

Nature of Mixed-Symmetry 2⁺ States in ⁹⁴Mo from High-Resolution Electron and Proton Scattering and Line Shape of the First Excited 1/2⁺ State in ⁹Be

S-DALINAC

Oleksiy Burda, 19.11.2007

- Motivation
- Experiments
- Results and microscopic interpretations

• Summary

Interacting Boson Model - 2

S-DALINAC

Pairing of nucleons to s- / d- bosons

• F-spin:
$$\pi$$
 boson: $F_z = 1/2$
v boson: $F_z = -1/2$

$$N_{\pi}, N_{\nu}: F_{max} = \frac{N_{\pi} + N_{\nu}}{2} \ge F \ge \frac{|N_{\pi} - N_{\nu}|}{2}$$

→
$$F = F_{max}$$
: fully symmetric states (FSS) → isoscalar
→ $F < F_{max}$: mixed-symmetry states (MSS) → isovector

• Q-phonon scheme: $Q_s = Q_{\pi} + Q_v$ $|2_1^{\dagger} \sim Q_s | 0_1^{\dagger} \rangle$

$$Q_{ms} = \frac{N}{2 N_{\pi}} Q_{\pi} - \frac{N}{2 N_{\nu}} Q_{\nu} \qquad |2_{ms}^{+}\rangle \propto Q_{ms} |0_{1}^{+}\rangle$$

Signatures of MSS

- Strong E2 transitions for decay of symmetric Q-phonon
- Weak E2 transitions for decay of ms Q-phonon
- Strong M1 transitions for decay of ms states to symmetric states

• Test case ⁹⁴Mo

N. Pietralla et al., Phys. Rev. Lett. 83, 1303 (1999); Phys. Rev. Lett. 84, 3775 (2000) C. Fransen et al., Phys. Lett. B 508, 219 (2001); Phys. Rev. C 67, 024307 (2003)

Why (e,e') and (p,p')?

- Study of one- and two-phonon 2⁺ FSS and MSS with (e,e') and (p,p')
 - \rightarrow sensitive to one-phonon components of the wave functions
 - \rightarrow test of fundamental phonon character
 - \rightarrow isoscalar / isovector decomposition
 - \rightarrow purity of two-phonon states

Experiments

- High resolution required to resolve all 2⁺ states below 4 MeV
- Lateral dispersion matching technique
- (e,e'): S-DALINAC, TU Darmstadt $E_e = 70 \text{ MeV}$ $\Theta_e = 93^\circ - 165^\circ$ $\Delta E= 30 \text{ keV} (FWHM)$

(p,p'): iThemba LABS $E_p = 200 \text{ MeV}$ $\Theta_p = 4.5^\circ - 26^\circ$ $\Delta E= 35 \text{ keV} (FWHM)$

Data: Strong Transitions

Data: Weak Transitions

Theoretical Calculation

- Quasiparticle Phonon Model (QPM)
 - \rightarrow full (up to 3 phonons)
 - → pure one- or two-phonon states
- Shell Model (SM) $\rightarrow {}^{88}$ Sr core / V_{low-k}
- IBM-2
 - \rightarrow transition densities from SM
 - \rightarrow U(5) limit to describe dominant transitions
- Cross Section
 - → DWBA / Love-Franey effective projectile-target interaction for (p,p[^])

One-Phonon FSS and MSS

one-phonon character confirmed

Wave Functions of One-Phonon FSS and MSS

Main configuration	$2^+_{1,\mathrm{FSS}}$		$2^+_{3,\mathrm{MSS}}$	
Main conngulation	QPM	SM	QPM	SM
$\pi \left(1g_{9/2} 1g_{9/2} ight)$	0.60	0.39	0.64	0.51
$ u \left(2d_{5/2} 2d_{5/2} ight)$	0.70	0.55	-0.71	-0.33

- FSS \rightarrow isoscalar
- MSS \rightarrow isovector

Two-Phonon FSS and MSS

Coupled-Channel Analysis

- pure two-phonon FSS confirmed
- admixture to two-phonon MSS confirmed

Summary

S-DAI INA

- Study of one- and two-phonon FSS and MSS 2 ⁺states in ⁹⁴Mo with high-resolution (e,e') and (p,p') experiments
- Combined analysis with microscopic models reveals:
 - \rightarrow dominant one-phonon character of 2⁺₁ and 2⁺₃ states
 - \rightarrow isovector character of one-phonon MSS within the valence shell
 - → quantitatively consistent conclusions after inclusion of two-step processes in (p,p[´]) cross sections
 - \rightarrow two-phonon FSS quite pure
 - → dominant two-phonon character of two-phonon MSS

Mo94: Theoretical Predictions

Mo94: Radial Transition Charge Densities

Possible Role of ⁹Be in the Production of ¹²C

S-DALINAC

 In *n*-rich environment (core-collapse supernovae) this reaction path may provide an alternative route for building up the heavy elements and triggering the *r* process

$J^{\pi} = 1/2^+$ State at Threshold

	Real photons exp.	(e,e')		Reanalysis of [78]	
	Ref. [77]	Ref. [78]	Ref. [79]	by Barker [81]	
E _R , MeV	1.75(1)	1.684(7)	1.68(15)	1.7316	
$\Gamma_{R}, \ \text{keV}$	283(42)	217(10)	200(20)	280	
B(E1)↑ , e ² fm ²	0.0535(35)	0.027(2)	0.034(3)	0.0685	

	prese	old data [78]	
	73 MeV, 93°	73 MeV, 141°	49 MeV, 117°
E_R,MeV	1.746(8)	1.768(12)	1.737(10)
Γ_{R} , keV	265(10)	308(20)	275(14)

Lintott Spectrometer

Focal Plane Detector System

 Si microstrip detector system: 4 modules, each 96 strips with pitch of 650 μ m

- Count rate up to 100 kHz
- Energy resolution 1.5x10⁻⁴

0

2

4 Excitation Energy (MeV)

⁹Be(e,e´) E_e = 73 MeV

 $\Theta_{e} = 93^{\circ}$

 Θ_{e} = 141°

6

8

$$A + a \to B^* \to \begin{cases} C + c \\ D + d \\ \dots \end{cases}$$

$$\sigma(E_B) = const \cdot \left| \left\langle C + c \, | \, \hat{O} \, | \, A + a \right\rangle \right|^2 \cdot \rho(E_B)$$

$$\sigma_{a,c}(E) = \frac{\pi}{2 k_a^2} g_J \frac{\Gamma_a \Gamma_c}{\left(E - E_\lambda - \Delta(E)\right)^2 + \frac{\Gamma^2}{4}}$$

$$\Delta(E) = -\gamma^2 \left(S(E) - B_n \right)$$

$$g_J = \frac{2J+1}{2I+1}$$

S-DALINAC 🚄

$$\sigma_{\gamma,n}(E_{\gamma}) = \frac{\pi}{2 k_{\gamma}^2} g_J \frac{\Gamma_{\gamma} \Gamma_n}{(E_{\gamma} - E_{\lambda} - \Delta)^2 + \frac{\Gamma^2}{4}}$$

$$\Gamma_{\gamma} = \frac{16 \pi}{9} e^2 k_{\gamma}^3 B(E1, k) \downarrow$$

$$\Gamma_n = 2 \sqrt{\epsilon (E_{\gamma} - S_n)}$$

$$\Delta = 0$$

$$\sigma_{\gamma,n}(E_{\gamma}) = \frac{16 \pi^2}{9} \frac{e^2}{\hbar c} g_J B(E1, k) \downarrow \frac{E_{\gamma} \sqrt{\epsilon (E_{\gamma} - S_n)}}{(E_{\gamma} - E_R)^2 + \epsilon (E_{\gamma} - S_n)}$$

$$E_R = E_\lambda + \Delta(E_R)$$
$$\Gamma_R(E_R) = 2\sqrt{\epsilon(E_R - S_n)}$$

$$\sigma_{e,e'}(E_x) = \frac{16\,\pi^2}{9}\,\frac{e^2}{\hbar c}\,B(E1,q)\uparrow \frac{E_x\,\sqrt{\epsilon\,(E_x-S_n)}}{\left(E_x-E_R\right)^2 + \epsilon\,(E_x-S_n)}$$

$$\sqrt{B(C1,q)} = \sqrt{B(C1,k)} \left(1 - q^2 \frac{R_{tr}^2}{10} + q^4 \frac{R_{tr}^4}{280} - \ldots\right)$$

Comparison: ⁹Be(γ ,n) and ⁹Be(e,e´)

- Final values: $E_x = 1.748(6)$ MeV and $\Gamma = 274(8)$ keV of $J^{\pi} = 1/2^+$ resonance
 - For T₉ = 0.1 3 K this resonance determines exclusively ⁴He(α , γ)⁸Be(n, γ)⁹Be chain
 - Determined reaction rate differs up to 20% from adopted values

- NCSM: correct *q* dependence but difference in magnitude compared to the data (C. Forssén)
- B(C1) ≠ B(E1) at photon point k = q
 →violation of Siegert theorem ?

