Gemischt-symmetrische Zustände in sphärischen Kernen

Christopher Walz Institut für Kernphysik 9. November 2010

Gliederung

- Einleitung und Motivation
- Ziel des Experiments
- experimentelle Umsetzung
 - Elektronenstreuung
 - Protonenstreuung
- 4⁺ gemischt-symmetrische Zustände
- Zusammenfassung

- ► symmetrischer Zustand: B(E2) ~ 5 20 W.u.
- gemischt-symmetrischer Zustand: $B(E2) \sim 1$ W.u.
- ► Quadrupol-Riesenresonanz: B(E2) ~ 25-40 W.u.
- ► Einteilchenzustände: B(E2) < 1 W.u.

9. November 2010 | Institut für Kernphysik, TU Darmstadt | 3

Was ist ein gemischt-symmetrischer Zustand? TECHNISCHE LINIVER DARMSTADT $\beta | d_{5/2}^2 \supset \alpha | g_{9/2}^2 >$ $\left|g_{9/2}^2\right\rangle$ FS МS V_{pn} core d_{5n}^2 $\beta |g_{\alpha/2}^2 \rangle + \alpha |d_{\beta/2}^2$ Isovector Isoscalar Quadrupole Quadrupole

- Zusammenhang: geometrisches und mikroskopisches Bild
- zwei Hauptkomponenten die Struktur des FS und MS festlegen

Experimentelle Signaturen

identifizieren?

kollektiver E2 (5-20 W.u.)

Gliederung

- Einleitung und Motivation
- Ziel des Experiments
- experimentelle Umsetzung
 - Elektronenstreuung
 - Protonenstreuung
- 4⁺ gemischt-symmetrische Zustände
- Zusammenfassung

Woher kommen die großen B(E2)-Werte?

TECHNISCHE UNIVERSITÄT DARMSTADT

- verwendetes Kernstrukturmodell:
 Quasi-particle Phonon Model (QPM)
- Hauptkomponenten erklären nicht große B(E2)-Werte

$$\begin{split} |2_{\rm fs}^+\rangle &= 0.33 \; |1g_{9/2}^2\rangle_p + 0.84 \; |2d_{5/2}^2\rangle_n + \ldots \\ |2_{\rm ms}^+\rangle &= 0.56 \; |1g_{9/2}^2\rangle_p - 0.53 \; |2d_{5/2}^2\rangle_n + \ldots \end{split}$$

Excitation Energy (keV)

Woher kommen die großen B(E2)-Werte?

TECHNISCHE UNIVERSITÄT DARMSTADT

- verwendetes Kernstrukturmodell:
 Quasi-particle Phonon Model (QPM)
- Hauptkomponenten erklären nicht große B(E2)-Werte

 $|2_{ms}^{+}\rangle = 0.56 |1g_{9/2}^{2}\rangle_{p} \cdot 0.53 |2d_{5/2}^{2}\rangle_{n} + 0.64 |GQR\rangle$

 Beimischung der isoskalaren Quadrupol-Riesenresonanz (GQR) in FS und MS erzeugt große B(E2)-Werte

Observable: Die Übergangsdichte

TECHNISCHE UNIVERSITÄT DARMSTADT

experimentell nicht zugänglich

Observable: Die Übergangsdichte

TECHNISCHE UNIVERSITÄT DARMSTADT

experimentell nicht zugänglich

$$\langle \mathbf{2}^{ extsf{hs}}_{ extsf{ms}} | \hat{
ho} | \mathbf{2}^{ extsf{hs}}_{ extsf{ms}}
angle$$

$$\langle \mathbf{2}^{\scriptscriptstyle +}_{\mathrm{ms}} | \hat{
ho} | \mathbf{0}^{\scriptscriptstyle +}
angle$$

$$\langle 0^{\scriptscriptstyle +} | \hat{
ho} | 0^{\scriptscriptstyle +}
angle$$

$$\begin{array}{l} \langle 2_{j}^{+} | \hat{\rho} | 0^{+} \rangle = \sum_{jj'} c_{jj'} \cdot X_{jj'} \cdot u_{jj'}(r) \\ \\ \text{Amplitude} & \text{radiale} \\ \text{Abhängigkeit} \\ \text{Abhängigkeit} \\ \text{I} | 2_{fs}^{+} \rangle = 0.33 \quad |1g_{9/2}^{2}\rangle_{p} + \\ 0.84 | 2d_{5/2}^{2}\rangle_{n} + 0.42 | \text{GQR} \rangle \end{array}$$

^{9.} November 2010 | Institut für Kernphysik, TU Darmstadt | 15

^{9.} November 2010 | Institut für Kernphysik, TU Darmstadt | 16

^{9.} November 2010 | Institut für Kernphysik, TU Darmstadt | 17

TECHNISCHE UNIVERSITÄT DARMSTADT

 unterschiedliche radiale Abhängigkeiten: R(2d²_{5/2})_n > R(GQR)_n

9. November 2010 | Institut für Kernphysik, TU Darmstadt | 18

- unterschiedliche radiale Abhängigkeiten: R(2d²_{5/2})_n > R(GQR)_n
- direkte Konsequenz des gemischt-symmetrischen Charakters: R(2⁺_{fs})_n > R(2⁺_{ms})_n
- ▶ kein Unterschied in den Ladungsradien: R(2⁺_{fs})_p ≈ R(2⁺_{ms})_p

^{9.} November 2010 | Institut für Kernphysik, TU Darmstadt | 19

experimentelles Programm

Protonenstreuung@

iTHEMBA

Überprüfe experimentell: $R(2_{fs}^+)_n > R(2_{ms}^+)_n$

- Informationen über Neutronendichte nicht direkt zugänglich
- ► messe Masseradien ($\rho_{\text{matter}} = \rho_n + \rho_p$):R(2⁺_{fs})_{matter} > R(2⁺_{ms})_{matter}

• messe Ladungsradien: $R(2_{fs}^+)_p \approx R(2_{ms}^+)_p$

Gliederung

- Einleitung und Motivation
- Ziel des Experiments
- experimentelle Umsetzung
 - Elektronenstreuung
 - Protonenstreuung
- 4⁺ gemischt-symmetrische Zustände
- Zusammenfassung

Grundlagen der Elektronenstreuung

- elektromagnetische Wechselwirkung: Sensitiv auf Protonen
- Prozess charakterisiert durch:

 $\begin{array}{c} \rightarrow \mbox{ Energie übertrag } E_x \\ \rightarrow \mbox{ Impuls übertrag } \vec{q} \end{array} \right\} \mbox{ unabhängig variierbar }$

- Messgröße: $|F(q)|^2 = (d\sigma/d\Omega)/(d\sigma/d\Omega)_{Mott}$

9. November 2010 | Institut für Kernphysik, TU Darmstadt | 22

Grundlagen der Elektronenstreuung

- elektromagnetische Wechselwirkung: Sensitiv auf Protonen
- Prozess charakterisiert durch:

 $\begin{array}{c} \rightarrow \mbox{ Energie übertrag } E_x \\ \rightarrow \mbox{ Impuls übertrag } \vec{q} \end{array} \right\} \mbox{ unabhängig variierbar }$

- Messgröße: $|F(q)|^2 = (d\sigma/d\Omega)/(d\sigma/d\Omega)_{Mott}$

Elektronenstreuspektrum

Zusammenhang: Formfaktor ⇔ Ladungsübergangsdichte

- messe F(q) um Ladungsdichte ρ (r) zu bestimmen
- komplette Dichte mit Strahlenergien des S-DALINAC nicht messbar

$\begin{array}{c} & & & \\ &$

$$\frac{F(2^+_{ms},q)}{F(2^+_{fs},q)} = \frac{f_c(2^+_{ms}) \cdot \sqrt{B(E2^+_{ms})} \cdot (1 - (q^2/14) \cdot R^2_{ms} + ...)}{f_c(2^+_{fs}) \cdot \sqrt{B(E2^+_{fs})} \cdot (1 - (q^2/14) \cdot R^2_{fs} + ...)}$$

0.7

0.4

0.0

0.1

0.2

 $q^2 (fm^{-2})$

0.3

0.4

Radien gleich wenn Verhältnis der Formfaktoren konstant

0.6

• gut erfüllt für die fünf Messpunkt: $R_{ms}^2 \approx R_{fs}^2$

0.5

 $q(fm^{-1})$

0.4

9. November 2010 | Institut für Kernphysik, TU Darmstadt | 26

 10^{-4}

0.3

Die Differenz der Ladungsradien

experimentelles Programm

Überprüfe experimentell: $R(2_{fs}^+)_n > R(2_{ms}^+)_n$

Informationen über Neutronendichte nicht direkt zugänglich

9. November 2010 | Institut für Kernphysik, TU Darmstadt | 27

Grundlagen der Protonenstreuung

- starke Wechselwirkung: Sensitiv auf Protonen und Neutronen
- Prozess charakterisiert durch:
- Messgröße: $d\sigma/d\Omega$

 $\begin{array}{c} \rightarrow \mbox{ Energie übertrag } E_x \\ \rightarrow \mbox{ Impuls übertrag } \vec{q} \end{array} \right\} \mbox{ unabhängig variierbar }$

Protonenstreuspektrum

- Winkelverteilung der Wirkungsquerschnitte sensitiv auf Masseradien
- Verschiebung beweist unterschiedliche Masseradien
- gute Beschreibung der Wirkungsquerschnitte durch das QPM

Zusammenhang: Wirkungsquerschnitt ⇔ Masseübergangsdichte

- Winkelverteilung der Wirkungsquerschnitte sensitiv auf Masseradien
- Verschiebung beweist unterschiedliche Masseradien
- gute Beschreibung der Wirkungsquerschnitte durch das QPM

^{9.} November 2010 | Institut für Kernphysik, TU Darmstadt | 32

Situation in ⁹⁴Mo

 charakteristische Winkelverteilung des gemischt-symmetrischen Zustandes

 kleinster Masseradius von allen gemessenen Quadrupole-Zuständen

 eindeutige Identifikation des gemischt-symmetrischen Zustandes über Protonenstreuung möglich

Gliederung

- Einleitung und Motivation
- Ziel des Experiments
- experimentelle Umsetzung
 - Elektronenstreuung
 - Protonenstreuung
- 4⁺ gemischt-symmetrische Zustände
- Zusammenfassung

- bisher bekannt: qudrupol gemischt-symmetrische Zustände
- großer B(M1)-Wert zwischen 4⁺₂ und 4⁺₁ Zuständen → Hinweis auf hexadecapol gemischt-symmetrischen Zustand?

► B(M1:4⁺₂ \rightarrow 4⁺₁)-Wert erhöht: analoge Situation zu 2⁺ Zuständen

starker experimenteller Hinweis auf MS-Charakter: Gibt es einen anderen Mechanismus?

QPM-Wellenfunktionen

QPM sagt hexadecapol MS-Zustand vorraus

$$\begin{split} |4_{\rm fs}^+\rangle &= 0.41 |1g_{9/2}^2\rangle_p + 0.89 |2d_{5/2}^2\rangle_n + ... \\ |4_{\rm ms}^+\rangle &= 0.85 |1g_{9/2}^2\rangle_p - 0.45 |2d_{5/2}^2\rangle_n + ... \end{split}$$

Mischung mit Zwei-Phononen Zustand

$$\begin{array}{l} |4_{1}^{+}\rangle = 0.79 |4_{fs}^{+}\rangle + 0.55 [2_{1}^{+} \otimes 2_{1}^{+}] + ... \\ |4_{2}^{+}\rangle = 0.78 |4_{ms}^{+}\rangle + 0.32 [2_{1}^{+} \otimes 2_{1}^{+}] + ... \end{array}$$

Test der QPM-Wellenfunktionen

	exp	theo	
B(E4)-Wert	-	4.5 W.u.	\checkmark
B(E4)-Wert	-	0.8 W.u.	\checkmark
B(M1)-Wert	$1.23(20)\mu_N^2$	$1.58 \mu_N^2$	\checkmark
$E(4_{1}^{+})$	1574 keV	1109 keV	X
$E(4_{2}^{+})$	2295 keV	2032 keV	\checkmark

TECHNISCHE UNIVERSITÄT DARMSTADT

Deformationsabhängigkeit des B(M1)-Wertes

- entgegengesetzte Deformationsabhängigkeit als Scherenmode
- Grund: Fragmentierung?
- bisher nicht verstanden

Zusammenfassung

- neue Signatur zur Identifikation eines MS-Zustandes unabhängig von B(M1)-Werten
 - kleiner Neutronenübergangsradius R_n(2⁺_{ms}) < R_n(2⁺_{fs})
 - Protonen- und Elektronenstreuung
 - 2⁺₂ in ⁹²Zr und 2⁺₃ in ⁹⁴Mo
 - MS-Zustand in deformierten Kernen?
- starker Hinweis auf einen hexadecapol MS-Zustand in ⁹⁴Mo im Rahmen des QPM
- Deformationsabhängigkeit des B(M1)-Wertes

^{9.} November 2010 | Institut für Kernphysik, TU Darmstadt | 40