

Christopher Walz¹, H. Fujita^{2,3}, A. Krugmann¹, P. von Neumann-Cosel¹, N. Pietralla¹, V. Yu. Ponomarev¹, A. Scheikh-Obeid¹ und J. Wambach^{1,4}

- ¹ Institut für Kernphysik, Technische Universität Darmstadt, Germany
- ² Department of Physics, Osaka University, Japan
- ³ iThemba LABS, South Africa
- ⁴ GSI Helmholtzzentrum für Schwerionenforschung, Germany

Gliederung

- Einleitung
- neue Signatur f
 ür gemischt-symmetrische Zust
 ände
- experimentelle Umsetzung
 - Elektronenstreuung
 - Protonenstreuung
- Zusammenfassung & Ausblick

TECHNISCHE UNIVERSITÄT DARMSTADT

TECHNISCHE UNIVERSITÄT DARMSTADT

$$|1g_{9/2}^2\rangle$$

 $|2d_{5/2}^2\rangle$ _____

 $\alpha |2d_{5/2}^2\rangle + \beta |1g_{9/2}^2\rangle$

^{21.} März 2011 | TU Darmstadt, Institut für Kernphysik | 5

TECHNISCHE UNIVERSITÄT DARMSTADT

Experimentelle Signatur

bisher Identifikation über großen $B(M1:2_{ms}^{+} \rightarrow 2_{1}^{+})$ -Wert $\approx 1 \mu_{N}^{2}$

Ziel: Finde neue Observable um gemischt-symmetrischen Zustand zu identifizieren

0.8

0.6

0.4

0.2

0.0

0.6

0.4

0.20.0

 $(\mu_{\rm N}^{\ 2})$

 $B(M1:2_i^+ \rightarrow 2_1^+)$

Observable: Die Übergangsdichte

experimentell nicht zugänglich

$$\sim \langle 2^{ ext{+}}_{ ext{ms}} || \hat{
ho} || 2^{ ext{+}}_{ ext{ms}}
angle$$

$$\sim \langle 0^{\scriptscriptstyle +} | \hat{
ho} | 0^{\scriptscriptstyle +}
angle$$

Observable: Die Übergangsdichte

experimentell nicht zugänglich

$$\sim \langle 2^{ ext{+}}_{ ext{ms}} || \hat{
ho} || 2^{ ext{+}}_{ ext{ms}}
angle$$

$$\sim \langle 2^{\scriptscriptstyle +}_{
m ms} || \hat{
ho} || 0^{\scriptscriptstyle +}
angle$$

$$\sim \langle 0^{\scriptscriptstyle +} | \hat{
ho} | 0^{\scriptscriptstyle +}
angle$$

TECHNISCHE UNIVERSITÄT DARMSTADT

 analysierte Observable: Übergangsdichte (QPM)

 unterschiedlich große Neutronübergangsradien: R(2⁺₁)_n > R(2⁺_{ms})_n

► gleich große Protonübergangsradien: $R(2_1^+)_p \approx R(2_{ms}^+)_p$

21. März 2011 | TU Darmstadt, Institut für Kernphysik | 11

r (fm)

8

 $\mathbf{2}$

0

8

2

 ${\bf r}^4 \rho_{\rm tr}({\bf r})~({\rm e~fm})$

 $^{4}
ho_{\mathrm{tr}}(\mathrm{r})$ (e fm)

TECHNISCHE UNIVERSITÄT DARMSTADT

► $|2_1^+\rangle = 0.33 |1g_{9/2}^2\rangle_p + 0.84 |2d_{5/2}^2\rangle_n + 0.42 |\text{Rest}\rangle$

►
$$|2_{ms}^{+}\rangle = 0.56 |1g_{9/2}^{2}\rangle_{p} - 0.53 |2d_{5/2}^{2}\rangle_{n} + 0.64 |\text{Rest}\rangle$$

TECHNISCHE UNIVERSITÄT DARMSTADT

$$|2_1^+\rangle = 0.33 |1g_{9/2}^2\rangle_p + 0.84 |2d_{5/2}^2\rangle_n + 0.42 |\text{Rest}\rangle$$

$$\begin{array}{l} |2_{ms}^{+}\rangle = 0.56 \; |1g_{9/2}^{2}\rangle_{p} \; - \\ 0.53 \; |2d_{5/2}^{2}\rangle_{n} \; + \; \begin{array}{c} 0.64 \; |\text{Rest}\rangle \end{array}$$

TECHNISCHE UNIVERSITÄT DARMSTADT

$$|2_{1}^{+}\rangle = 0.33 |1g_{9/2}^{2}\rangle_{p} + 0.84 |2d_{5/2}^{2}\rangle_{n} + 0.42 |\text{Rest}\rangle$$

$$|2_{ms}^{+}\rangle = 0.56 |1g_{9/2}^{2}\rangle_{p} - 0.53 |2d_{5/2}^{2}\rangle_{n} + 0.64 |\text{Rest}\rangle$$

TECHNISCHE UNIVERSITÄT DARMSTADT

$$\label{eq:21} \begin{split} \blacktriangleright \ |2_1^+\rangle &= 0.33 \ |1g_{9/2}^2\rangle_p \ + \\ 0.84 \ |2d_{5/2}^2\rangle_n \ + \ 0.42 \ |Rest\rangle \end{split}$$

►
$$|2_{ms}^{+}\rangle = 0.56 |1g_{9/2}^{2}\rangle_{p} - 0.53 |2d_{5/2}^{2}\rangle_{n} + 0.64 |\text{Rest}\rangle$$

TECHNISCHE UNIVERSITÄT DARMSTADT

►
$$|2_1^+\rangle = 0.33 |1g_{9/2}^2\rangle_p + 0.84 |2d_{5/2}^2\rangle_n + 0.42 |\text{Rest}\rangle$$

$$\begin{array}{l} \blacktriangleright \hspace{0.1cm} |2_{ms}^{+}\rangle = 0.56 \hspace{0.1cm} |1g_{9/2}^{2}\rangle_{p} \\ 0.53 \hspace{0.1cm} |2d_{5/2}^{2}\rangle_{n} + 0.64 \hspace{0.1cm} |\text{Rest}\rangle \end{array}$$

TECHNISCHE UNIVERSITÄT DARMSTADT

$$\begin{array}{l} \blacktriangleright \hspace{0.1 cm} |2_{ms}^{+}\rangle = 0.56 \hspace{0.1 cm} |1g_{9/2}^{2}\rangle_{p} \hspace{0.1 cm} \text{-} \\ 0.53 \hspace{0.1 cm} |2d_{5/2}^{2}\rangle_{n} + 0.64 \hspace{0.1 cm} |\text{Rest}\rangle \end{array}$$

TECHNISCHE UNIVERSITÄT DARMSTADT

- Informationen über Neutronendichte nicht direkt zugänglich
- ► messe Masseradien (\(\rho_{Masse} = \rho_n + \rho_p\): R(2⁺₁)_{Masse} > R(2⁺_{ms})_{Masse}

Protonenstreuung@iTHEMBA

• messe Protonenradien: $R(2_1^+)_p \approx R(2_{ms}^+)_p$

Elektronenstreuung@S-DALINAC

Differenz der Protonenradien

1.0 $^{92}{\rm Zr}({\rm e,e}')@63{\rm MeV}$ $F(2_{ms}^{+},q) / F(2_{1}^{+},q)$ $2_{\rm ms}$ 10^{-3} 0.8 $F(q)^2$ 0.6 10^{-4} 0.40.50.60.70.10.20.30.40.30.40.0 $q(fm^{-1})$ $q^{2}(fm^{-2})$ $f(2^{+})$ · $\sqrt{B(E2^{+})}$ · $(1 - (q^2/14) \cdot R^2 + ...)$ $F(2^{+} a)$

$$\frac{F(2^+_{11}, q)}{F(2^+_{1}, q)} = \frac{F(2^+_{11}, q)}{F(2^+_{11}) \cdot \sqrt{B(E2^+_{11})} \cdot (1 - (q^2/14) \cdot R_1^2 + ...)}$$

Radien gleich wenn Verhältnis der Formfaktoren konstant
 gut erfüllt für die fünf Messpunkte: R_{ms} ~ R₁

Differenz der Masseradien

- Winkelverteilung der Wirkungsquerschnitte sensitiv auf Masseradien
- Verschiebung beweist unterschiedliche Masseradien

Masseradien in ⁹⁴Mo

 gemischt-symmetrischer Zustand besitzt kleinsten Masseradius von allen gemessenen 2⁺ Zuständen

 eindeutige Identifikation des gemischt-symmetrischen Zustandes über Protonenstreuung möglich

^{21.} März 2011 | TU Darmstadt, Institut für Kernphysik | 22

neue Observable zur Identifikation eines gemischt-symmetrischen Zustandes
 messe Übergangsradien

Fall von ⁹²Zr und ⁹⁴Mo: R_n(2⁺_{ms}) < R_n(2⁺₁) → Verifikation in Kombination aus (e,e') und (p,p') Experimenten