Complete electric dipole response in ¹²⁰Sn: A test of the resonance character of the pygmy dipole resonance

TECHNISCHE UNIVERSITÄT DARMSTADT

Anna Maria Heilmann

Outline

- Motivation
- Inelastic Proton Scattering
 - Nucleon-Nucleus Scattering
 - Coulomb Excitation
 - Polarized Proton Scattering
- Proton scattering experiment at RCNP
- Experiment
- Analysis steps
- Results
- Outlook

Motivation

Extracted transition strength for ¹²⁰Sn with nuclear resonance flourescence

B. Özel, Ph.D.-Thesis, Çukurova University, Adana, Turkey (2008)

Open questions

- various models concerning the PDR
- qualitative agreement on collective motion
- different theories return different quantitative results

- strength of PDR propably depend on the thickness of neutron skin
- experimental progress opens new opportunities
- case study of tin isotope chain

Comparison Theory vs. Experiment Summed BE1 strenghts

theory

- △ RQRPA (N.Paar et.al)
- QPM (V.Yu. Ponomarev)
- ☆ QPM (N.Tsoneva, H.Lenske)

NRF measurements

- ▲ @ Gent
- @ Darmstadt (discrete only)
- @ Darmstadt (incl. unresolved)

Comparison theory vs. experiment Centroid Energy

Inelastic proton scattering

- coulomb excitation
- nucleon-nucleus scattering
- polarized proton scattering

Coulomb Scattering Classical

Coulomb Scattering Relativistic (1)

$$\sigma(E_{\gamma}) = \sum_{\pi\lambda} \int \sigma_{\gamma,\pi\lambda}(E_{\gamma}) \, n_{\pi\lambda} \frac{1}{E_{\gamma}} \mathrm{d}E_{\gamma}.$$

Coulomb Scattering Relativistic (1)

$$\sigma(E_{\gamma}) = \sum_{\pi\lambda} \int \sigma_{\gamma,\pi\lambda}(E_{\gamma}) \, n_{\pi\lambda} \frac{1}{E_{\gamma}} \mathrm{d}E_{\gamma}.$$

Photon numbers are:

$$\begin{split} n_{E1} &\approx \frac{Z^2 \alpha}{\pi^2} \frac{1}{\gamma^2 - 1} \left(g_0 \left(\xi \right) + \gamma^2 g_1 \left(\xi \right) \right), \\ n_{E2} &\approx \frac{Z^2 \alpha}{\pi^2} \frac{1}{\gamma^2 - 1} \left(3\gamma^2 g_0 \left(\xi \right) + (\gamma^2 + 1) g_1 \left(\xi \right) + \gamma^2 g_2 \left(\xi \right) \right), \\ n_{M1} &\approx \frac{Z^2 \alpha}{\pi^2} g_1 \left(\xi \right). \end{split}$$

The argument of g_m : adiabaticity parameter

$$\xi = rac{\omega b}{\gamma v_0} \qquad ext{ with } \omega = E_\gamma / \hbar$$

Coulomb Scattering Relativistic (2)

E.Wolynec et.al, Phys. Rev. Lett. 42 (1979) 27.

Nucleon-Nucleus Scattering (1)

Protons may excite resonances:

- isoscalar non-spin-flip ($\Delta T = 0, \Delta S = 0$),
- isoscalar spin-flip ($\Delta T = 0, \Delta S = 1$),
- isovector non-spin-flip ($\Delta T = 1, \Delta S = 0$),
- isovector spin-flip ($\Delta T = 1, \Delta S = 1$).

Nucleon-Nucleus Scattering (2)

$$V_{ip}(r_{ip}) = V^{C}(r_{ip}) + V^{LS}(r_{ip}) \, \vec{L} \cdot \vec{S} + V^{T}(r_{ip}) \, S_{ip}$$

central term V^{C} , spin-orbit term V^{LS} and a tensor component V^{T}

Nucleon-Nucleus Scattering (2)

$$V_{i\rho}(r_{i\rho}) = V^{\mathcal{C}}(r_{i\rho}) + V^{\mathcal{LS}}(r_{i\rho}) \, \vec{\mathcal{L}} \cdot \vec{\mathcal{S}} + V^{\mathcal{T}}(r_{i\rho}) \, \mathcal{S}_{i\rho}$$

central term V^{C} , spin-orbit term V^{LS} and a tensor component V^{T}

$$\begin{array}{ll} \vec{L} & \mbox{relative angular momentum} \\ \vec{S} & \mbox{relative spin} & \vec{S} = \vec{\sigma_i} + \vec{\sigma_p} \\ \vec{L} \cdot \vec{S} & \mbox{spin-orbit operator} \\ S_{ip} & \mbox{tensor operator} & \vec{S_{ip}} = 3\vec{\sigma_i} \cdot \hat{r} \ \vec{\sigma_p} \cdot \hat{r} - \vec{\sigma_i} \cdot \vec{\sigma_p} , \quad \hat{r} = \vec{r} / |\vec{r}| \\ \vec{\sigma} & \mbox{Pauli spin matrices} \end{array}$$

For small angles \rightarrow small momentum transfer $q < 1 \text{ fm}^{-1}$, spin-orbit and tensor part of the interactio are small compared to the central interaction

Nucleon-Nucleus Scattering (3)

small momentum transfer q < 1 fm⁻¹

Nucleon-Nucleus Scattering (3)

$V_{ip}(r_{ip}) = V_0^{\mathcal{C}}(r_{ip}) + V_{\sigma}^{\mathcal{C}}(r_{ip})\vec{\sigma_i}\cdot\vec{\sigma_p} + V_{\tau}^{\mathcal{C}}(r_{ip})\vec{\tau_i}\cdot\vec{\tau_p} + V_{\sigma\tau}^{\mathcal{C}}(r_{ip})\vec{\sigma_i}\cdot\vec{\sigma_p}\vec{\tau_i}\cdot\vec{\tau_p}$

• small momentum transfer $q < 1 \text{ fm}^{-1}$

Interactions with

- $\vec{\tau_i} \cdot \vec{\tau_p} \rightarrow \text{isospin-flip transitions}$
- $\vec{\sigma_i} \cdot \vec{\sigma_2} \rightarrow \text{spin-flip transitions.}$

Nucleon-Nucleus Scattering (3)

$V_{ip}(r_{ip}) = V_0^{\mathcal{C}}(r_{ip}) + V_{\sigma}^{\mathcal{C}}(r_{ip})\vec{\sigma_i}\cdot\vec{\sigma_p} + V_{\tau}^{\mathcal{C}}(r_{ip})\vec{\tau_i}\cdot\vec{\tau_p} + V_{\sigma\tau}^{\mathcal{C}}(r_{ip})\vec{\sigma_i}\cdot\vec{\sigma_p}\vec{\tau_i}\cdot\vec{\tau_p}$

Nucleon-nucleon scattering amplitude in PWIA:

 $M(q) = A + B\sigma_{i\hat{n}}\sigma_{p\hat{n}} + C\left(\sigma_{i\hat{n}} + \sigma_{p\hat{n}}\right) + E\sigma_{i\hat{q}}\sigma_{p\hat{q}} + F\sigma_{i\hat{p}}\sigma_{p\hat{p}}.$

Nucleon-nucleon scattering amplitude in PWIA:

$$M(q) = A + B\sigma_{i\hat{n}}\sigma_{p\hat{n}} + C\left(\sigma_{i\hat{n}} + \sigma_{p\hat{n}}\right) + E\sigma_{i\hat{q}}\sigma_{p\hat{q}} + F\sigma_{i\hat{p}}\sigma_{p\hat{p}}.$$

amplitude coefficients consists of isoscalar and isovector terms: $A = A_0 + A_\tau \vec{\tau_1} \cdot \vec{\tau_2}$

Nucleon-nucleon scattering amplitude in PWIA:

$$M(q) = A + B\sigma_{i\hat{n}}\sigma_{p\hat{n}} + C\left(\sigma_{i\hat{n}} + \sigma_{p\hat{n}}\right) + E\sigma_{i\hat{q}}\sigma_{p\hat{q}} + F\sigma_{i\hat{p}}\sigma_{p\hat{p}}.$$

amplitude coefficients consists of isoscalar and isovector terms: $A = A_0 + A_\tau \vec{\tau_1} \cdot \vec{\tau_2}$

$$M(q) = A + \frac{1}{3}(B + E + F)\vec{\sigma_i} \cdot \vec{\sigma_p} + C(\sigma_i + \sigma_p) \cdot \hat{n} + \frac{1}{3}(E - B)S_{ip}(\hat{q}) + \frac{1}{3}(F - B)S_{ip}(\hat{p})$$

Nucleon-nucleon scattering amplitude in PWIA:

$$M(q) = A + B\sigma_{i\hat{n}}\sigma_{p\hat{n}} + C\left(\sigma_{i\hat{n}} + \sigma_{p\hat{n}}\right) + E\sigma_{i\hat{q}}\sigma_{p\hat{q}} + F\sigma_{i\hat{p}}\sigma_{p\hat{p}}.$$

amplitude coefficients consists of isoscalar and isovector terms: $A = A_0 + A_{ au} au_1^2 \cdot ec{ au_2}$

$$M(q) = A + \frac{1}{3}(B + E + F)\vec{\sigma_i} \cdot \vec{\sigma_p} + C(\sigma_i + \sigma_p) \cdot \hat{n} + \frac{1}{3}(E - B)S_{ip}(\hat{q}) + \frac{1}{3}(F - B)S_{ip}(\hat{p})$$

In the PWIA the T-matrix for the NN scattering is given by

$$T = \left\langle f | M(q) e^{-i \vec{q} \cdot \vec{r}} | i \right\rangle.$$

$$T = \left\langle f | M(q) e^{-i \vec{q} \cdot \vec{r}} | i \right\rangle.$$

$$T = \left\langle f | M(q) e^{-i \vec{q} \cdot \vec{r}} | i \right\rangle.$$

From the T-matrix to cross section and polarisation transfer:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{2} \mathrm{Tr}(TT^{\dagger}), \qquad D_{ij} = \frac{\mathrm{Tr}(T\sigma_j T^{\dagger}\sigma_i)}{\mathrm{Tr}(TT^{\dagger})}$$

(1)

$$T = \left\langle f | M(q) e^{-i \vec{q} \cdot \vec{r}} | i \right\rangle.$$

From the T-matrix to cross section and polarisation transfer:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{2} \mathrm{Tr}(TT^{\dagger}), \qquad D_{ij} = \frac{\mathrm{Tr}(T\sigma_j T^{\dagger}\sigma_i)}{\mathrm{Tr}(TT^{\dagger})}$$

For spin-flip transitions under 0°:

$$\begin{split} D_{SL} &= D_{LS} = 0, \\ D_{SS} &= D_{NN} = \frac{\left(|B_i|^2 - |F_i|^2\right) X_T^2 - |B_i|^2 X_L^2}{\left(|B_i|^2 + |F_i|^2\right) X_T^2 + |B_i|^2 X_L^2}, \\ D_{LL} &= \frac{\left(-3|B_i|^2 + |F_i|^2\right) X_T^2 + |B_i|^2 X_L^2}{\left(|B_i|^2 + |F_i|^2\right) X_T^2 + |B_i|^2 X_L^2}. \end{split}$$

 X_T , X_L : spin-transverse and spin-longitudinal form factors

For spin-flip transitions under 0° :

$$D_{SS} = D_{NN} = \cdots$$
$$D_{LL} = \cdots$$

For spin-flip transitions under 0°:

$$D_{SS} = D_{NN} = \cdots$$
$$D_{LL} = \cdots$$

$$\Sigma = \frac{3 - \left(D_{SS} + D_{NN} + D_{LL}\right)}{4}$$

At forward angles total spin transfer $\Sigma = \left\{ \begin{array}{c} 1 & \text{spinflip} \\ 0 & \text{non-spinflip} \end{array} \right\}$ From PT measurements the spinflip and non-spinflip cross sections can be extracted

$$rac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \left(\Delta S = 1
ight) \equiv \Sigma \left(rac{\mathrm{d}\sigma}{\mathrm{d}\Omega}
ight),$$

 $rac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \left(\Delta S = 0
ight) \equiv (1 - \Sigma) \left(rac{\mathrm{d}\sigma}{\mathrm{d}\Omega}
ight).$

Summing-Up: Inelastic Proton Scattering

- Nucleon-Nucleus Scattering
- Coulomb Excitation
- Polarized Proton Scattering

nonspin-flip cross sections \rightarrow E1 excitations spinflip cross sections \rightarrow M1 excitations

RCNP facility

- ▶ 295 MeV
- beam intensity 2-3 nA
- high resolution
- degree of polarization: 70%

Targets

- tin foil isotropically enriched to 98.39 % ¹²⁰Sn
- ▶ thickness 6.5 mg· cm⁻²
- ▶ further targets: ¹²C, ²⁰⁸Pb

Spectrometer hall

Spectrometer Grand Raiden

Properties:

- total deflecting angle 162°
- high momentum resolution: $p/\Delta p \approx 37\,000$
- \blacktriangleright momentum acceptance $\pm 2.5\%$
- dipole magnet for spin rotation (DSR) for polarization measurements

Detector system of Grand Raiden

Experiments

- 14 days of measurements
- Scattering angles of 0° and 2.5°

Online spectra from (p,p/) reaction at 0° of ^{120}Sn :

Reconstruction of scattering angles

- Sieve-slit placed in front of GR
- $AI = f(\Theta, Y)$ dominated by Θ
- $BI = f(\Theta, Y)$ dominated by Y

Image at the focal plane Reconstructed image $\begin{array}{c} 10 \\ \underline{E} \\ \underline{C} \\ 0 \\ -10 \\ \underline{C} \\ -10 \\ \underline{C} \\ 0 \\ \underline{C} \\ \underline{C} \\ 0 \\ \underline{C} \\ \underline{C} \\ 0 \\ \underline{C} \\$

High resolution correction - vertical direction

High resolution correction - horizontal direction

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 28

Determination of the background

vertical position of protons projected on vertical focal plane

Gates on Y

- central region: true + background
- side region: background

¹²⁰Sn(p,p')-spectra

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 30

Comparison with γ , γ' experiment

Comparison with γ , γ' experiment

Comparison with γ , γ' experiment

Comparison with theory RQTBA

Comparison with theory QPM and RQTBA

- Theoretical models predictions differ \blacktriangleright ¹²⁰Sn(γ, γ') data from B. Özel
 - ▶ QPM V. Yu. Ponomarev
 - RQTBA E Litvinova
 - ▶ 120 Sn (γ, γ') data from B. Özel

Comparison with theory ¹¹²Sn and ¹²⁰Sn

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 36

Comparison with theory RQTBA

Comparison with theory QPM and RQTBA

- Theoretical models predictions differ \blacktriangleright ¹²⁰Sn(γ, γ') data from B. Özel
 - ▶ QPM V. Yu. Ponomarev
 - RQTBA E Litvinova
 - ▶ 120 Sn (γ, γ') data from B. Özel

Comparison with theory ¹¹²Sn and ¹²⁰Sn

17.11.2009 | TU Darmstadt | Anna Maria Heilmann | 39

Outlook

- extraction of the differential cross section
- analysis for 2.5°
- another measurement with longitudinal polarized beam
- identification of M1 excitations possible
- comparision with theoretical models
- better understanding of the pygmy dipole resonance

Outlook

- extraction of the differential cross section
- analysis for 2.5°
- another measurement with longitudinal polarized beam
- identification of M1 excitations possible
- comparision with theoretical models
- better understanding of the pygmy dipole resonance

Thank you for your attention

Setup of nuclear resonance flourescence measurements

Systematics of the neutron skin in the Sn isotope chain

VOLUME 82, NUMBER 16

19 April 1999

3219

FIG. 3. The difference of the neutron and proton root-meansquare radii as a function of the mass number of the Sn isotopes. The full squares with error bars show the present results. The previous experimental results measured in (p, p^0) reaction [5] and by using the GDR excitations [6] are shown as open circles and squares with error bars, respectively. The open and full stars show the theoretical results of Angeli *et al.* [19] and Dechargé *et al.* [21], respectively.