

Nature of Mixed-Symmetry 2* States in ⁹⁴Mo from High-Resolution Electron and Proton Scattering *

Oleksiy Burda

Institut für Kernphysik, TU Darmstadt

N. Botha², O. Burda¹, J. Carter³, R.W. Fearick², S.V. Förtsch⁴, C. Fransen⁵, H. Fujita^{3,4}, J.D. Holt⁶, M. Kuhar¹, A. Lenhardt¹, P. von Neumann-Cosel¹, R. Neveling⁴, N. Pietralla^{1,5,7}, V.Yu. Ponomarev¹, A. Richter¹, O. Scholten⁸, E. Sideras-Haddad³, R. Smit⁴ and J. Wambach¹

¹ Technische Universität Darmstadt, Germany, ² University of Cape Town, South Africa
³ University of the Witwatersrand, South Africa, ⁴ iThemba LABS, South Africa
⁵ Universität zu Köln, Germany, ⁶ TRIUMF, Canada
⁷ SUNY, USA, ⁸ University of Groningen, The Netherlands

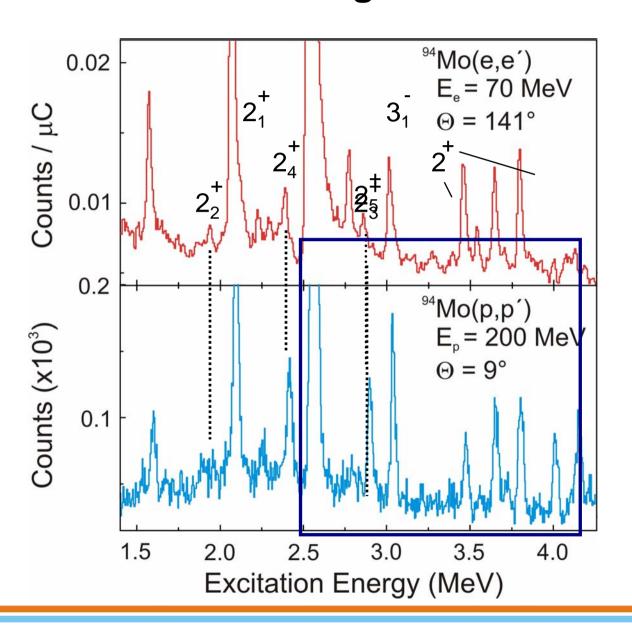
* Supported by DFG under contracts SFB 634 and Ne 679/2-1

- Motivation
- Experiments
- Results and microscopic interpretations
- Summary and outlook

Motivation

- *pn*-IBM-2
 - → fully symmetric states (FSS) → isoscalar
 - → mixed-symmetry states (MSS) → isovector

- Test case of ⁹⁴Mo:
 - N. Pietralla et al., Phys. Rev. Lett. 83, 1303 (1999); Phys. Rev. Lett. 84, 3775 (2000)
 - C. Fransen et al., Phys. Lett. B 508, 219 (2001); Phys. Rev. C 67, 024307 (2003)



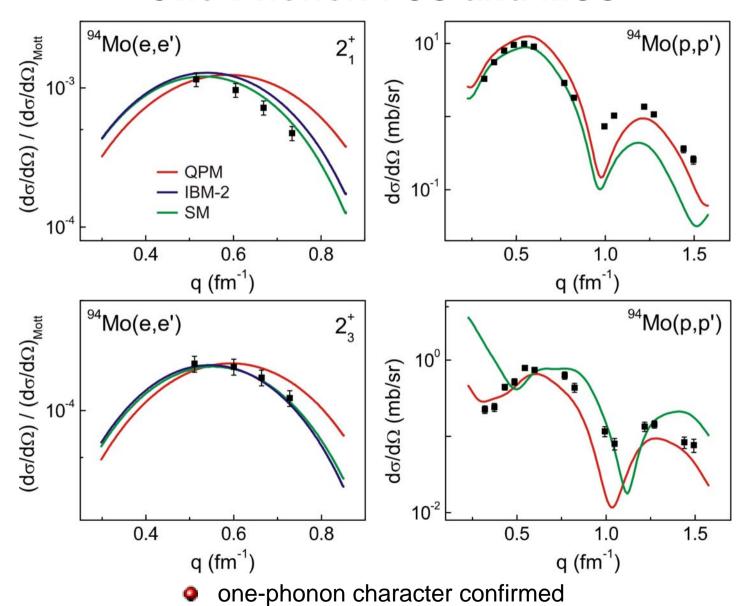
Why (e,e') and (p,p')?

- Study of one- and two-phonon 2+ FSS and MSS with (e,e') and (p,p')
 - → sensitive to one-phonon components of the wave functions
 - → test of fundamental phonon character
 - → isoscalar / isovector decomposition
 - → purity of two-phonon states
- Complete observation of all 2+ states up to 4 MeV
 - → high resolution → beam matching techniques
- Experiments:
 - → (e,e') at S-DALINAC
 - → (p,p′) at iThemba LABS

Deta: Streatg Transitions

S-DALINAC

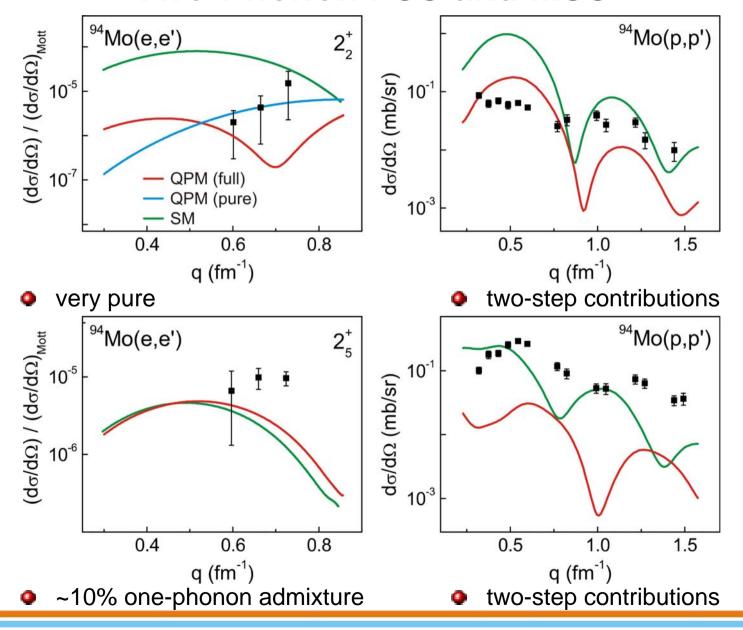
iThemba LABS



Theoretical Calculation

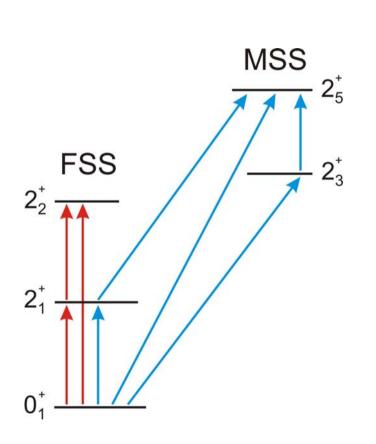
- Quasiparticle Phonon Model (QPM)
 - → full (up to 3 phonons)
 - → pure one- or two-phonon states
- Shell Model (SM)
 - \rightarrow 88Sr core / V_{low-k}
- IBM-2
 - → transition densities from generalized-seniority SM
 - → U(5) limit to describe dominant transitions
- Cross Section
 - → DWBA / Love-Franey effective projectile-target interaction for (p,p´)

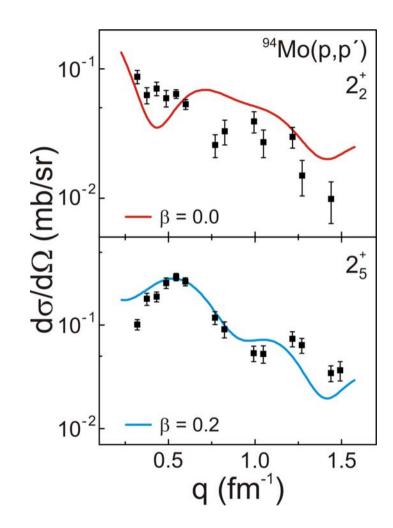
One-Phonon FSS and MSS


Wave Functions of One-Phonon FSS and MSS

Main config.	2 ⁺ _{1,FSS}		2 ⁺ _{3,MSS}	
	QPM	SM	QPM	SM
$\pi(1g_{9/2} 1g_{9/2})$	0.66	0.39	0.64	0.51
$v(2d_{5/2} 2d_{5/2})$	0.72	0.55	-0.71	-0.33

- FSS → isoscalar
- MSS → isovector




Two-Phonon FSS and MSS

Coupled-Channel Analysis

- pure two-phonon FSS confirmed
- admixture to two-phonon MSS confirmed

Summary and Outlook

- Study of one- and two-phonon FSS and MSS 2⁺ states in ⁹⁴Mo with high-resolution (e,e') and (p,p') experiments
- Combined analysis with microscopic models reveals:
 - \rightarrow dominant one-phonon character of 2_1^+ and 2_3^+ states
 - → isovector character of one-phonon MSS within the valence shell
 - quantitatively consistent conclusions after inclusion of two-step processes in (p,p') cross sections
 - → two-phonon FSS quite pure
 - → about 10% one-phonon and about 17% three-phonon admixtures in two-phonon MSS → but dominant two-phonon character
- The case of ⁹²Zr: Mixed-symmetry concept seems to fail C.Fransen et al., Phys. Rev. C71 (2005) 054304