

Neues vom S-DALINAC

Magnetische Dipolanregungen und elektrische Riesenresonanzen*

Frank Hofmann, Institut für Kernphysik, TU-Darmstadt

Magnetische Dipolanregungen in ³²S

Isoskalare elektrische Riesenresonanzen in ^{40,48}Ca

*gefördert durch die DFG unter Ri 242-12/2 und die Südafrikanische NRF

M1-Anregungen in ³²S

- Widersprüche aus alten Experimenten
- Vergleich mit analogen GT-Übergängen
- Test mikroskopischer Modelle:
 a) M1-Stärkeverteilung
 b) Formfaktoren

Wirkungsquerschnitte für inelastische Elektronenstreuung

$$egin{aligned} \left(rac{d\sigma}{d\omega}
ight) &= \left(rac{d\sigma}{d\omega}
ight)_L + \left(rac{d\sigma}{d\omega}
ight)_T \ & \left(rac{d\sigma}{d\omega}
ight)_L \propto V_L imes |F_L(q)|^2 & \left(rac{d\sigma}{d\omega}
ight)_T \propto V_T imes |F_T(q)|^2 \end{aligned}$$

Streuung unter 180⁰ ideal zur Messung transversaler Kernanregungen

Experiments at the S – DALINAC

Anregungsenergiespektren in ³²S

Magnetische Dipolstärke in ³²S

Schalenmodell: B. A. Brown and B. H. Wildenthal, Nucl. Phys. **A474**, 290 (1987) QRPA: J. M. Udias et. al., J. Phys. G, **23**, 1673 (1997)

Vergleich von BM1- und GT - Stärke

GT-Stärke: B. D. Anderson et. al. Phys. Rev. C 36, 2195 (1987)

M1 - Formfaktoren in ³²S

Schalenmodell beschreibt Formfaktorverlauf

Besonderheit des Formfaktorverlaufs bei $E_x = 11.13$ MeV

Spin-Dipol Stärke in ⁵⁸Ni

Isovektorielle Spin-Dipol-Anregung: $\Delta L=1, \Delta S=1, \Delta T=1, J^{\pi}=0, 1, 2$

• Messung: ⁵⁸Ni(e,e')

- Bestimmung der M2-Stärke

- Messung: ⁵⁸Ni(أَبَ, أَنْ)
- Spin-Flip Wahrscheinlichkeit:
 → ΔS=0 und ΔS=1
 Winkelverteilung:
 → ΔL
 → J^π=1 und J^π=0,2

Anregungsenergiespektrum von ⁵⁸Ni

Anregungsenergiespektrum

Multipolentfaltung

E2-Stärke von ⁴⁰Ca im α_0 -Kanal

⁴⁰Ca(e,e'α₀): H. Diesener et al., Phys. Lett. **B 352**, 201 (1995)
 ⁴⁰Ca(α,α'α₀): F. Zwarts et al., Phys. Lett. **B 125**, 123 (1983)

Anregung und Zerfall von ^{40,48}Ca

Anregungsenergiespektrum im Kern ⁴⁸Ca

Anregungsenergiespektrum im Restkern ⁴⁷Ca

Wirkungsquerschnitte

⁴⁰Ca(p,p'α₀)–Winkelkorrelationen

Entfaltung der Multipolanteile

J.Carter et al., Nucl. Phys. A630, 631 (1998).

Multipolentfaltung

Multipolentfaltung ergibt L = 4 Anteile.

Winkelkorrelationen

B(E2)-Stärke von ⁴⁰Ca im α_0 -Kanal

Analyse von Winkelkorrelationen

- Relative Amplituden aus Transmissionskoeffizienten
- Phasenwahl: i^(I-I')

M. Kohl et al., Phys. Rev. C 57, 3167 (1998)

Winkelkorrelationen

B(E2)-Stärke von ⁴⁰Ca im p₀-Kanal

 ${}^{40}Ca(p,p'p_0): 19.3(3.9)\%$ ${}^{40}Ca(e,e'p_0): 13.1(2.6)\%$

Zusammenfassung

E2-Stärke in ⁴⁰Ca aus Analyse von Winkelkorrelationen a) ⁴⁰Ca(p,p'α₀) b) ⁴⁰Ca(p,p'p₀)

→Form der Stärkeverteilung in guter Übereinstimmung mit ⁴⁰Ca(e,e'x₀)
→ Systematisch 20%-30% mehr E2-Stärke, aber keinen Faktor 2!

Winkelkorrelationen in ⁴⁸Ca(p,p'n₀) Dominant E3-Stärke? Grenzfall der Analyse