E0 transition strength from X(5) to the rigid rotor Andreas Krugmann

- Motivation
- Introduction to CBS rotor model
- Relative E0 transition strength
- Evolution of absolute E0 transition strength
- E2 E0 correlation observables
- Summary

J. Bonnet, A. Krugmann, J. Beller, N. Pietralla, and R. V. Jolos Phys. Rev. C **79**, 034307 (2009)

zur Entwicklung Wissenschaftlich-

ökonomischer Exzellenz

TECHNISCHE UNIVERSITÄT DARMSTADT

 With increasing A, heavy nuclei can undergo rapid quantum phase transitions Vibrator
 Rotor

ß

ß

• Geometrical collective solution of the Bohr Hamiltonian:

$$H = -\frac{\hbar^2}{2B} \left[\frac{1}{\beta^4} \frac{\partial}{\partial \beta} \beta^4 \frac{\partial}{\partial \beta} + \frac{1}{\beta^2 \sin 3\gamma} \frac{\partial}{\partial \gamma} \sin 3\gamma \frac{\partial}{\partial \gamma} - \frac{1}{4\beta^2} \sum_k \frac{Q_k^2}{\sin^2(\gamma - \frac{2}{3}\pi k)} \right] + V(\beta, \gamma)$$

- Parameter free square well potential
- Analytical wave functions (Bessel functions)

ß

► Calculate level scheme for X(5) solution

► Calculate level scheme for X(5) solution

► Calculate level scheme for X(5) solution

▶ High E0 (electric monopole) transition strengths in case of shape change

Confined β -soft (CBS) rotor model

F. lachello, Phys. Rev. Lett. **87**, 052502 (2001)

Confined β -soft (CBS) rotor model

N.Pietralla and O.M.Gorbachenko, Phys.Rev. C **70**, 011304 (2004)

Confined β -soft (CBS) rotor model

N.Pietralla and O.M.Gorbachenko, Phys.Rev. C **70**, 011304 (2004)

- Wave functions are confined in a β-soft potential
- Potential stiffness is defined as $r_{\beta} = \frac{\beta_m}{\beta_M}$ $r_{\beta} = 0 \rightarrow X(5)$
 - $r_eta=1
 ightarrow {
 m rigid}$ rotor
 - Typical values between 0.1 (¹⁵⁰Nd) and 0.5 (well deformed nuclei)
- Study E0 transition strengths on the path from X(5) to the well deformed nuclei

E0 operator and E0 transition strength

• E0 operator for axially symmetric quadrupole deformation:

$$T(E0) = \frac{3}{4\pi} ZeR^2\beta^2$$

• *E*0 transition strength:

$$ho^2(\mathsf{E0}) = \left(rac{3Z}{4\pi}
ight)^2 |\langle\psi_f|eta^2|\psi_i
angle|^2$$

- $\rho^2(E0)$ is a dimensionless quantity
- The largest values are around $100 \cdot 10^{-3} = 0.1$

Angular momentum dependence of relative *E*0 transition strength

For increasing angular momentum the model predicts a decreasing E0 transition strength.

• Rising potential stiffness \rightarrow E0 strength approach a constant value.

Evolution of absolute E0 transition strength

^{18.03.09 |} TU-Darmstadt | Institut für Kernphysik | Andreas Krugmann | 7

E2 - E0 correlation observables

Rasmussen introduced the Z-independent quantity

$$X_{Rasm} = \frac{\rho^2 (E0; 0^+_2 \to 0^+_1) e^2 R^4}{B(E2; 0^+_2 \to 2^+_1)}$$

- In the rigid rotor limit he obtained: $X_{Rasm} = 4\beta^2$
- In the CBS model we get the expression:

$$X_{CBS} = \frac{\langle \Psi_{0_1^+} | \ T(E0) | \Psi_{0_2^+} \rangle^2 \beta_M^2}{\langle \Psi_{2_1^+} | \ T(E2) | \Psi_{0_2^+} \rangle^2}$$

- With the CBS model, we can trace the evolution of X as a function of nuclear stiffness!
- But still dependence of scaling factor β_M

New scaling-factor independent quantity Y

$$Y = \frac{\rho^2(0^+_2 \to 0^+_1) (e^2 R^4 Z)^2 (\frac{3}{4\pi})^2}{B(E2, 0^+_2 \to 2^+_1)^2} \\ = \frac{\langle \Psi_{0^+_1} | T(E0) | \Psi_{0^+_2} \rangle^2}{\langle \Psi_{2^+_1} | T(E2) | \Psi_{0^+_2} \rangle^4}$$

> Y theoretically depends **only** on the stiffness parameter r_{β} .

Ratio Y as a function of r_{β}

• Y increases monotonically with the stiffness parameter r_{β} ...

Ratio Y as a function of the $R_{4/2}$ ratio

• ... and increases with the $R_{4/2}$ ratio too.

Summary

- Successful investigation of E0 transition strength in the CBS model
- Relative E0 strength (for a given r_{β}) decrease with angular momentum.
- Absolute E0 transition strength decrease with increasing potential stiffness r_{β} .
- ▶ A new observable $Y \propto \rho^2(E0; 0^+_2 \to 0^+_1)/B(E2; 0^+_2 \to 2^+_1)^2$ has been proposed
 - ▶ is independent of the absolute nuclear deformation
 - solely depends on the nuclear stiffness.
- > The few available data are in reasonable agreement with the CBS model.

Summary

- Successful investigation of E0 transition strength in the CBS model
- Relative E0 strength (for a given r_{β}) decrease with angular momentum.
- Absolute E0 transition strength decrease with increasing potential stiffness r_{β} .
- ▶ A new observable $Y \propto \rho^2 (E0; 0^+_2 \to 0^+_1) / B(E2; 0^+_2 \to 2^+_1)^2$ has been proposed
 - ▶ is independent of the absolute nuclear deformation
 - solely depends on the nuclear stiffness.
- > The few available data are in reasonable agreement with the CBS model.
- Outlook: More data needed!

Measure E0 matrix elements with inelastic electron scattering at S-DALINAC

Thank you for your attention!

- This work is published in Phys. Rev. C 79, 034307 (2009)
- Thanks to J. Bonnet, N. Pietralla, R. V. Jolos, J. Beller, F. lachello, K. Heyde, P. von Brentano, G. Rainovski, and O. Möller.
- Supported by the DFG under Grant No. SFB 634 and by the Helmholtz International Center for FAIR

LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlichökonomischer Exzellenz

Additional content

Absolute E0 strength as a function of $R_{4/2}$

Evolution of X as a function of nuclear stiffness

- Verification of Rasmussens prediction in the rigid rotor limit: $X_{Rasm} = 4\beta^2$
- But still dependence of scaling factor β_M

Stiffness dependence of relative E0 strength

