Polarisationstransferkoeffizienten aus hochauflösender Streuung polarisierter Protonen an <sup>120</sup>Sn unter 0°



**Johannes Simonis - Bachelor Vortrag** 



## Gliederung



- Motivation
- Theoretische Grundlagen
- Experimenteller Aufbau am RCNP in Osaka, Japan
- Datenanalyse
- Ergebnisse
- Zusammenfassung und Ausblick

# Extraktion der kompletten E1 und Spin-M1 Stärkeverteilung in <sup>120</sup>Sn



- E1: <sup>120</sup>Sn(γ, γ') Experiment am S-DALINAC
   B. Özel, Ph.D. thesis, Çukurova University, Adana. Turkey (2008)
  - abweichende theoretische Vorhersagen für Zentroidenergie und summierte Stärke der PDR
  - Zusammenhang zwischen Stärkeverteilung und Dicke der Neutronenhaut

- Spin-M1:  $^{120}$ Sn(p, p') Experimente bei  $E_p = 200$  MeV unter  $4^{\circ}$ 
  - keine Anzeichen für resonanzartige Struktur bei niedrigen Energien Bertrand et al., *Phys. Lett. B* 103 (1981) 326.
  - Bump nahe 8, 4 MeV mit Spinflip M1 Charakter Djalali et al., Nucl. Phys. A 388 (1982) 1.
- Dipolstärkeverteilung nahe der Neutronenseparationsschwelle relevant für die Nukleosynthese (r-Prozess)



- Kernresonanzfluoreszenz (KRF)
  - große Sensitivität auf Dipolanregungen
  - hohe Energieauflösung (einige keV)
  - lacktriangle Messung öfter nur bis zur Teilchenseparationsschwelle wegen  $(\gamma, \textit{n})$ -Reaktion
  - Wirkungsquerschnitt  $\propto \Gamma_0 \frac{\Gamma_0}{\Gamma}$ 
    - ▶ Annahme:  $\frac{\Gamma_0}{\Gamma}$  = 1 → unteres Limit für Wirkungsquerschnitt
    - ► Zugang über statistische Modellrechnung → oberes Limit Rusev et al., Phys. Rev. C 79 (2009) 061302.



- Kernresonanzfluoreszenz (KRF)
  - große Sensitivität auf Dipolanregungen
  - hohe Energieauflösung (einige keV)
  - ▶ Messung öfter nur bis zur Teilchenseparationsschwelle wegen  $(\gamma, n)$ -Reaktion
  - Wirkungsquerschnitt  $\propto \Gamma_0 \frac{\Gamma_0}{\Gamma}$ 
    - ▶ Annahme:  $\frac{\Gamma_0}{\Gamma}$  = 1 → unteres Limit für Wirkungsquerschnitt
    - Zugang über statistische Modellrechnung → oberes Limit Rusev et al., Phys. Rev. C 79 (2009) 061302.
- (γ, x) Experimente messen nur oberhalb der Teilchenseparationsschwelle



- Kernresonanzfluoreszenz (KRF)
  - große Sensitivität auf Dipolanregungen
  - hohe Energieauflösung (einige keV)
  - Messung öfter nur bis zur Teilchenseparationsschwelle wegen  $(\gamma, n)$ -Reaktion
  - Wirkungsquerschnitt  $\propto \Gamma_0 \frac{\Gamma_0}{\Gamma}$ 
    - ► Annahme:  $\frac{\Gamma_0}{\Gamma}$  = 1 → unteres Limit für Wirkungsquerschnitt
    - Zugang über statistische Modellrechnung → oberes Limit Rusev et al., Phys. Rev. C 79 (2009) 061302.
- (γ, x) Experimente messen nur oberhalb der Teilchenseparationsschwelle
- ▶ bisherige (p, p'): große experimentelle Unsicherheiten



- Kernresonanzfluoreszenz (KRF)
  - große Sensitivität auf Dipolanregungen
  - hohe Energieauflösung (einige keV)
  - Messung öfter nur bis zur Teilchenseparationsschwelle wegen  $(\gamma, n)$ -Reaktion
  - Wirkungsquerschnitt  $\propto \Gamma_0 \frac{\Gamma_0}{\Gamma}$ 
    - ► Annahme:  $\frac{\Gamma_0}{\Gamma}$  = 1 → unteres Limit für Wirkungsquerschnitt
    - Zugang über statistische Modellrechnung → oberes Limit Rusev et al., Phys. Rev. C 79 (2009) 061302.
- (γ, x) Experimente messen nur oberhalb der Teilchenseparationsschwelle
- ▶ bisherige (p, p'): große experimentelle Unsicherheiten

 $\Rightarrow$ hochauflösende $(\vec{p}, \vec{p}')$  unter 0° als neues experimentelles Tool

# Neuer experimenteller Zugang mit $(\vec{p}, \vec{p}')$ unter $0^{\circ}$

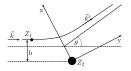


- Messung unterhalb und oberhalb der Teilchenseparationsschwelle
- ▶ hohe Energieauflösung ( $\Delta E/E \approx 8 \cdot 10^{-5}$ )
- ightharpoonup unter 0° Selektivität auf Übergänge mit kleinem  $\Delta L$ 
  - ► Coulomb Anregung (E1,  $\Delta L = 1$ )
  - ▶ Spin-Isospin-Anteil der Proton-Kern-Ww. (Spin-M1,  $\Delta L = 0$ )
- zwei unabhängige Methoden zur Trennung der E1 und Spin-M1 Anteile am Wirkungsquerschnitt
  - Multipolentfaltung der Winkelverteilung
  - Polarisationstransferkoeffizienten
- Referenzfall: <sup>208</sup>Pb
   I. Poltoratska, Doctoral thesis, TU Darmstadt, (2011)

## **Theoretische Grundlagen - Coulomb Streuung**



klassisch



differentieller Wirkungsquerschnitt

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \left(\frac{1}{4\pi\epsilon_0} \frac{Z_1 Z_2 e^2 v_0}{2qc^2} \frac{1}{\sin\left(\frac{\theta}{2}\right)}\right)^2$$

mit Impulsübertrag  $q = |\vec{k} - \vec{k'}|$ 

virtuelle Photonenmethode

$$\frac{d\sigma}{d\Omega} = \int \sigma_{\gamma}^{E1}(E_{\gamma}) \frac{dN_{E1}(E_{\gamma})}{d\Omega} \frac{1}{E_{\gamma}} dE_{\gamma}$$

$$\propto B(E1)$$

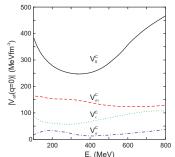
mit Photoabsorptions-wirkungsquerschnitt  $\sigma_{\gamma}^{\rm E1}(E_{\gamma})$  Bertulani et al., *Phys. Rep.* 163 (1988) 299.

## Theoretische Grundlagen - Nukleon-Kern Wechselwirkung



Für Impulsüberträge  $q < 1 \text{ fm}^{-1}$  ist der Spin-Orbit- und der Tensor-Term der eff. Ww. klein im Vergleich zum zentralen Term

$$V_{ip}(r_{ip}) = V_0^C(r_{ip}) + V_\sigma^C(r_{ip}) \, \vec{\sigma}_i \cdot \vec{\sigma}_p + V_\tau^C(r_{ip}) \, \vec{\tau}_i \cdot \vec{\tau}_p + V_{\sigma\tau}^C(r_{ip}) \, \vec{\sigma}_i \cdot \vec{\sigma}_p \vec{\tau}_i \cdot \vec{\tau}_p$$

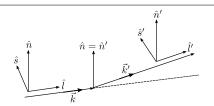


Love et al., Phys. Rev. C 24 (1981) 1073.

- ▶ Messungen mit  $E_p = 300 \,\text{MeV}$
- ▶  $V_0^C$  hat Minimum;  $V_{\sigma\tau}^C > V_{\sigma}^C$ ,  $V_{\tau}^C$ ⇒ Spin-Isospin Anregungen
- Besonders: Spin-M1

# Theoretische Grundlagen - Polarisationstransferkoeffizienten





Vollständiger Spintransfer

$$\Sigma = \frac{3 - (D_{NN'} + D_{SS'} + D_{LL'})}{4}$$

Unter  $0^{\circ}$ :  $D_{SS} = D_{NN}$ 

$$\Sigma = \frac{3 - (2D_{SS} + D_{LL})}{4} = \begin{cases} 1 & \text{Spinflip} \\ 0 & \text{nicht-Spinflip} \end{cases}$$

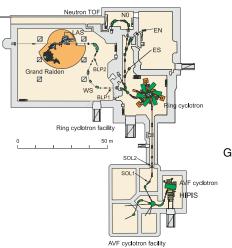
Bestimmung der Anteile am Wirkungsquerschnitt:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\left(\Delta S=1\right) \equiv \Sigma\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right) \\ \to \mathrm{Spin} - \mathrm{M1~Anregung}$$
 
$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\left(\Delta S=0\right) \equiv (1-\Sigma)\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right) \\ \to \mathrm{E1~Anregung}$$

T. Suzuki, Prog. Theor. Phys. 321 (2000) 859.

# Experimenteller Aufbau am Research Center for Nuclear Physics in Osaka, Japan





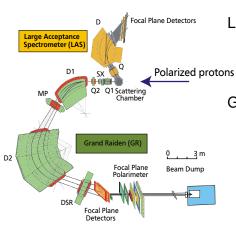
- $E_p = 295 \,\text{MeV}$
- ▶ Dispersion Matching:  $\Delta E = 25 30 \text{ keV}$
- ▶ Strahlintensität: 1 5 nA
- ► Polarisationsgrad: 70 %
- period. Umkehrung der Spinrichtung zur Elimination der Asymmetrie des Aufbaus

#### Gemessene Größen:

- $ightharpoonup d\sigma/d\Omega @ 0°, 2.5°, 4°$
- D<sub>SS</sub> @ 0°: seitliche
   Polarisationstransferobservable
- D<sub>LL</sub> @ 0°: longitudinale
   Polarisationstransferobservable

# Grand Raiden (GR) und Large Acceptance Spektrometer (LAS)





### LAS

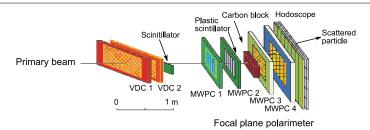
- Impulsauflösung:  $p/\Delta p \approx 4980$
- Impulsakzeptanz: ±15 %

### GR

- Impulsauflösung:  $p/\Delta p \approx 37000$
- ▶ Impulsakzeptanz: ±2,5 %
  - Dipolmagnet für Spinrotation (DSR) für  $D_{LL}$  Messung

## **Grand Raiden - Detektor System**





- Fokalebenendetektor:
  - Messung von Durchstoßpunkten  $x_{fp}$ ,  $y_{fp}$  sowie Streuwinkeln  $\theta_{fp}$ ,  $\phi_{fp}$
- Fokalebenenpolarimeter:

Messung der seitlichen Polarisation  $p_S''$  nach zweitem Streuprozess im Kohlenstoff Block

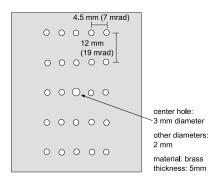
## **Datenanalyse**



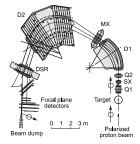
- Konversion der Driftzeiten zu Driftlängen
- Rekonstruktion der Streuwinkel am Target
- Hochauflösungskorrektur
- Energiekalibrierung
- Untergrundabzug
- Bestimmung der Strahlpolarisation

### **Rekonstruktion der Streuwinkel**



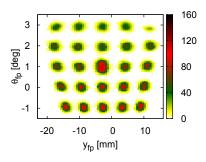


- elastische Streuung an <sup>58</sup>Ni (100, 1 mg/cm²)
- ▶  $\theta_{GR} = 15, 2^{\circ}$
- verschiedene Magnetfeldeinstellungen
- zentral und ±1 mm (vertikal) für jede Konfiguration



# Rekonstruktion der Streuwinkel - Methode



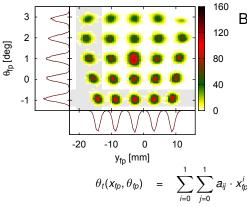


# Bestimmung der Mittelpunkte:

 Berücksichtigung von y<sub>LAS</sub> und x<sub>fp</sub>

# Rekonstruktion der Streuwinkel - Methode





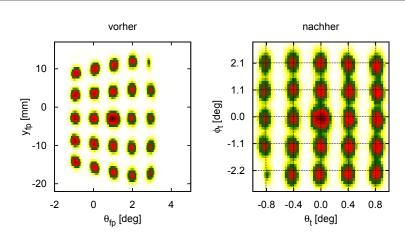
# Bestimmung der Mittelpunkte:

- Berücksichtigung von y<sub>LAS</sub> und x<sub>fp</sub>
- Auswahl von Bereichen und Projektion
- ► Fit mit Gauß-Funktionen
- Gleiche Prozedur in  $y_{fp} \phi_{fp}$ -Ebene ,  $\theta_{fp}^{i}$ ,

$$\phi_{t}(x_{fp}, \theta_{fp}, y_{fp}, \phi_{fp}, y_{LAS}) = \sum_{i=0}^{1} \sum_{i=0}^{1} \sum_{k=0}^{1} \sum_{l=0}^{1} b_{ijkl} \cdot x_{fp}^{i} \theta_{fp}^{l} y_{fp}^{k} \phi_{fp}^{l} + \sum_{i=0}^{1} b_{Li} \cdot x_{fp}^{i} y_{LAS}$$

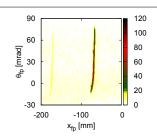
# Rekonstruktion der Streuwinkel - Ergebnis

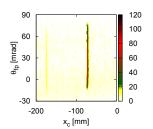




## Hochauflösungskorrektur







- ▶ <sup>12</sup>C: diskrete Linien
- Krümmung in der Fokalebene
- Abbildungsfehler (→ Optik)
- Polynomialer Fit:

$$X_{c} = X_{fp} + \sum_{i=0}^{1} \sum_{j=1}^{4} d_{ij} \cdot X_{fp}^{i} \theta_{fp}^{j}$$

## Energiekalibrierung





- Energiekalibrierung:
   Fit mit ausgewählten Peaks aus <sup>27</sup>Al Spektrum
- Energieverschiebung:
  - Korrelation von <sup>120</sup>Sn Spektren

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

## Vergleich mit $(\gamma, \gamma')$ Experiment



<sup>120</sup>Sn( $\gamma$ ,  $\gamma'$ ) Reaktion:

- $E_0 = 9, 1 \text{ MeV}$
- ▶  $\theta = 130^{\circ}$
- Gefaltet mit Gauß  $\Delta E = 30 \text{ keV}$

B. Özel, Ph.D. thesis, Çukurova University, Adana, Turkey (2008)



## **Untergrundabzug - "Erweiterte Methode"**

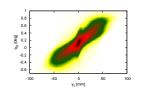


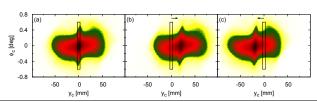
Weitere Korrekturen:

$$y_{fp} \to y_{c} = y_{fp} + \sum_{i=0}^{1} \sum_{j=0}^{1} \sum_{k=0}^{1} d_{ijk} \cdot x_{fp}^{i} \theta_{fp}^{j} \phi_{fp}^{k} + d_{L} \cdot y_{LAS}$$

$$\phi_{fp} \to \phi_{c} = \phi_{fp} + \sum_{i=0}^{1} e_{i} \cdot y_{fp}^{i}$$

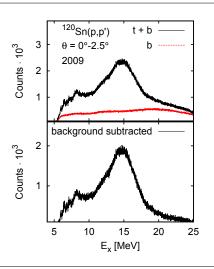
- Verteilung der wahren Ereignisse um  $y_c = 0$
- Verschiebung um Konstante und anschließende Mittelung
- ► Gates bleiben unverändert ⇒ modellunabhängig!





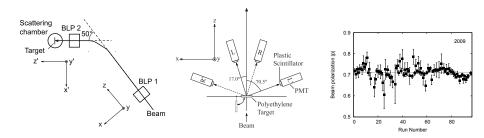
## **Untergrundabzug (2)**





# Bestimmung der Strahlpolarisation





- Messung der Asymmetrie im Streuprozess am Polyethylene Target
  - $\Rightarrow$ Bestimmung der normalen( $p_N$ ), seitlichen( $p_S$ ) und longitudinalen( $p_L$ ) Komponente der Strahlpolarisation

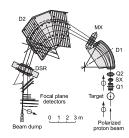
### Bestimmung der Polarisationstransferkoeffizienten



seitliche Polarisation nach 2. Streuprozess:

$$p_S''^t = \cos(\theta_p)D_{SS}p_S + \sin(\theta_p)D_{LL}p_L,$$
  
$$p_S''^b = \cos(\theta_p)p_S + \sin(\theta_p)p_L$$

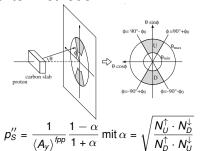
- $\theta_p$ : Präzessionswinkel im Grand Raiden Spektrometer
- p<sub>S</sub>, p<sub>L</sub>: seitliche, longitudinale Strahlpolarisation
- ► Annahme für Untergrundereignisse: kein Beitrag zur Depolarisation  $D_{SS} = D_{LL} = 1$



# Bestimmung der Polarisationstransferkoeffizienten - Methodenvergleich



### Sektor Methode



- Auswahl von Winkelbereichen
- Rechnung einfach
   A. Tamii, Ph.D. thesis, Kyoto University, Japan (1999)

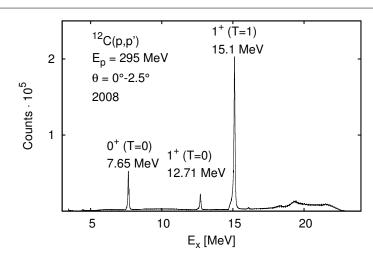
#### Estimator Methode

$$\begin{split} \frac{\varepsilon_{S}^{t}}{\varepsilon_{S}^{b}} \operatorname{mit} \varepsilon_{S}^{t} &= -p_{S}^{\prime\prime t} \left\langle A_{y} \right\rangle^{fpp} \\ \operatorname{und} \varepsilon_{S}^{b} &= -p_{S}^{\prime\prime b} \left\langle A_{y} \right\rangle^{fpp} \end{split}$$

- Berechnung statistischer Fehler mit kovarianter Matrix V(ε̂)
- Nahe an der maximalen Nutzung der Daten
- Rechnung komplizierter Besset et al., Nucl. Instr. Meth. 166 (1979) 515.

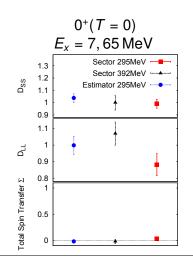
# Ergebnisse - $^{12}$ C $(\vec{p}, \vec{p}')$ Spektrum

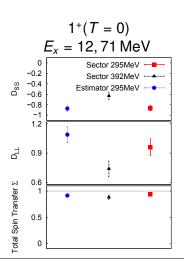




# Ergebnisse - Polarisationstransferkoeffizienten für $^{12}$ C( $\vec{p}, \vec{p}'$ ) unter $0^{\circ}$

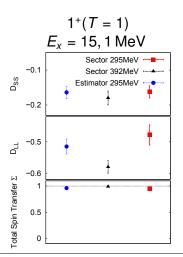






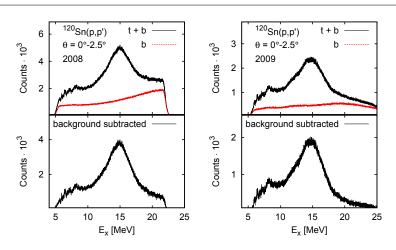
# Ergebnisse - Polarisationstransferkoeffizienten für $^{12}{\rm C}(\vec{p},\vec{p}')$ unter $0^{\circ}$





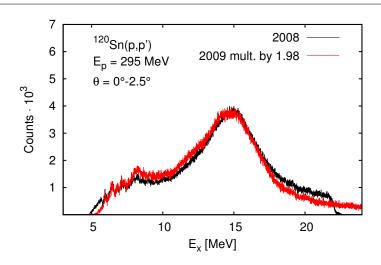
# Ergebnisse - $^{120}$ Sn $(\vec{p}, \vec{p}')$ Spektren





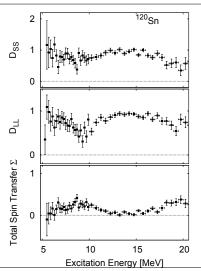
# Ergebnisse - Vergleich der $^{120}$ Sn $(\vec{p}, \vec{p}')$ Spektren





# Ergebnisse - Polarisationstransferkoeffizienten für $^{120}$ Sn $(\vec{p},\vec{p}')$ unter $0^{\circ}$

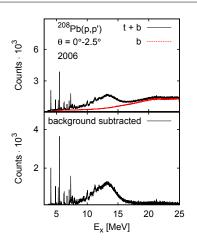


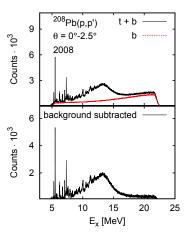


 $\Sigma = 1 \rightarrow Spinflip$  $\Sigma = 0 \rightarrow nicht-Spinflip$ 

# Ergebnisse - $^{208}$ Pb $(\vec{p}, \vec{p}')$ Spektren

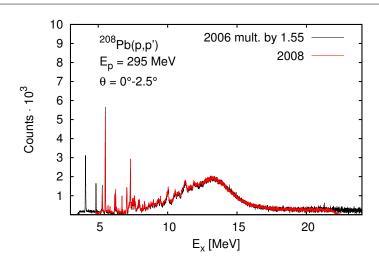






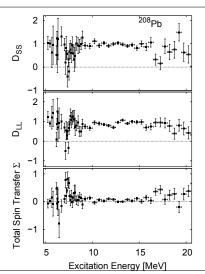
# Ergebnisse - Vergleich der $^{208}$ Pb $(\vec{p}, \vec{p}')$ Spektren





# Ergebnisse - Polarisationstransferkoeffizienten für $^{208}$ Pb $(\vec{p}, \vec{p}')$ unter $0^{\circ}$





$$\begin{split} \Sigma &= 1 \, \rightarrow \, Spinflip \\ \Sigma &= 0 \, \rightarrow \, nicht\text{-}Spinflip \end{split}$$

# **Zusammenfassung und Ausblick**



- ► Anregungsspektrum von <sup>120</sup>Sn in  $(\vec{p}, \vec{p}')$
- ▶ Energieauflösung:  $\Delta E = 25 30 \text{ keV}$
- ▶ Vergleich mit  $(\gamma, \gamma')$  Spektrum
- Polarisationstransferkoeffizienten

## **Zusammenfassung und Ausblick**



- ► Anregungsspektrum von <sup>120</sup>Sn in  $(\vec{p}, \vec{p}')$
- ▶ Energieauflösung:  $\Delta E = 25 30 \text{ keV}$
- ▶ Vergleich mit  $(\gamma, \gamma')$  Spektrum
- Polarisationstransferkoeffizienten
- Reanalyse des Untergrunds
- Bestimmung der Wirkungsquerschnitte
- Multipolentfaltung der Winkelverteilung
- Vergleich der B(E1) Stärkeverteilung mit theoretischen Vorhersagen (QPM, RQTBA, ...)
- ▶ Bestimmung der  $B_{\sigma}(M1)$  Stärke
- <sup>144</sup>Sm, <sup>154</sup>Sm: Einfluss der Deformation auf Eigenschaften der PDR, Ursache für Doppel-Peak Struktur in Spin M1 Resonanz

### Vielen Dank für Ihre Aufmerksamkeit!



### **EPPS0 Collaborators:**

#### **Osaka University**

Y. Fujita

#### University of Tokyo

Y. Sasamoto

#### IFIC-CSIC, Valencia

B. Rubio

#### **iThembaLABs**

R. Neveling, F.D. Smit

#### Univ. of Witwatersrand

J. Carter

### **Kyoto University**

H. Sakaguchi, J. Zenihiro

### Texas A&M University, Commerce, USA

C. Bertulani

### RCNP, Osaka University

T. Adachi, H. Fujita, K. Hatanaka, M. Kato,

H. Matsubara, M. Okamura, Y. Sakemi,

Y. Shimizu, Y. Tameshige, A. Tamii, M. Yosoi

#### **IKP, TU Darmstadt**

P. von Neumann-Cosel, A. Richter,

N. Pietralla, V. Ponomarev, I. Poltoratska,

A. M. Krumbholz, A. Krugmann,

B. Bozorgian, D. Martin, J. Simonis

# Theoretische Grundlagen - Polarisationstransferkoeffizienten (1)



In der PWIA ist die T-Matrix für Nukleon-Kern Streuung gegeben durch

$$T = \left\langle f | M(q) e^{-i\vec{q}\cdot\vec{r}} | i \right\rangle$$

mit der Streuamplitude

$$M(q) = A + \frac{1}{3}(B + E + F)\vec{\sigma_1} \cdot \vec{\sigma_2} + C(\sigma_1 + \sigma_2) \cdot \hat{n} + \frac{1}{3}(E - B)S_{12}(\hat{q}) + \frac{1}{3}(F - B)S_{12}(\hat{p})$$

Jeder komplexwertige Amplitudenkoeffizient A - F besteht aus einem isoskalaren und isovektoriellen Anteil.

# Theoretische Grundlagen - Polarisationstransferkoeffizienten (2)



Die Polarisationstransferkoeffizienten  $D_{ij}$  lassen sich mit Hilfe der T-Matrix darstellen:

$$D_{ij} = \frac{\operatorname{Tr}(T\sigma_j T^{\dagger}\sigma_i)}{\operatorname{Tr}(TT^{\dagger})}$$

Für Messungen unter 0° gilt:

$$D_{SL} = D_{LS} = 0,$$

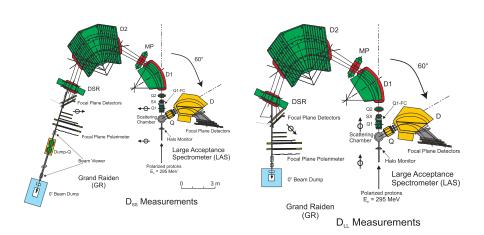
$$D_{SS} = D_{NN} = \frac{\left(|B_i|^2 - |F_i|^2\right) X_T^2 - |B_i|^2 X_L^2}{\left(|B_i|^2 + |F_i|^2\right) X_T^2 + |B_i|^2 X_L^2},$$

$$D_{LL} = \frac{\left(-3|B_i|^2 + |F_i|^2\right) X_T^2 + |B_i|^2 X_L^2}{\left(|B_i|^2 + |F_i|^2\right) X_T^2 + |B_i|^2 X_L^2}$$

 $X_T$ ,  $X_L$ : Spin-transversaler und Spin-longitudinaler Formfaktor

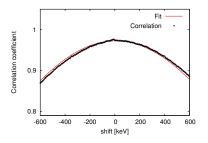
# Grand Raiden (GR) und Large Acceptance Spektrometer (LAS) Konfiguration für die 0° Messung





#### Pearson Korrelationskoeffizient





- Energieverschiebung, z.B. durch Drift der Strahlenergie:
  - Korrelation von <sup>120</sup>Sn Spektren

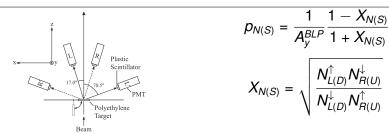
$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

Fit an berechnete Koeffizienten

$$C = a \cdot e^{-b \cdot (x - x_0)^2}$$

# Bestimmung der Strahlpolarisation - Details





$$\begin{array}{rcl} p_{N} & = & p_{N}^{(1)} = p_{N}^{(2)} \,, \\ p_{S} & = & p_{S}^{(1)} \,, \\ p_{L} & = & \frac{p_{S}^{(1)} \cos \theta - p_{S}^{(2)}}{\sin \theta} \end{array}$$

 $\blacktriangleright$  Präzessionswinkel im Ablenkungsmagnet mit Lorentzfaktor  $\gamma$  und Lande'schem g-Faktor:

$$\theta = \gamma \cdot \left(\frac{g}{2} - 1\right) \cdot \theta_{BLP}$$

## Bestimmung der Polarisationstransferkoeffizienten - Estimator Methode



Effektiver Schätzer 
$$\hat{\varepsilon} = \begin{pmatrix} \hat{\varepsilon}_n \\ \hat{\varepsilon}_s \end{pmatrix} = \mathbf{F}^{-1} \mathbf{B} \, \mathrm{mit}$$
 
$$\mathbf{B} = \begin{pmatrix} \sum_N \cos \phi_{fpp} \\ \sum_N \sin \phi_{fpp} \end{pmatrix} \,,$$
 
$$\mathbf{F} = \begin{pmatrix} \sum_N \cos^2 \phi_{fpp} & \sum_N \sin \phi_{fpp} \cos \phi_{fpp} \\ \sum_N \sin \phi_{fpp} \cos \phi_{fpp} & \sum_N \sin^2 \phi_{fpp} \end{pmatrix}$$

- $\triangleright \sum_{N}$ : Summation über alle Events
- ▶ Berechnung statistischer Fehler mit kovarianter Matrix  $V(\hat{\varepsilon}) = \mathbf{F}^{-1}$