

TECHNISCHE

Collective Quadrupole Modes in Nuclei – New Insights into Old Problems*

Peter von Neumann-Cosel Institut für Kernphysik, TU Darmstadt, Germany

N. Botha², O. Burda¹, J. Carter³, R.W. Fearick², S.V. Förtsch⁴, C. Fransen⁵, H. Fujita³, Y. Kalmykov, M. Kuhar, A. Lenhardt¹, R. Neveling⁴, N. Pietralla⁶, V.Yu. Ponomarev¹, A. Richter¹, A. Shevchenko, E. Sideras-Haddad³, R. Smit⁴ and J. Wambach¹

¹ Technische Universität Darmstadt ² University of Cape Town ³ University of the Witwatersrand

⁴ iThemba LABS, Somerset West ⁵ Universität zu Köln ⁶ State University of New York, Stony Brook

* Supported by DFG under contracs SFB 634 and 445 SUA 113/6/0-1.

634

- Quadrupole phonons as building blocks of low-energy structure
- High-resolution electron and proton scattering
- The case of ⁹⁴Mo
 - → symmetric and mixed-symmetric phonons
 - → purity of two-phonon states

- Pairing of nucleons to s- / d-bosons
- F-Spin: π boson: $F_0 = \frac{1}{2}$ boson: $F_0 = -1/2$

$$\frac{|\mathsf{N}_{\pi}-\mathsf{N}_{\upsilon}|}{2} \leq \mathsf{F} \leq \mathsf{F}_{\max} = \frac{\mathsf{N}_{\pi}+\mathsf{N}_{\upsilon}}{2}$$

- \rightarrow F = F_{max}: symmetric states
- \rightarrow F < F_{max}: mixed-symmetry states (ms)
- Q-phonon scheme:

 $Q_{s} = Q_{\pi} + Q_{v} \qquad | 2_{1}^{+} \rangle \propto Q_{s} | 0_{1}^{+} \rangle$

$$Q_{ms} = \frac{N}{2} \left(\frac{Q_p}{N_{\pi}} - \frac{Q_v}{N_v} \right) \qquad |2_{ms}^+\rangle \propto Q_{ms} |0_1^+\rangle$$

- Strong E2 transitions for decay of symmetric Q-phonon
- Weak E2 transitions for decay of ms Q-phonon
- Strong M1 transitions for decay of ms states to symmetric states

- The low-energy spectrum of ⁹⁴Mo is well studied and most one- and two-phonon states have been identified N.Pietrella et al, Phys. Rev. Lett. 83 (1999) 1303
 N.Pietrella et al, Phys. Rev. Lett. 84 (2000) 3775
 C.Fransen et al, Phys. Lett. B 508 (2001) 219
 C.Fransen et al, Phys. Rev. C 67 (2003) 024307
- Structure of basic phonons
- Purity of two-phonon states
- Study of 2⁺ states with (e,e') and (p,p')
 - → isoscalar / isovector decomposition
 - → sensitive to one-phonon components of the wave function

- High resolution required to resolve all 2⁺ states below 4 MeV
- Lateral dispersion matching techniques
- (e,e'):
 S-DALINAC, TU Darmstadt

$$E_e = 70 \text{ MeV}$$

 $\Theta = 93^\circ - 165^\circ$
 $\Delta E = 30 \text{ keV}$ (FWHM

(p,p´): SSC, iThemba LABS

$$E_p = 200 \text{ MeV}$$

 $\Theta = 7^\circ - 26^\circ$
 $\Delta E = 35 \text{ keV} (FWHM)$

TECHNISCHE UNIVERSITÄT DARMSTADT

LINTOTT- Spectrometer

Measured Spectra

Wave functions:

- Quasi-Particle Phonon Model (QPM)
 - → pure one- and two-phonon states
 - → full (up to 3 phonons)
- Shell Model
 - → ⁸⁸Sr core
 - → Surface Delta Interaction (SDI)
- Cross sections
 - → DWBA treatment
 - Effective nucleon-target interaction (Paris, Love-Franey)

QPM Predictions

One-Phonon Mixed-Symmetry State: $E_x = 2.067 \text{ MeV}$

Institut für Kernphysik

Radial Transition Charge Densities

two-step contributions?

5 – 10 % one-phonon admixture

• two-step contributions?

TECHNISCHE UNIVERSITÄT DARMSTADT

Coupled-Channel Analysis

Rdneixtworeptootvoon-phomoetricsstateecconffirmeed

FCHNISCHF

- Study of one- and two-phonon 2⁺ states in ⁹⁴Mo with high-resolution (e,e') and (p,p') experiments
- Combined analysis with QPM reveals
 - symmetric and mixed-symmetric character of one-phonon states
 - two-phonon symmetric state extremely pure
 - \rightarrow about 25% admixtures in the two-phonon mixed-symmetric wave function (mostly 3-phonon)
 - quantitatively consistent results after inclusion of two-step processes in (p,p')
- Shell model description moderate to poor
 - limited model space

- Introduction: Damping of giant resonances
- Evidence for fine structure of giant resonances
- Wavelet analysis and characteristic scales
- Dominant damping mechanisms
- Summary and outlook

634

SFB

 $\Delta L = 2 \Delta T = 0 \Delta S = 0$

- Pitthan and Walcher (Darmstadt, 1972)
- Centroid energy: $E_c \sim 63 \text{ A}^{-1/3} \text{ MeV}$
- Width
- Damping mechanisms?

Resonance decay width: $\Gamma = \Delta \Gamma + \Gamma \uparrow + \Gamma \downarrow$

SFB 634

Fine Structure of Giant Resonances

- High resolution is crucial
- Different probes but similar structures

- Global phenomenon?
 - Other nuclei
 - Other resonances
- Methods for characterization of fine structure?

• Goal: Dominant damping mechanisms

Fine Structure of the ISGQR

Not a Lorentzian

Institut für Kernphysik

Fine structure of the ISGQR is global

- Fluctuation analysis using autocorrelation function
- Doorway-state analysis
- Fourier analysis
- Entropy index method
- Local scaling dimension

Wavelet transform from signal processing

TECHNISCHE UNIVERSITÄT DARMSTADT

Summary of Scales

			Scales (keV)		
		<u> </u>		III	
ISGQR	⁵⁸ Ni	130	360 580 850	2800 4700	
	⁸⁹ Y	120	540 830	3100	
	⁹⁰ Zr	70	540	3100	
	¹²⁰ Sn	80	220 330 470	3200	
	¹⁴² Nd	130	420	1200 3200	
	²⁰⁸ Pb	110	500	1500 2600	
	¹⁶⁶ Er	150	250 880	2260 3260	
GTR	⁹⁰ Nb	80	300 950	2500	

- Three classes of scales
- Class I scales appear in all nuclei
- Class II scales change with mass number
- Class III scales gross structure (e.g. width)

No scales from 1p-1h states

• Coupling to 2p-2h generates fine structure and scales

Microscopic Models: Case of ²⁰⁸Pb

Experiment vs. Model Predictions

	1	II	III
Exp / keV	110	550	1500 2600
Models / keV			
SRPA	80	250 800	2100
QPM	110	770	1400
ETDHF	120	230	1000
ETFFS	130	310 570	2500

- Three classes of scales as in experiment
- Strong variations of class II and class III scales

Two types of dissipation mechanisms:

JNIVERSITÄT

- Gaussian distribution for $\langle 1p1h | V_{1p1h}^{2p2h} | 2p2h \rangle$ RMT:
- deviations at large and at small m.e. QPM:
- Large m.e. define the collective damping mechanism
- Small m.e. are responsible for the non-collective damping

- Collective part:
- Non-collective part:

all scales no prominent scales

echnische

UNIVERSITÄI

- Gaussian distribution for coupling matrix elements (RMT)
- Level spacing distribution according to GOE
- Average over statistical ensemble

- Similar results as for the non-collective damping mechanism
- Generic behavior of the non-collective damping?

634

- Observed for the first time in a heavy nucleus
- Asymmetric fluctuations
 - Selectivity: $J^{\pi} = 1^+ \rightarrow$ level density

Institut für Kernphysik

Discrete Wavelet Analysis

Institut für Kernphysik

Discrete: $\delta E = 2^{j}$ and $E_x = k \delta E$ with j, k = 1, 2, 3, j

- Orthogonal basis of wavelet functions
- Exact reconstruction of the spectrum is possible
- Relevance of scales

Resolution is limited to ranges of scales

Institut für Kernphysik

634

SFB

Reconstruct the spectrum using important scales

 $\sigma_{r}(E) = A8 + D8 + D6 + D4 + D3 \sigma_{r}(E) = A8 + D7 + D5 + D2 + D1$

- Relevance of scale regions can be tested
- DWT and CWT results are consistent

FCHNISCHF

- Fine structure is a general phenomenon of giant resonances
 - \rightarrow over a whole mass range
 - \rightarrow in different types of resonances
 - Quantitative analysis with wavelets
 - Origin of scales:
 - \rightarrow collective damping: low-lying surface vibrations
 - → non-collective damping: stochastic coupling
 - Relevance of scales for discrete wave transform
 - Model-independent level densities

- Goal: next step in the hierarchy: 3p-3h
 → improvement of experimental resolution
- Contribution of other damping mechanisms
 - → escape width
 - → Landau damping
- Quantitative analysis of scales:
 - \rightarrow experiment and models

Radial Transition Charge Densities

Application: ²⁰⁸Pb(p,p')

Achromatic mode

Lateral dispersion matching

 Δ E ~ 30 keV

Scales and Fluctuations

- Collective part:

Non-collective part: no prominent scales

all scales

Stochastic coupling

Important for astrophysics network calculations

TECHNISCHE

Autocorrelation function of stationary spectrum d(E)

Wavelet transform of spectrum σ (E)

$$C(\in = 0) - 1 \sim \langle D \rangle$$

Background?

 $\int E^n \Psi(E) dE = 0, \quad n = 0, 1 \dots m - 1$

Background suppression

Extraction of the mean level spacing

DWT: Background and Stationary Spectrum

634