

TU DARMSTADT

Electron Scattering on ¹²C, the Structure of the Hoyle State and a Neutron Ball for (e,e´n) Experiments at the S-DALINAC *

Maksym Chernykh Institut für Kernphysik, TU Darmstadt

Darmstadt, 9 July 2008

* Supported by DFG under contract SFB 634

Content

- Motivation
- Electron scattering on ¹²C

• Analysis and results

• Summary

Motivation: structure of the Hoyle state

- Hoyle state is a prototype of α -cluster states in light nuclei
- Cannot be described by shell-model approaches
- α -cluster models predict Hoyle state as a dilute gas of weakly interacting α particles resembling the properties of a Bose-Einstein Condensate (BEC)
- Comparison of high-precision electron scattering data with predictions of FMD and α -cluster models

Hoyle state cannot be understood as a true Bose-Einstein Condensate !

• M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel,

and A. Richter, Phys. Rev. Lett. 98 (2007) 032501

Motivation: astrophysical importance

Reaction rate with accuracy ~ 6% needed

S.M. Austin, Nucl. Phys A758 (2005) 375c

Motivation: astrophysical importance

$r_{3\alpha} \propto \Gamma_{rad} \exp (\frac{1}{2} - \frac{1}{2} + \frac{1}$	$\mathbf{p}\left(-\frac{Q_{3\alpha}}{kT}\right) \qquad \qquad \Gamma_{rad} = \Gamma_{\gamma}$	$+\Gamma_{\pi} = \frac{\Gamma_{\gamma} + \Gamma_{\pi}}{\Gamma} \cdot \frac{\Gamma}{\Gamma_{\pi}} \cdot \Gamma_{\pi}$	
Quantity	Value	Error (%)	
Q_{3lpha}	$379.38\pm0.20~\rm keV$	$1.2 \ (T_9 \!=\! 0.2)$	
Γ_{rad}/Γ	$(4.12 \pm 0.11) \times 10^{-4}$	2.7	
Γ_{π}/Γ	$(6.74 \pm 0.62) \times 10^{-6}$	9.2	
Γ_{π}	$(62.0 \pm 6.0) \times 10^{-6} \text{ eV}$	9.7 Crannell <i>et al.</i> (196	7)
Γ_{π}	$(59.4 \pm 5.1) \times 10^{-6} \text{ eV}$	8.6 Strehl (1970)	
Γ_{π}	$(52.0 \pm 1.4) \times 10^{-6} \text{ eV}$	2.7 Crannell <i>et al.</i> (200	5)

• Total uncertainty $\Delta r_{3\alpha}/r_{3\alpha} = 11.6\%$ only

Transition form factor to the Hoyle state

- Extrapolation to zero momentum transfer
- Fourier-Bessel analysis

H. Crannell, data compilation

Experiment at the S-DALINAC

- E₀ = 29.3 78.3 MeV
- $\theta = 69^{\circ} 141^{\circ}$
- q = 0.2 0.7 fm⁻¹
- $\Delta E = 28 \text{ keV} (FWHM)$

Lintott spectrometer

Detector system

- Si microstrip detector system: 4 modules, each 96 strips with pitch of 650 μ m
- Count rate up to 100 kHz
- Energy resolution 1.5x10⁻⁴

Measured spectra

Model-independent PWBA analysis

$$\left(\frac{d\sigma}{d\Omega}\right)_{PWBA} = 4\pi \left(\frac{e^2}{E_0}\right)^2 f_{rec} \ V_L(\theta) \ B(C0,q)$$

$$4\pi B(C0,q) = \left[\langle 0_2^+ | \int \hat{\rho}_N j_0(qr) \ d^3r | 0_1^+ \rangle\right]^2$$

$$\langle r^\lambda \rangle_{tr} = \langle 0_2^+ | \int \hat{\rho}_N \ r^\lambda \ d^3r | 0_1^+ \rangle$$

$$ME = \langle r^2 \rangle_{tr}, \qquad R_{tr}^2 = \frac{\langle r^4 \rangle_{tr}}{\langle r^2 \rangle_{tr}}$$

$$\sqrt{4\pi B(C0,q)} = \frac{q^2}{6} (ME) \left[1 - \frac{q^2}{20} R_{tr}^2 + \cdots\right]$$

$$\Gamma_\pi \propto ME^2$$

• Model-independent extraction of the partial pair width $\ \Gamma_{\pi}$

Model-independent PWBA analysis

- $ME = 5.37(22) \text{ fm}^2$, $R_{tr} = 4.24(30) \text{ fm}$
- Large uncertainty because of narrow momentum transfer region
 P. Strehl, Z. Phys. 234 (1970) 416

Model-independent PWBA analysis

• $ME = 5.37(7) \text{ fm}^2$, $R_{tr} = 4.30(12) \text{ fm}^2$

Fourier-Bessel analysis

• Transition form factor is the Fourier-Bessel transform of the transition charge density

$$F(q) = 4\pi \int_{0}^{\infty} \rho_{tr}(r) j_{0}(qr) r^{2} dr$$
$$\rho_{tr}(r) = \begin{cases} \sum_{\mu=1}^{\infty} a_{\mu} j_{0}(q_{\mu}r) & \text{for } r < R_{c} \\ 0 & \text{for } r \ge R_{c} \end{cases}$$

with

$$q_{\mu} = \frac{\mu\pi}{R_c}$$

 Data should be measured over a broad momentum transfer range

Fourier-Bessel analysis

- q = 0.2 3.1 fm⁻¹
- *ME* = 5.55(5) fm²

Results

Year	Analysis	Pair width	Ref.	
1967	PWBA		Crannell <i>et al</i> .	
1970	PWBA		Strehl	
1970	Old average		Ajzenberg-Selove	
2005	Fourier-Bessel		Crannell <i>et al</i> .	
2008	PWBA	⊢-∎1	Present work	
2008	Fourier-Bessel	, ⊢_ ,	Present work	
2008	New average		Present work	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				

• $\Gamma_{\pi} = 62.2(10) \times 10^{-6} \,\mathrm{eV}$

- Total uncertainty $\Delta r_{3\alpha}/r_{3\alpha} = 10\%$
- Only Γ_{π}/Γ need to be improved

Summary

- Hoyle state is very important in astrophysics
- High-resolution electron scattering measurements have been performed
- Monopole matrix element has been determined by low-q extrapolation and Fourier-Bessel analysis
- Pair width Γ_{π} for decay of the Hoyle state with uncertainty 1.6% has been extracted