Complete dipole response in ²⁰⁸Pb from highresolution polarized proton scattering at 0°*

> Iryna Poltoratska Institut für Kernphysik, Technische Universität Darmstadt

TECHNISCHE UNIVERSITÄT DARMSTADT

- Complete dipole strength: what can be learned?
- Polarized protons scattering at RCNP
- Results
- Summary and outlook

SFB 634

*Supported by the DFG within SFB 634 and 446 JAP 113/267/0-2

Complete dipole strength: what can be learned?

- Spinflip M1 strength
 Electric pygmy dipole resonance (PDR)
 Test of microscopic models
 - Dipole polarizability
 Dipole polarizability
 Symmetry energy
- Characteristic scales of the GDR fine structure
- 1⁻ states level density from the fine structure of the GDR
- Photon strength function

Dominant damping mechanism

Test of the Axel-Brink hypothesis

Spinflip M1 Strength

- Isovector part: analog of GT modes with T = T₀
- Spinflip M1 resonance is quenched
 - in fp-shell nuclei similar to GT strength
 - in heavy nuclei little data \rightarrow ²⁰⁸Pb as a test case
- Problem studied in the 80's but:
 - large experimental uncertainties
 - improved model calculations
- new experimental access by (p,p')
 - intermediate energy region optimal for spin-isospin excitations
 - at 0° \rightarrow selectivity on $\Delta L=0$ transitions
 - isovector spinflip M1 transitions enhanced

Electric Pygmy Dipole Resonance (PDR)

- PDR: resonance-like structure, typically close to neutron threshold
- Strength related to neutron excess
 - \rightarrow measure of neutron skin
 - \rightarrow measure of the density dependence of the asymmetry energy
- Strength distribution around neutron threshold relevant for nucleosynthesis (r-process)

Nuclear Dipole Polarizability

Static nuclear dipole polarizability

$$\alpha_D \propto \sum_i B(E1)_i / E_{x,i}$$

P.G. Reinhard, W. Nazarewicz, PRC 81 (2010) 051303 (R) J. Piekarewicz, arXiv:1012.1803v1 [nucl-th] 8 Dec 2010

Photon Strength Function (PSF)

 Describes the (average) energy distribution of photon emission from highly-excited states or cross section for photon absorption (principle of detailed balance)

Average decay width from level *i* to g.s.

Axel-Brink Hypothesis

- Strength:
 - depends only on E_γ
 - is independent of the initial state structure: excitation energy (T), J^{π} ,...
- Same PSF holds for absorption and gamma emission

Experimental Discrepances in PSF

Ann-Cecilie Larsen, Workshop on Gamma Strength and Level Density, Dresden-Rossendorf, August 2010

18.03.11 | Institut für Kernphysik | TU Darmstadt | Iryna Poltoratska | Münster 2011

Problems

TECHNISCHE UNIVERSITÄT DARMSTADT

• Experimental:

- (γ,γ') reaction measures strength (roughly) up to threshold only
- Experimental quantity $\propto \Gamma_0 \cdot \frac{\Gamma_0}{\Gamma}$

 \rightarrow assumption in most analyses

$$\frac{\Gamma_0}{\Gamma} = 1 \rightarrow \text{lower limit}$$

 \rightarrow alternatively correction with statistical model calculation \rightarrow upper limit

G. Rusev et al., PRC 79 (2009) 061302

Problems (continued)

- (γ,xn) reactions provide information only above threshold
- Decay reactions
 - \rightarrow normalization at the S_n energy
 - → Level densities needed

Consistent measurements below and above the threshold needed

Complete E1 and M1 Strength Distributions

- Polarized proton scattering at 0°
 - intermediate energy: 300 MeV optimal for spin/isospin excitations
 - Coulomb excitation of 1⁻ states
 - high resolution: $\Delta E = 25 \text{ keV}$ (FWHM)
 - angular distributions: E1 / M1 separation
 - polarization observables: spinflip / non-spinflip separation
- ²⁰⁸Pb as a reference case

0° Setup at RCNP

18.03.11 | Institut für Kernphysik | TU Darmstadt | Iryna Poltoratska | Münster 2011

Measured Spectrum Background-Subtracted Spectrum

- Pronounced fine structure of the GDR is recognized
- Strong Coulomb excitation of the GDR at 0°

Measured Spectrum: Low-Energy Part

E1/M1 Decomposition by Spin Observables

Polarization observables at 0°

spinflip / non-spinflip separation*

(model-independent)

$$D_{SS} + D_{NN} + D_{LL} = \begin{cases} -1 \text{ for } \Delta S = 1, \text{ M1 excitations} \\ 3 \text{ for } \Delta S = 0, \text{ E1 excitations} \end{cases}$$

E1 and M1 cross sections can be decomposed

At 0°
$$D_{SS} = D_{NN}$$

Total Spin Transfer $\Sigma \equiv \frac{3 - (2 D_{SS} + D_{LL})}{4} = \begin{cases} 1 \text{ for } \Delta S = 1 \\ 0 \text{ for } \Delta S = 0 \end{cases}$

T. Suzuki, Prog. Theo. Phys. 103 (2000) 859

18.03.11 | Institut für Kernphysik | TU Darmstadt | Iryna Poltoratska | Münster 2011

Decomposition into Spinflip / Non-Spinflip Cross Sections

TECHNISCHE UNIVERSITÄT

DARMSTADT

Multipole Decomposition of Angular Distributions

- Restrict angular distribution to $\Theta \leq 4^{\circ}$
 - too complex response at larger angles
- Low-energy region (Ex ≤ 9 MeV)
 - Isovector M1 $\rightarrow \Delta L = 0$
 - Coulomb dominated $d\sigma/d\Omega$ for E1 $\rightarrow \Delta L = 1$
 - E2 (alternatively E3) substitute for $\Delta L > 1$
- GDR region:
 - $\Delta L = 0$ replaced by Phenomenological background

Multipole Decomposition of Angular Distributions

18.03.11 | Institut für Kernphysik | TU Darmstadt | Iryna Poltoratska | Münster 2011

Coulomb Exitations of 1⁻ States

TECHNISCHE B(E1) Strength: Low-Energy Region UNIVERSITÄT DARMSTADT ²⁰⁸Pb(γ,γ´) + ¦S 400 ²⁰⁷Pb(n,γ) n 8.2 MeV $\sum B(E1) \uparrow = 1.10 \pm 0.11 \, e^2 fm^2$ $E_{x}=6.2MeV$ B(E1)↑ (10⁻³ e²fm²) 200 $E_{c} = 7.30 \text{ MeV}$ ŦŦ 0 ²⁰⁸Pb(p,p´) 'S_n $E_p = 295 MeV$ 400 8.2 MeV $\sum B(E1) \uparrow = 1.54 \pm 0.16 e^{2} fm^{2}$ $\Theta = 0^{\circ} - 0.94^{\circ}$ $E_x = 6.2 MeV$

E1 Response in ²⁰⁸Pb: Experiment vs. Theory

TECHNISCHE

UNIVERSITÄT DARMSTADT

* P.G. Reinhard and W. Nazarewicz PRC 81 (2010) 051303

18.03.11 | Institut für Kernphysik | TU Darmstadt | Iryna Poltoratska | Münster 2011

Extraction of level density

Determined from fluctuation analysis of the fine structure of the GDR

S. Müller, F. Beck, D. Meuer, and A. Richter, Phys. Lett. 113B (1982) 362 P.G. Hansen, B. Jonson, and A. Richter, Nucl. Phys. A518 (1990) 13

- Depends on the background form:
 - from multipole decomposition analysis
 - from discrete wavelet transform

Y. Kalmykov et al., Phys. Rev. Lett. 96 (2006) 012502

1⁻ States Level Density in ²⁰⁸Pb

Photon Strength Function in ²⁰⁸Pb

18.03.11 | Institut für Kernphysik | TU Darmstadt | Iryna Poltoratska | Münster 2011

TECHNISCHE

UNIVERSITÄT

Summary and Outlook

- Polarized intermediate energy proton scattering at 0°: a new tool to extract complete dipole responce in nuclei
 - Spinflip / non-spinflip cross section separation
 - B(E1) strength
 - Dipole polarizability
 - Level Densities of 1⁻ states
 - Photon Strength Function

- Extraction of the $B_{\sigma}(M1)$ strength distribution
- Investigation of the dipole strength in ¹²⁰Sn and ¹⁵⁴Sm

EPPS0 Collaborators

Dep. of Phys., Osaka University Y. Fujita

Dep. of Phys., Kyoto University H. Sakaguchi, J. Zenihiro

> CNS, Univ. of Tokyo Y. Sasamoto

> IFIC-CSIC, Valencia B. Rubio

Univ. of Witwatersrand J. Carter RCNP, Osaka University T. Adachi, H. Fujita, K. Hatanaka, M. Kato, H. Matsubara, M. Okamura, Y. Sakemi,

Y. Shimizu, Y. Tameshige, A. Tamii, M. Yosoi

> *iThembaLABs* R. Neveling, F.D. Smit

Texas A&M University, Commerce, USA C. Bertulani

IKP, TU Darmstadt

A. M. Heilmann, Y. Kalmykov, P. von Neumann-Cosel,

GSI, Darmstadt B. Özel, E. Litvinova I. Poltoratska, V. Ponomarev, A. Richter,

Thank you !!