Complete Dipole Strength Distributions from High-Resolution Polarized Proton Scattering at 0°

TECHNISCHE UNIVERSITÄT DARMSTADT

Peter von Neumann-Cosel Institut für Kernphysik, Technische Universität Darmstadt

- Complete electric dipole strength distributions
 what can be learned
- High-resolution polarized proton scattering as a spectroscopic tool
- The case of ²⁰⁸Pb

SFB 634

*Supported by the DFG within SFB 634 and 446 JAP 113/267/0-2

Complete Dipole Strength: What can be Learned?

- Pygmy dipole resonance (PDR)
- Dipole polarizability

Test of microscopic models

Neutron skin and symmetry energy

- Level densities
- Photon strength function

Test of Hauser-Feshbach approach in large-scale reaction network calculations

Test of Axel-Brink hypothesis

Pygmy Dipole Resonance

 Soft E1 mode due to oscillation of neutron skin vs. approximately isospin-saturated core

Polarizability

J. Piekarewicz, arXiv:1012.1803

Hauser-Feshbach calculations

Statistical model approach to reaction cross sections in astrophyiscal large-scale network calculations

Required input

- Photon strength function
- Level densities
- Axel-Brink hypothesis (thermal population of excited states)

Photon Strength Function (PSF)

$$\langle \Gamma(E_i) \rangle = \frac{1}{\rho(E_i)} \cdot \int_0^{E_i} E_{\gamma}^3 f^{E_1}(E_{\gamma}) \rho(E_i - E_{\gamma}) dE_{\gamma}$$

Axel-Brink Hypothesis

Strength

- depends only on E_{γ}
- is independent of the initial state structure: E_x , J^{π} ,...
- Same PSF for γ absorption and emission

Influence of the PDR

E. Litvinova, Workshop on Gamma Strength and Level Density, Dresden-Rossendorf, August 2010 E. Litvinova et al., NPA 823 (2009) 26

Experimental Discrepances in PSF

Ann-Cecilie Larsen, Workshop on Gamma Strength and Level Density, Dresden-Rossendorf, August 2010

Problems

TECHNISCHE UNIVERSITÄT DARMSTADT

Experimental:

- (γ,γ') reaction measures strength (roughly) up to threshold only
- Experimental quantity $\propto \Gamma_0 \cdot \frac{\Gamma_0}{\Gamma}$

 \rightarrow assumption in most analyses

 $\frac{\Gamma_0}{\Gamma} = 1 \rightarrow \text{lower limit}$

 \rightarrow alternatively correction with statistical model calculation \rightarrow upper limit

G. Rusev et al., PRC 79 (2009) 061302

Problems (continued)

- (γ,xn) reactions provide information above threshold only and little sensitivity close to threshold
- Decay of compound nuclei
 - \rightarrow normalization at S_n
 - \rightarrow level densities needed

Consistent data on E1 strength below and above the neutron threshold highly important

A New Experimental Tool for Complete Dipole Strength Distributions

- Polarized proton scattering at 0°
 - intermediate energy: 300 MeV optimal for spin/isospin excitations
 - Coulomb excitation of 1⁻ states
 - high resolution: $\Delta E = 25 \text{ keV}$ (FWHM)
 - angular distributions: E1 / M1 separation
 - polarization observables: spinflip / non-spinflip separation

²⁰⁸Pb as a reference case

0° Setup at RCNP

Measured Spectrum

Measured Spectrum: Low-Energy Part

E1/M1 Decomposition by Spin Observables

Polarization observables at 0°

spinflip / non-spinflip separation*

(model-independent)

$$D_{SS} + D_{NN} + D_{LL} = \begin{cases} -1 \text{ for } \Delta S = 1, \text{ M1 excitations} \\ \\ 3 \text{ for } \Delta S = 0, \text{ E1 excitations} \end{cases}$$

E1 and M1 cross sections can be decomposed

At 0°
$$D_{SS} = D_{NN}$$

Total Spin Transfer $\Sigma \equiv \frac{3 - (2 D_{SS} + D_{LL})}{4} = \begin{cases} 1 \text{ for } \Delta S = 1 \\ 0 \text{ for } \Delta S = 0 \end{cases}$

T. Suzuki, PTP 103 (2000) 859

Decomposition into Spinflip / Non-Spinflip Cross Sections

Peter von Neumann-Cosel | Nuclear Physics in Astrophysics, April 3-8, 2011, Eilat, Israel

TECHNISCHE UNIVERSITÄT

DARMSTADT

Multipole Decomposition of Angular Distributions

B(E1) Strength: Low-Energy Region

Peter von Neumann-Cosel | Nuclear Physics in Astrophysics, April 3-8, 2011, Eilat, Israel

E1 Response in ²⁰⁸Pb: Experiment vs. Theory

Peter von Neumann-Cosel | Nuclear Physics in Astrophysics, April 3-8, 2011, Eilat, Israel

TECHNISCHE

UNIVERSITÄT DARMSTADT

Peter von Neumann-Cosel | Nuclear Physics in Astrophysics, April 3-8, 2011, Eilat, Israel

Polarizability and neutron skin

• Precision value: $\alpha_D(^{208}\text{Pb}) = 19.98(58) \text{ fm}^3/\text{e}^2 = 13.88(41) \text{ fm}^2/\text{MeV}$

 Combined with model-independent measurement of r_{skin} by PREX true constraint for isovector properties of any microscopic interaction

Level densities

Extracted from a fluctuation analysis of the fine structure of the GDR
 S. Müller, F. Beck, D. Meuer, and A. Richter, PLB 113 (1982) 362
 P.G. Hansen, B. Jonson, and A. Richter, NPA518 (1990) 13

- Depends on the background determined from
 - multipole decomposition analysis
 - discrete wavelet analysis of the spectrum
 Y. Kalmykov et al., PRL 96 (2006) 012502

1⁻ states level densities in ²⁰⁸Pb

Peter von Neumann-Cosel | Nuclear Physics in Astrophysics, April 3-8, 2011, Eilat, Israel

TECHNISCHE

UNIVERSITÄT

Photon Strength Function in ²⁰⁸Pb

Polarized intermediate energy proton scattering at 0°:

a new tool to extract the complete dipole response in nuclei

- Spinflip / non-spinflip cross section separation
- B(E1) strength
- Dipole polarizability
- Level Densities of 1⁻ states
- Photon Strength Function
- Experiment on ¹²⁰Sn: extraction of complete PDR strength
- Experiment on ¹⁵⁴Sm: PDR in a heavy deformed nucleus

First 0° Proton Scattering Experiments at iThemba LABS, South Africa

U Cape Town / TU Darmstadt / iThemba LABS / U Osaka / RCNP Osaka / U Witwatersrand collaboration

R. Neveling et al., NIMA (submitted)

Collaboration

Dep. of Phys., Osaka University Y. Fujita

Dep. of Phys., Kyoto University H. Sakaguchi, J. Zenihiro

> CNS, Univ. of Tokyo Y. Sasamoto

IFIC-CSIC, Valencia B. Rubio

Univ. of Witwatersrand J. Carter

GSI, Darmstadt B. Özel, E. Litvinova RCNP, Osaka University

- T. Adachi, H. Fujita, K. Hatanaka, M. Kato, H. Matsubara, M. Okamura, Y. Sakemi,
 - Y. Shimizu,Y. Tameshige, A. Tamii, M. Yosoi

iThemba LABS R. Neveling, F.D. Smit

Texas A&M University, Commerce, USA C. Bertulani

IKP, TU Darmstadt A.M. Heilmann, Y. Kalmykov, P. von Neumann-Cosel, **I. Poltoratska**, V.Yu. Ponomarev, A. Richter, J. Wambach

Multipole Decomposition of Angular Distributions

- Restrict angular distribution to $\Theta \leq 4^{\circ}$
 - too complex response at larger angles
- Low-energy region (Ex ≤ 9 MeV)
 - Isovector M1 $\rightarrow \Delta L = 0$
 - Coulomb dominated $d\sigma/d\Omega$ for E1 $\rightarrow \Delta L$ = 1
 - E2 (alternatively E3) substitute for $\Delta L > 1$
- GDR region:
 - ΔL = 0 replaced by Phenomenological background

Coulomb Exitations of 1⁻ States

Fluctuation Analysis

Autocorrelation Function and Mean Level Spacing

 $d(E) \cdot d(E + c)$

•
$$C(\varepsilon) = \frac{\langle d(E_x) \cdot d(E_x + \varepsilon) \rangle}{\langle d(E_x) \rangle \cdot \langle d(E_x + \varepsilon) \rangle}$$

 $\langle d^2(E_x) \rangle - \langle d(E_x) \rangle^2$

•
$$C(\varepsilon = 0) - 1 = \frac{\langle a (E_x) \rangle - \langle a(E_x) \rangle}{\langle d(E_x) \rangle^2}$$

•
$$C(\varepsilon = 0) - 1 = \frac{\alpha \langle D \rangle}{2\sigma \sqrt{\pi}}$$

 $\alpha = \alpha_{_{PT}} + \alpha_{_W}$

 σ

level spacing (D)

statistical properties

variance

resolution

Wavelets

Wavelet coefficients:

DWT of ²⁰⁸Pb spectrum

- identical angular distributions
- determines phenomenological background

Spinflip M1 Strength

- Isovector part: analog of GT modes with T = T₀
- Spinflip M1 resonance is quenched
 - in fp-shell nuclei similar to GT strength
 - in heavy nuclei little data \rightarrow ²⁰⁸Pb as a test case
- Problem studied in the 80's but:
 - large experimental uncertainties
 - improved model calculations
- new experimental access by (p,p')
 - intermediate energy region optimal for spin-isospin excitations
 - at 0° \rightarrow selectivity on ΔL =0 transitions
 - isovector spinflip M1 transitions enhanced