

#### High-Energy-Resolution Inelastic Electron and Proton Scattering and the Miltiphonon Nature of Mixed-Symmetry 2<sup>+</sup> States in <sup>94</sup>Mo

<u>O. Burda</u><sup>1</sup>, N. Botha<sup>2</sup>, J. Carter<sup>3</sup>, R.W. Fearick<sup>2</sup>, S.V. Förtsch<sup>4</sup>, C. Fransen<sup>5</sup>, H. Fujita<sup>3,4</sup>, J.D. Holt<sup>6</sup>, M. Kuhar<sup>1</sup>, A. Lenhardt<sup>1</sup>, P. von Neumann-Cosel<sup>1</sup>, R. Neveling<sup>4</sup>, N. Pietralla<sup>1,5,7</sup>, V.Yu. Ponomarev<sup>1</sup>, A. Richter<sup>1</sup>, O. Scholten<sup>8</sup>, E. Sideras-Haddad<sup>3</sup>, F.D. Smit<sup>4</sup> and J. Wambach<sup>1</sup>

<sup>1</sup> Technische Universität Darmstadt, Germany, <sup>2</sup> University of Cape Town, South Africa
 <sup>3</sup> University of the Witwatersrand, South Africa, <sup>4</sup> iThemba LABS, South Africa
 <sup>5</sup> Universität zu Köln, Germany, <sup>6</sup> TRIUMF, Canada
 <sup>7</sup> SUNY, USA, <sup>8</sup> University of Groningen, The Netherlands

\* Supported by DFG under contracts SFB 634, Ne 679/2-2, and SUA-111/3/04, and by the NRF





#### High-Energy-Resolution Inelastic Electron and Proton Scattering and the Multiphonon Nature of Mixed-Symmetry 2<sup>+</sup> States in <sup>94</sup>Mo

O. Burda,<sup>1</sup> N. Botha,<sup>2</sup> J. Carter,<sup>3</sup> R. W. Fearick,<sup>2</sup> S. V. Förtsch,<sup>4</sup> C. Fransen,<sup>5</sup> H. Fujita,<sup>3,4</sup> J. D. Holt,<sup>6</sup> M. Kuhar,<sup>1</sup> A. Lenhardt,<sup>1</sup> P. von Neumann-Cosel,<sup>1,\*</sup> R. Neveling,<sup>4</sup> N. Pietralla,<sup>1,5,7</sup> V. Yu. Ponomarev,<sup>1,†</sup> A. Richter,<sup>1</sup> O. Scholten,<sup>8</sup> E. Sideras-Haddad,<sup>3</sup> F. D. Smit,<sup>4</sup> and J. Wambach<sup>1</sup>
<sup>1</sup>Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
<sup>2</sup>Physics Department, University of Cape Town, Rondebosch 7700, South Africa
<sup>3</sup>School of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa
<sup>4</sup>iThemba LABS, PO Box 722, Somerset West 7129, South Africa
<sup>5</sup>Institut für Kernphysik, Universität zu Köln, 50937 Köln, Germany
<sup>6</sup>TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3
<sup>7</sup>Department of Physics and Astronomy, SUNY, Stony Brook, New York 11794-3800, USA
<sup>8</sup>Kernfysisch Versneller Instituut, University of Groningen, 9747 AA Groningen, The Netherlands (Received 5 February 2007; published 31 August 2007)

High-energy-resolution inelastic electron scattering (at the S-DALINAC) and proton scattering (at iThemba LABS) experiments permit a thorough test of the nature of proposed one- and two-phonon symmetric and mixed-symmetric 2<sup>+</sup> states of the nucleus <sup>94</sup>Mo. The combined analysis reveals the one-phonon content of the mixed-symmetry state and its isovector character suggested by microscopic nuclear model calculations. The purity of two-phonon 2<sup>+</sup> states is extracted.

DOI: 10.1103/PhysRevLett.99.092503

PACS numbers: 21.10.Re, 25.30.Dh, 25.40.Ep, 27.60.+j

#### Content

#### Motivation

- Experiments
- Results and microscopic interpretations
- Summary and outlook

# **Motivation**

#### • *pn*-IBM-2

- $\rightarrow$  fully symmetric states (FSS)  $\rightarrow$  isoscalar
- $\rightarrow$  mixed-symmetry states (MSS)  $\rightarrow$  isovector

#### • Test case of <sup>94</sup>Mo:

- N. Pietralla et al., Phys. Rev. Lett. 83, 1303 (1999); Phys. Rev. Lett. 84, 3775 (2000)
- C. Fransen et al., Phys. Lett. B 508, 219 (2001); Phys. Rev. C 67, 024307 (2003)

Study of one- and two-phonon 2<sup>+</sup> FSS and MSS with (e,e') and (p,p')

- $\rightarrow$  sensitive to one-phonon components of the wave functions
- → test of fundamental phonon character
- $\rightarrow$  isoscalar / isovector decomposition
- $\rightarrow$  purity of two-phonon states
- Complete observation of all 2<sup>+</sup> states up to 4 MeV
   → high resolution → beam matching techniques

#### **169° Spectrometer and Focal Plane Detector System**





- New Si microstrip detector system: 4 modules, each contains 96 strips, with pitch of 650 μm
- Resolution:  $\Delta E/E = 4 \times 10^{-4}$
- Data rates up to 100 kHz

# **K600 Spectrometer and Focal Plane Detector System**



#### **Data: Weak Transitions**



#### **One-Phonon FSS and MSS**



### **Wave Functions of One-Phonon FSS and MSS**

| Main config.                                    | 2 <sup>+</sup> <sub>1,FSS</sub> |      | 2 <sup>+</sup><br>3,MSS |       |
|-------------------------------------------------|---------------------------------|------|-------------------------|-------|
|                                                 | QPM                             | SM   | QPM                     | SM    |
| π <b>(1g</b> <sub>9/2</sub> 1g <sub>9/2</sub> ) | 0.66                            | 0.39 | 0.64                    | 0.51  |
| v(2d <sub>5/2</sub> 2d <sub>5/2</sub> )         | 0.72                            | 0.55 | -0.71                   | -0.33 |

- FSS  $\rightarrow$  isoscalar
- MSS  $\rightarrow$  isovector

# Summary

- Study of one- and two-phonon FSS and MSS 2<sup>+</sup> states in <sup>94</sup>Mo with high-resolution (e,e') and (p,p') experiments
- Combined analysis with microscopic models reveals:
  - $\rightarrow$  dominant one-phonon character of  $2_1^+$  and  $2_3^+$  states
  - $\rightarrow$  isovector character of one-phonon MSS within valence shell
  - → quantitatively consistent conclusions after inclusion of two-step processes in (p,p') cross sections
  - $\rightarrow$  two-phonon FSS quite pure
  - → about 10% one-phonon and about 17% three-phonon admixtures in two-phonon MSS → but dominant two-phonon character

#### Outlook

 The case of <sup>92</sup>Zr: Mixed-symmetry concept seems to fail: C.Fransen *et al.*, Phys. Rev. C71 (2005) 054304



# Outlook

- Fine structure of the IVGDR
  - ⇒ (p,p´) at 200 MeV
  - $\Rightarrow$  newly developed 0° facility at K600 magnetic spectrometer
- Information can be extracted on:
  - $\Rightarrow$  damping mechanisms of nuclear giant resonances
  - $\Rightarrow$  level densities  $\rightarrow$  very important for astrophysics

### RCNP: <sup>208</sup>Pb(p,p<sup>'</sup>) at 0<sup>°</sup>





#### **Theoretical Calculation**

- Quasi-Particle Phonon Model (QPM)
  - $\rightarrow$  full (up to 3 phonons)
  - → pure one- or two-phonon states
- Shell Model (SM)
  - $\rightarrow$  <sup>88</sup>Sr core / V<sub>lowk</sub>
- IBM-2
  - $\rightarrow$  transition densities from generalized-seniority SM
  - $\rightarrow$  U(5) limit to describe dominant transitions
- Cross Section
  - → DWBA / Love-Franey effective projectile-target interaction for (p,p<sup>2</sup>)



#### **Coupled-Channel Analysis**



pure two-phonon FSS confirmed

admixture to two-phonon MSS confirmed

# **Motivation**

#### • *pn*-IBM-2

- $\rightarrow$  fully symmetric states (FSS)  $\rightarrow$  isoscalar
- $\rightarrow$  mixed-symmetry states (MSS)  $\rightarrow$  isovector

#### • Test case of <sup>94</sup>Mo:

- N. Pietralla *et al.*, Phys. Rev. Lett. 83, 1303 (1999); Phys. Rev. Lett. 84, 3775 (2000) C. Fransen *et al.*, Phys. Lett. B 508, 219 (2001); Phys. Rev. C 67, 024307 (2003)
- Study of one- and two-phonon 2<sup>+</sup> FSS and MSS with (e,e') and (p,p')
  - $\rightarrow$  sensitive to one-phonon components of the wave functions
  - → test of fundamental phonon character
  - $\rightarrow$  isoscalar / isovector decomposition
  - $\rightarrow$  purity of two-phonon states
- Complete observation of all 2<sup>+</sup> states up to 4 MeV
  - $\rightarrow$  high resolution  $\rightarrow$  beam matching techniques
- Experiments:
  - → (e,e´) at S-DALINAC
  - → (p,p') at iThemba LABS