Electron scattering on the Hoyle state and carbon production in stars M. Chernykh¹, H. P. Blok², H. Feldmeier³, T. Neff³, P. von Neumann-Cosel¹, A. Richter¹ Despite its astrophysical importance, the triple alpha reaction forming $^{12}\mathrm{C}$ in stars is known with insufficient precision only [1]. It is essentially determined by the properties of the second 0^+ state, the so called Hoyle state, in $^{12}\mathrm{C}$. A large contribution to the uncertainty determining the 3α reaction rate comes from the partial pair width Γ_π for decay from the Hoyle state to the ground state in $^{12}\mathrm{C}$. In order to determine precisely the partial pair width, high-resolution inelastic electron scattering experiments were performed at the S-DALINAC. Results for the monopole matrix element (directly related to Γ_π) from a model-independent analysis based on an extrapolation of low-q data to zero momentum transfer are presented. Additionally, a Fourier-Bessel analysis of transition form factor is discussed. The electron scattering form factor also provides deeper insight into the internal structure of the Hoyle state predicted to be a dilute alpha gas with large spatial extension [2]. ## References - [1] S. M. Austin, Nucl. Phys A758 (2005) 375c - [2] M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel, and A. Richter, Phys. Rev. Lett. 98 (2007) 032501 **Topic:** Nuclear astrophysics Email-address: chernykh@ikp.tu-darmstadt.de ¹Institut für Kernphysik, Technische Universität Darmstadt, Germany ²Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, The Netherlands ³Gesellschaft für Schwerionenforschung (GSI), Darmstadt, Germany