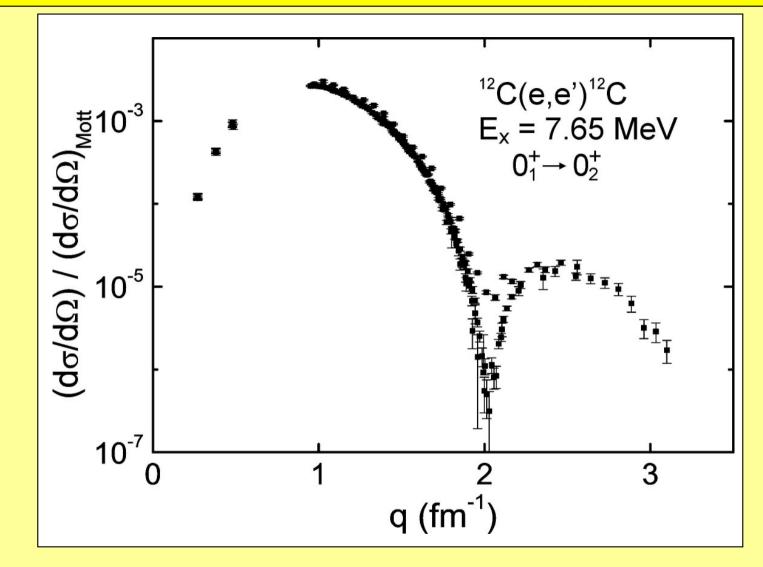
Hoyle state cannot be understood as a true Bose-Einstein Condensate !

 M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel, and A. Richter, Phys. Rev. Lett. 98 (2007) 032501

### **Motivation: astrophysical importance**



Reaction rate with accuracy ~ 6% needed


S.M. Austin, Nucl. Phys A758 (2005) 375c

# **Motivation: astrophysical importance**

| $r_{3\alpha} \propto \Gamma_{rad} \exp$ | $\Gamma_{rad} = \Gamma_{\gamma} + 1$       | $\Gamma_{\pi} = \frac{\Gamma_{\gamma} + \Gamma_{\pi}}{\Gamma} \cdot \frac{\Gamma}{\Gamma_{\pi}} \cdot \Gamma_{\pi}$ |
|-----------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Quantity                                | Value                                      | Error (%)                                                                                                           |
| $Q_{3lpha}$                             | $379.38\pm0.20~{\rm keV}$                  | $1.2 \ (T_9 = 0.2)$                                                                                                 |
| $\Gamma_{rad}/\Gamma$                   | $(4.12 \pm 0.11) \times 10^{-4}$           | 2.7                                                                                                                 |
| $\Gamma_\pi/\Gamma$                     | $(6.74 \pm 0.62) \times 10^{-6}$           | 9.2                                                                                                                 |
| $\Gamma_{\pi}$                          | $(62.0 \pm 6.0) \times 10^{-6} \text{ eV}$ | 9.7 Crannell <i>et al.</i> (1967)                                                                                   |
| $\Gamma_\pi$                            | $(59.4 \pm 5.1) \times 10^{-6} \text{ eV}$ | 8.6 Strehl (1970)                                                                                                   |
| $\Gamma_{\pi}$                          | $(52.0 \pm 1.4) \times 10^{-6} \text{ eV}$ | 2.7 Crannell <i>et al.</i> (2005)                                                                                   |

• Total uncertainty  $\Delta r_{3\alpha}/r_{3\alpha} = 11.6\%$  only

### **Transition form factor to the Hoyle state**



• Fourier-Bessel analysis: Crannell (2005)

Extrapolation to zero momentum transfer: Crannell (1967), Strehl (1970)

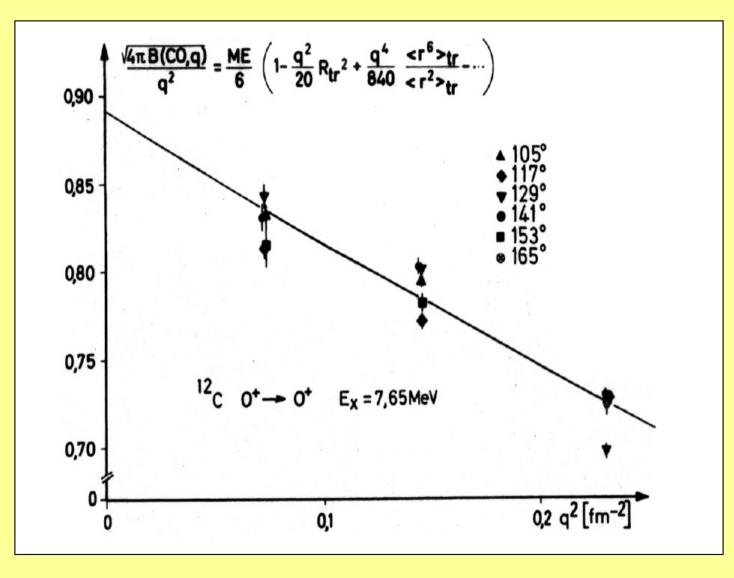
H. Crannell, data compilation

### **Model-independent PWBA analysis**

$$\left(\frac{d\sigma}{d\Omega}\right)_{PWBA} = 4\pi \left(\frac{e^2}{E_0}\right)^2 f_{rec} \ V_L(\theta) \ B(C0,q)$$

$$4\pi B(C0,q) = \left[\langle 0_2^+ | \int \hat{\rho}_N j_0(qr) d^3r | 0_1^+ \rangle\right]^2$$

$$\langle r^\lambda \rangle_{tr} = \langle 0_2^+ | \int \hat{\rho}_N r^\lambda d^3r | 0_1^+ \rangle$$


$$ME = \langle r^2 \rangle_{tr}, \qquad R_{tr}^2 = \frac{\langle r^4 \rangle_{tr}}{\langle r^2 \rangle_{tr}}$$

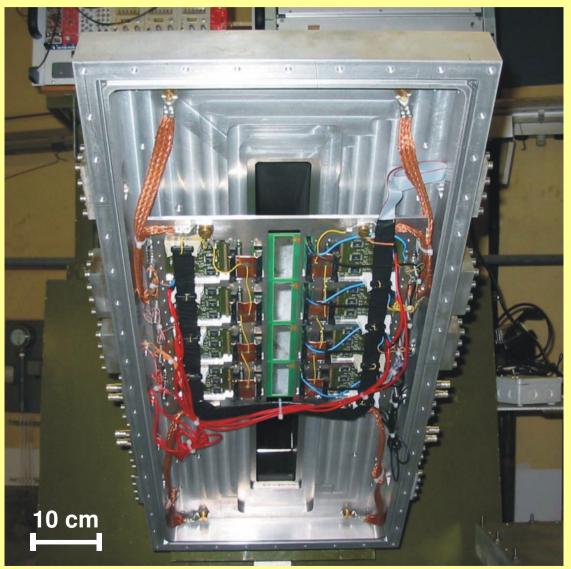
$$\sqrt{4\pi B(C0,q)} = \frac{q^2}{6} (ME) \left[1 - \frac{q^2}{20} R_{tr}^2 + \cdots\right]$$

$$\Gamma_\pi \propto ME^2$$

• Model-independent extraction of the partial pair width  $\Gamma_{\pi}$ 

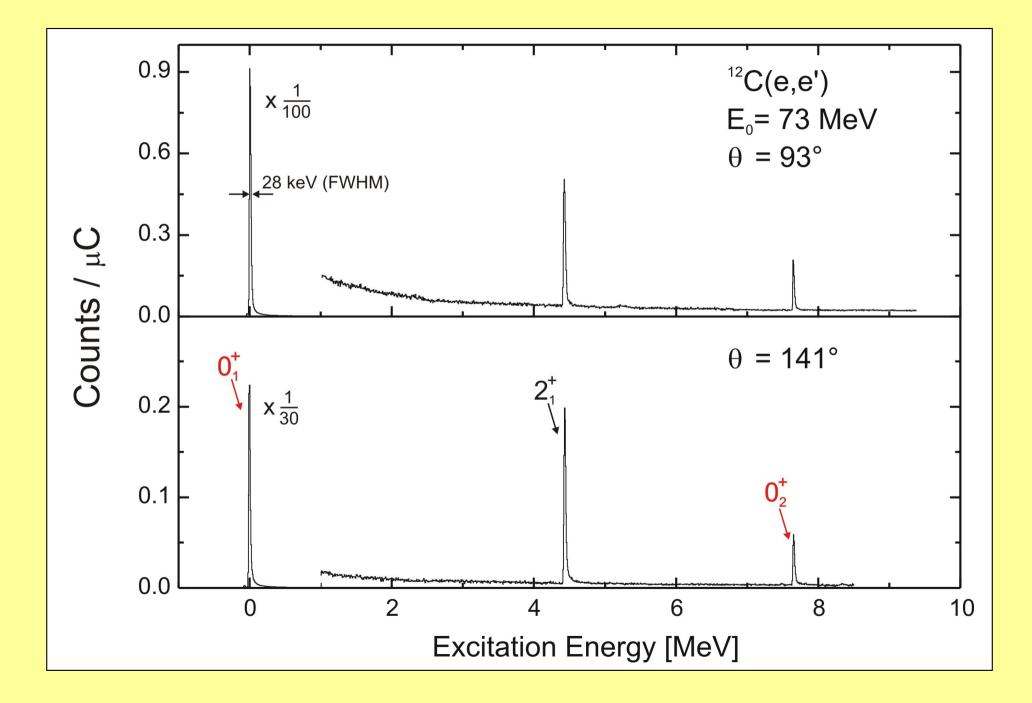
### **Monopole matrix element**



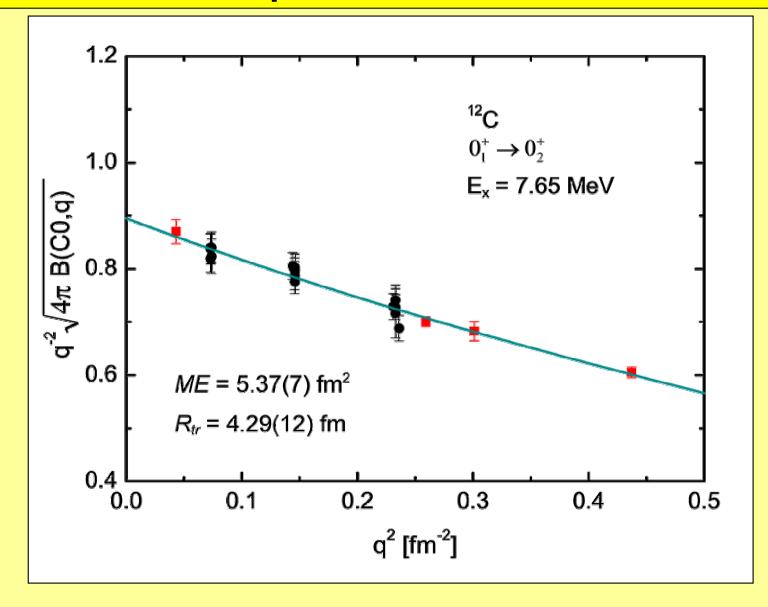

•  $ME = 5.37(22) \text{ fm}^2$ ,  $R_{tr} = 4.24(30) \text{ fm}$ 

Large uncertainty because of narrow momentum transfer region
 P. Strehl, Z. Phys. 234 (1970) 416

# Lintott spectrometer




### **Detector system**




- Si microstrip detector system: 4 modules, each 96 strips with pitch of 650 μm
- Count rate up to 100 kHz
- Energy resolution 1.5x10<sup>-4</sup>

### **Measured spectra**



# **Monopole matrix element**



$$\sqrt{4\pi B(C0,q)} = \frac{q^2}{6} (ME) \left[ 1 - \frac{q^2}{20} R_{tr}^2 + \cdots \right]$$

# **Triple alpha reaction rate**

| Quantity              | Value                                      | Error (%)                        |    |
|-----------------------|--------------------------------------------|----------------------------------|----|
| $Q_{3lpha}$           | $379.38\pm0.20~{\rm keV}$                  | $1.2 (T_9 = 0.2)$                |    |
| $\Gamma_{rad}/\Gamma$ | $(4.12 \pm 0.11) 	imes 10^{-4}$            | 2.7                              |    |
| $\Gamma_\pi/\Gamma$   | $(6.74 \pm 0.62) 	imes 10^{-6}$            | 9.2                              |    |
| $\Gamma_{\pi}$        | $(62.0 \pm 6.0) \times 10^{-6} \text{ eV}$ | 9.7 Crannell <i>et al.</i> (1967 | 7) |
| $\Gamma_{\pi}$        | $(59.4 \pm 5.1) \times 10^{-6} \text{ eV}$ | 8.6 Strehl (1970)                |    |
| $\Gamma_{\pi}$        | $(52.0 \pm 1.4) \times 10^{-6} \text{ eV}$ | 2.7 Crannell <i>et al.</i> (2008 | 5) |
| $\Gamma_{\pi}$        | $(59.6 \pm 1.5) \times 10^{-6} \text{ eV}$ | 2.5 Present work                 |    |

- Total uncertainty  $\Delta r_{3\alpha}/r_{3\alpha} = 10\%$
- Only  $\Gamma_{\pi}/\Gamma$  need to be improved

### **Summary and outlook**

- Hoyle state is important for stellar nucleosynthesis
- Monopole matrix element can be extracted by extrapolation of cross section to zero momentum transfer
- $\Gamma_{\pi}$  for decay of the Hoyle state with uncertainty 2.5% extracted
- Outlook
  - Hoyle state: independent Fourier-Bessel analysis
  - <sup>16</sup>O: broad 0+ state at 15 MeV

# Thank you!

# **Outline**

### Motivation:

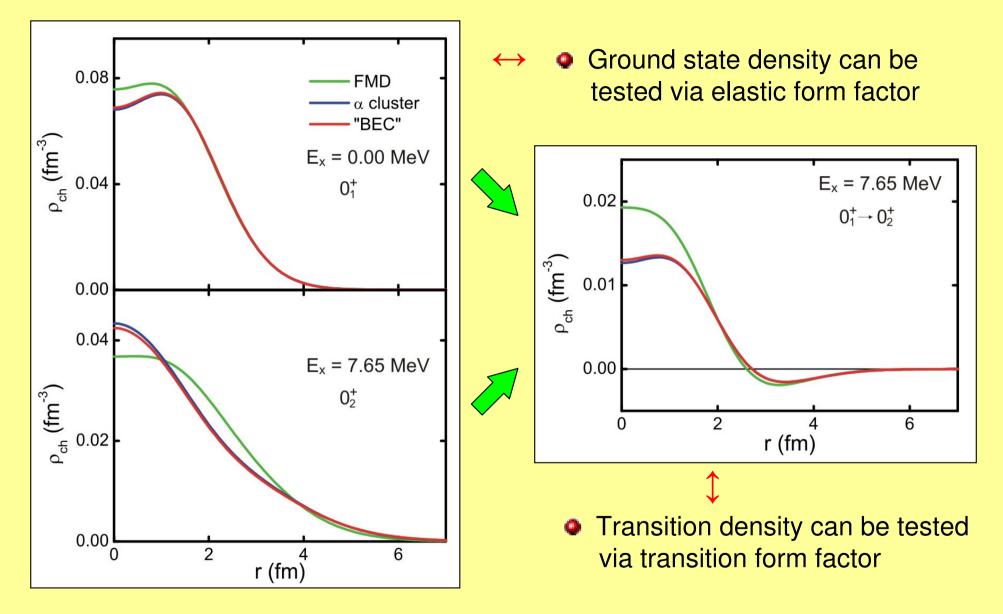
- Astrophysical importance
- Model-independent PWBA analysis
- High-resolution electron scattering measurements
- Results
  - Extraction of monopole matrix element ME
  - Comparison with FMD and  $\alpha$ -cluster model predictions
- Summary and outlook

# **Model-independent PWBA analysis**

$$\left(\frac{d\sigma}{d\Omega}\right)_{\rho_{\text{WBA}}} = 4\pi \left(\frac{e^2}{E_0}\right)^2 f_{rec} \quad V_L(\theta) \quad B(C0,q)$$

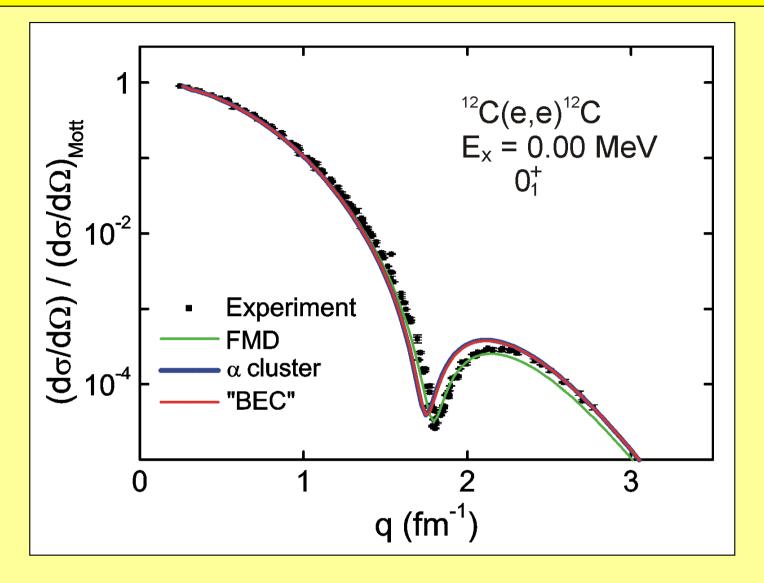
$$4\pi B(C0,q) = \left[\langle 0_2^+ | \int \hat{\rho}_N j_0(qr) \, d^3r | 0_1^+ \rangle\right]^2$$

$$\langle r^\lambda \rangle_{tr} = \langle 0_2^+ | \int \hat{\rho}_N \, r^\lambda \, d^3r | 0_1^+ \rangle$$


$$ME = \langle r^2 \rangle_{tr}, \qquad R_{tr}^2 = \frac{\langle r^4 \rangle_{tr}}{\langle r^2 \rangle_{tr}}$$

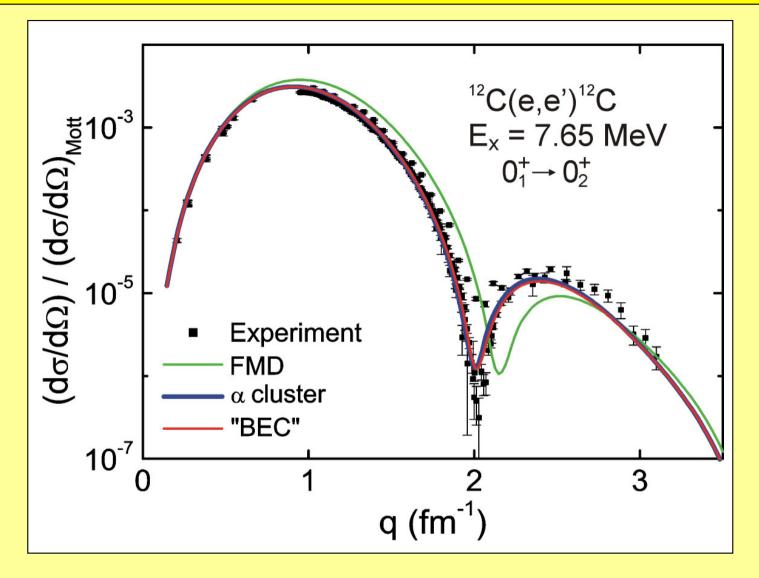
$$\sqrt{4\pi B(C0,q)} = \frac{q^2}{6} (ME) \left[1 - \frac{q^2}{20} R_{tr}^2 + \frac{q^4}{840} \frac{\langle r^6 \rangle_{tr}}{\langle r^2 \rangle_{tr}} - \frac{q^6}{60480} \frac{\langle r^8 \rangle_{tr}}{\langle r^2 \rangle_{tr}} + \cdots \right]$$

$$\frac{\langle r^6 \rangle_{tr}}{\langle r^2 \rangle_{tr}} = x_1 (R_{tr}^2)^2, \quad \frac{\langle r^8 \rangle_{tr}}{\langle r^2 \rangle_{tr}} = x_2 (R_{tr}^2)^3, \quad \cdots$$


Model-independent extraction of monopole matrix element ME

### <sup>12</sup>C densities




FMD : R. Roth, T. Neff, H. Hergert, and H. Feldmeier, Nucl. Phys. **A745** (2004) 3 "BEC": Y. Funaki *et al.*, Phys. Rev. C **67** (2003) 051306(R)

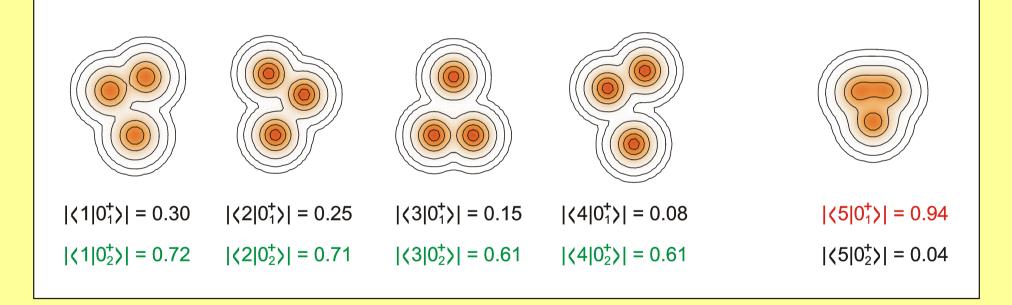
### **Elastic form factor**



### Described well by FMD

### **Transition form factor to the Hoyle state**




• H. Crannell, data compilation

Described better by α-cluster models

### What is actual structure of the Hoyle state ?

 In the "BEC" model the relative positions of α clusters should be uncorrelated

### Overlap with FMD basis states



 But in the FMD and α-cluster model the leading components of the Hoyle state are cluster-like and resemble <sup>8</sup>Be + <sup>4</sup>He configurations

# **Summary and outlook**

### Summary

- $\Gamma_{\pi}$  for decay of the Hoyle state with uncertainty 2.5% extracted
- Hoyle state is not a true Bose-Einstein condensate
- <sup>8</sup>Be +  $\alpha$  structure
- Outlook
  - Hoyle state: Fourier-Bessel analysis of all available data
  - <sup>12</sup>C: 0<sup>+</sup><sub>3</sub> and 2<sup>+</sup><sub>2</sub> states
  - <sup>16</sup>O: broad 0<sup>+</sup> state at 15 MeV