High-resolution study of dipole excitations in 208 Pb with polarized proton scattering at $0^{\circ\star}$

I. Poltoratska¹, T. Adachi², C. Bertulani³, J. Carter⁴, H. Fujita^{4,5}, Y. Fujita³, K. Hatanaka², Y. Kalmykov¹, M. Kato², H. Matsubara², <u>P. von Neumann-Cosel¹</u>, V. Ponomarev¹, A. Richter¹, H. Sakaguchi⁶, Y. Sakemi², Y. Sasamoto⁷, Y. Shimizu², Y. Tamishige², A. Tamii², M. Yosoi², J. Zenihiro⁶

¹Institut für Kernphysik, TU Darmstadt, Germany
²RCNP, Osaka University, Japan
³Texas A&M University, Commerece, USA
⁴School of Physics, University of Witwatersrand, South Africa
⁵iThembaLABS, South Africa
⁶Department of Physics, Kyoto University, Japan
⁷CNS, University of Tokyo, Japan

At the angles close to 0° one can study dipole modes which apart from the isovector giant dipole resonance, are poorly understood. Recent experimental progress at RCNP Osaka, Japan [1], allows measurements of intermediateenergy polarized inelastic proton scattering at very forward angles including 0° combined with high energy resolution of the order $\Delta E/E \approx 8 \cdot 10^{-6}$. This new experimental opportunity was applied to a study of soft electric dipole modes, such as Pygmy Dipole Resonance (PDR) and the so-called toroidal mode. The preliminary data analysis indicates that at very forward angles 1⁻ states are strongly excited via Coulomb interaction. The semiclassical treatment of the Coulomb excitation probability allows to extract B(E1) transition strengths which are in a good agreement with data obtained from a nuclear resonance fluorescence experiment [2]. First results of the data analysis will be presented.

References

- [1] A. Tamii et al., Nucl. Phys. A 788 (2007) 53c.
- [2] N. Ryezayeva et al., Phys. Rev. Lett. 89, 272502 (2002).

Topic: Nuclear structure **Email-address:** iryna@ikp.tu-darmstadt.de