

Electroexcitation of the first 1/2⁺ state in ⁹Be *

O. Burda, C. Forssén, P. von Neumann-Cosel, A. Richter

Institut für Kernphysik, TU Darmstadt

- Motivation
- Experiments
- Results
- Summary and outlook
 - * Supported by the DFG within SFB 634

Motivation

- ⁹Be is a loosely bound nuclear system consisting of 2α and a neutron
- ⁹Be has the lowest neutron threshold (S_n= 1.665 MeV) of all stable nuclei
 - \rightarrow first excited state lies some tens of keV above S_n
 - \rightarrow all excited states are unstable with respect to neutron decay

Possible role of ⁹**Be in the production of** ¹²**C**

In *n*-rich environment (core-collapse supernovae) this reaction path may provide an alternative route for building up the heavy elements and triggering the *r* process

$J^{\pi} = 1/2^+$ state at threshold

- The photodisintegration cross section at low energies is given by the properties of 1/2⁺ resonance
- Strongly asymmetric line shape

Parameters of the first $J^{\pi} = 1/2^+$ state in ⁹Be

	(γ,n)	(e,e')		Reanalysis of [2]
	$\lfloor 1 \rfloor$	[2]	[3]	by Barker [4]
$E_R,{ m MeV}$	1.75(1)	1.684(7)	1.68(15)	1.7316
Γ_R,keV	283(42)	217(10)	200(20)	280
$B(E1)\uparrow, \mathrm{e}^{2}\mathrm{fm}^{2}$	0.0535(35)	0.027(2)	0.034(3)	0.0685

[1] H. Utsunomiya et al., Phys. Rev. C63 (2001) 018801
[2] G. Küchler et al., Z. Phys. A326 (1987) 447
[3] J. P. Glickman et al., Phys. Rev. C43 (1991) 1740
[4] F. C. Barker, Aust. J. Phys. 53 (2000) 247

 Resonance parameters from different experiments and analysis are not in mutual agreement

S-DALINAC and its Experimental Facilities

• High-resolution (e,e') experiments at 169° spectrometer

169° Spectrometer and Focal Plane Detector System

Deconvolution of the spectrum

⁹Be(γ,n) extracted from ⁹Be(e,e[´])

Comparison: ⁹Be(γ,n) and ⁹Be(e,e^γ)

Resonance parameters agree well

Reaction rate of $\alpha \alpha n \rightarrow {}^{9}Be$

- Deviation ranges from -25% to +11% from adopted values
- For $T_9 = 0.1 3$ the $1/2^+$ resonance determines exclusively ${}^{4}\text{He}(\alpha,\gamma){}^{8}\text{Be}(n,\gamma){}^{9}\text{Be}$ chain

Form factor of the $J^{\pi} = 1/2^+$ state

 NCSM: correct q dependence but difference in magnitude compared to the data (C. Forssén)

B(E1,k) strength

at photon point $(q = k = E_x/\hbar c)$ B(E1,k) = B(C1,k)

(e,e')
$$B(C1,k) = 0.027(3) e^{2}fm^{2} = B(E1,k)$$

 (γ,n) B(E1,k) = 0.0535(35) e²fm²

• B(C1) \neq B(E1) at photon point $k = q \rightarrow$ violation of Siegert's theorem ?

Summary and outlook

- Final values of line shape parameters of $J^{\pi} = 1/2^+$ resonance: E_R = 1.748(6) MeV and $\Gamma_R = 274(8)$ keV
- B(C1) ≠ B(E1) at photon point k = q
 → violation of Siegert's theorem ?
- Theoretical calculations in NCSM and FMD
- E1 operator needs to be renormalized \rightarrow effective charges
- Investigate also the transverse E1 response to search for possible sources of the violation of Siegert's theorem

PWBA model independent analysis: B(C1,k)

 $B(C1,k = E_x/hc) = 0.027(4) e^{2}fm^{2}$

Convergence behavior of NCSM results

Convergence behavior of NCSM results

Radial transition densities from NCSM

