Wavelet Analysis and Characteristic Scales of Dipole und Quadrupole Giant Resonances in ²⁸Si, ⁴⁰Ca, ⁴⁸Ca und ¹⁶⁶Er *

P. von Neumann-Cosel, I. Pysmenetska and A. Richter

- Motivation
- Continuous Wavelet Transform
- Discrete Wavelet Transform
- Summary and Outlook

*Supported by the DFG within SFB 634

SFB 634

Evidence of Fine Structure in Different Nuclei

Motivation

- Quantitative analysis of fine structure of dipole and quadrupole resonances
- Characteristic scales determined by wavelet analysis
- Interpretation through comparison with microscopic calculations including the coupling to complex states
- Model-independent extraction of level densities
- A.Shevchenko et al., Phys. Rev. Lett. 93 (2004) 122501
- Y.Kalmykov *et al.*, Phys. Rev. Lett. **96** (2006) 012502
- A.Shevchenko *et al.*, Phys. Rev. C 77 (2008) 024302
- A.Shevchenko et al., Phys. Rev. C, in press

Motivation

- ²⁸Si: ISGQR \rightarrow comparison of data from many different experiments
- ⁴⁰Ca: IVGDR, ISGQR → compare the fine structure from the different resonances in the same nucleus
- ⁴⁸Ca: IVGDR, M2 \rightarrow comparison of electric/magnetic resonances
- ¹⁶⁶Er: ISGQR \rightarrow role of deformation

Motivation

- ⁴⁰Ca: IVGDR, ISGQR → compare the fine structure from the different resonances in the same nucleus
- ✓ 48 Ca: IVGDR, M2 → comparison of electric/magnetic resonances
 - ¹⁶⁶Er: ISGQR \rightarrow role of deformation

Wavelets and Wavelet Transform

19.03.09 | TU Darmstadt | Institut für Kernphysik | Inna Pysmenetska | 6

⁴⁸Ca(e,e'n) at S-DALINAC

19.03.09 | TU Darmstadt | Institut für Kernphysik | Inna Pysmenetska | 7

⁴⁸Ca(e,e[´]) at 180° at S-DALINAC

²⁸Si ISGQR

²⁸Si Results

²⁸Si Results

Nature of the intermediate structure

Level Densities

• Vanishing moments
$$\int_{-\infty}^{\infty} E^n \Psi(E) dE = 0, \quad n = 0, 1 \dots m - 1$$

- any polynomial of order up to *n* does not contribute to the wavelet coefficients
- background in the spectra can be determined
- Fluctuation analysis
 - level densities

Level Densities of M2 Resonance in ⁴⁸Ca

Summary and Outlook

TECHNISCHE UNIVERSITÄT DARMSTADT

- Wavelet analysis powerful tool
 - extract dominent decay mechanisms
 - determine level densities for given spin and parity

- Complete analysis (⁴⁰Ca, ¹⁶⁶Er)
- Comparison to microscopic calculations