Polarisationstransferobservablen aus inelastischer Streuung polarisierter Protonen unter 0°

TECHNISCHE UNIVERSITÄT DARMSTADT

Johannes Simonis, Andreas Krugmann, Anna Maria Krumbholz, Dirk Martin, Peter von Neumann-Cosel, Iryna Poltoratska, Atsushi Tamii

Outline

- Motivation
- Theoretical principles
- Experimental setup at RCNP in Osaka, Japan
- Results
- Outlook

New experimental tool: (\vec{p}, \vec{p}') at 0°

What can be learned?

- at 0° selectivity to transitions with low ΔL
- E1 mediated by Coulomb excitation
- spin-M1 by the spin-isospin-term of the proton-nucleus interaction
- consistent measurement below and above the particle separation threshold
- high energy resolution ($\Delta E/E \approx 8 \cdot 10^{-5}$)
- two independent methods for the separation of E1 and spin-M1 contributions to the cross section
 - Multipole decomposition analysis of the angular distributions
 - Polarization transfer observables

Theoretical principles -Polarization transfer observables

$$\Sigma = \frac{3 - (D_{nn'} + D_{ss'} + D_{ll'})}{4}$$

at 0°:
$$D_{ss} = D_{nn}$$

$$\Sigma = \frac{3 - (2D_{ss} + D_{ll})}{4} = \begin{cases} 1 \text{ spinflip} \\ 0 \text{ non-spinflip} \end{cases}$$

Determination of the contributions to the cross section:

$$\frac{d\sigma}{d\Omega} (\Delta S = 1) \equiv \Sigma \left(\frac{d\sigma}{d\Omega} \right) \qquad \rightarrow \text{spin} - \text{M1 excitation}$$
$$\frac{d\sigma}{d\Omega} (\Delta S = 0) \equiv (1 - \Sigma) \left(\frac{d\sigma}{d\Omega} \right) \qquad \rightarrow \text{E1 excitation}$$

T. Suzuki, Prog. Theor. Phys. 321, 859 (2000)

Measurement of polarization transfer observables

Experimental setup at RCNP

I_p = 1 − 5 nA
 polarization: 70 %

Grand Raiden - detector system

Focal plane detectors:

Measurement of crossing points x_{tp} , y_{tp} and scattering angles θ_{tp} , ϕ_{tp}

Focal plane polarimeter:

Measurement of sidewards polarization $p_{\mathcal{S}}''$ after second scattering process in carbon block

Determination of polarization transfer observables

sidewards polarization after second scattering process:

$$p_{S}^{\prime\prime t} = \cos (\theta_{p}) D_{SS} p_{S} + \sin (\theta_{p}) D_{LL} p_{L},$$

$$p_{S}^{\prime\prime b} = \cos (\theta_{p}) p_{S} + \sin (\theta_{p}) p_{L}$$

- θ_ρ: precession angle in Grand Raiden spectrometer
- *p_S*, *p_L*: sidewards, longitudinal beam polarization
- assumption for background events: no contribution to depolarization
 D_{SS} = D_{LL} = 1

Extraction of polarization transfer observables - Comparison of methods

- selection of angle range
- easiest evaluation method
 A. Tamii, Ph.D. thesis, Kyoto University, Japan (1999)

$$\frac{\varepsilon_{S}^{i}}{\varepsilon_{S}^{b}} \operatorname{mit} \varepsilon_{S}^{t} = -p_{S}^{\prime\prime t} \langle A_{y} \rangle^{fpp}$$
$$\operatorname{und} \varepsilon_{S}^{b} = -p_{S}^{\prime\prime b} \langle A_{y} \rangle^{fpp}$$

Estimator method

- calculation of statistical uncertainty from covariant matrix V(ĉ)
- close to the maximum use of the data

Besset et al., Nucl. Instr. Meth. 166, 515 (1979)

Test case - ${}^{12}C(\vec{p},\vec{p}')$ at 0°

Polarization transfer observables - ${}^{12}C(\vec{p},\vec{p}')$ at 0°

A. Tamii et al., Phys. Lett. B 459, 61 (1999)

Reference case - 208 Pb (\vec{p}, \vec{p}') at 0°

A. Tamii et al., Phys. Rev. Lett. 107, 062502 (2011)

Comparison of methods

TECHNISCHE UNIVERSITÄT DARMSTADT

Polarization transfer observables - $^{120}{\rm Sn}(\vec{p},\vec{p}')$ at 0°

 120 Sn (\vec{p},\vec{p}') at 0°

Summary & Outlook

- Polarized intermediate energy proton scattering at 0°: spinflip / non-spinflip cross section separation with polarization transfer observables
- completion of analysis for ¹²⁰Sn
- \triangleright application to ¹⁵⁴Sm \rightarrow A. Krugmann HK 6.5

Thank you for your attention!

EPPS0 Collaborators:

Osaka University

Y. Fujita

University of Tokyo

Y. Sasamoto

IFIC-CSIC, Valencia

B. Rubio

iThembaLABs

R. Neveling, F.D. Smit

Univ. of Witwatersrand J. Carter

Kyoto University H. Sakaguchi, J. Zenihiro

Texas A&M University, Commerce, USA C. Bertulani

RCNP, Osaka University

T. Adachi, H. Fujita, K. Hatanaka, M. Kato,

- H. Matsubara, M. Okamura, Y. Sakemi,
- Y. Shimizu, Y. Tameshige, A. Tamii, M. Yosoi

IKP, TU Darmstadt

P. von Neumann-Cosel, A. Richter,

- N. Pietralla, V. Ponomarev, I. Poltoratska,
- A. M. Krumbholz, A. Krugmann,
- D. Martin, J. Simonis