

TU DARMSTADT

Tokyo 2005

Magnetic Dipole and Gamow-Teller Modes: Quenching, Fine Structure and Astrophysical Implications

- Why study the magnetic dipole response in nuclei ?
 - 50 years Arima-Horie effect
 - quenching of spin-isospin strength and the rôle of (2p-2h)
 - configurations: ⁴⁸Ca revisited
- Current developments in the field
 - N=28 isotones: fine structure distribution of M1 strength and "state of the art"
 - shell-model calculations
 - fine structure of the spin-flip GTR, fluctuations, wavelets, scales and
 configuration mixing
- Astrophysical applications of high-precision M1 and GTR data
 - supernova dynamics and nucleosynthesis

A. Byelikov, Y. Fujita, Y. Kalmykov, K. Langanke, G. Martinez-Pinedo, P. von Neumann-Cosel,

V. Ponomarev, A. R., A. Shevchenko, J. Wambach within Darmstadt / Gent / Groningen / Münster / Osaka Collaboration Supported by DFG under contracts SFB 634 and 446 JAP 113/267/0-1

Why study the magnetic dipole response in nuclei?

(i) Magnetic moments: *diagonal* matrix elements of **T**(M1)

Why study the magnetic dipole response in nuclei?

(ii) Magnetic dipole transitions: *off-diagonal* matrix elements of **T**(M1)

$$\mathsf{B}(\mathsf{M1}) \sim \left| \left\langle \vec{j}_f \left| e^{i\vec{q}\vec{r}} \sum_i (g_l^i \vec{l}_i + g_s^i \vec{s}_i) \right| \vec{j}_i \right\rangle \right|^2$$

• *neutron* M1 *spin-flip* excitations

- $0\hbar\omega \dots n\hbar\omega$; subnuclear dof's
- quenching of μ 's and B(M1)'s
- neutron and proton M1 excitations
 - spin and orbital effects
 - isovector and isoscalar effects
- proton M1 excitations
 - orbital ("scissors mode")

Why study the magnetic dipole response in nuclei?

(iii) Connection to other processes involving the spin operator

• GT β decay, GT GR's, (p,n), (n,p), (p,p'), (d,²He), (³He,t) ... reactions

• quenching of $\vec{\sigma} \cdot \vec{\tau}$ strength: a mechanism similar to 2nd order configuration mixing (2p - 1h) of 2p - 2h configurations is mostly responsible

(iv) Astrophysical implications

Spin-isospin strength suppression

• $\vec{\sigma} \cdot \vec{\tau}$ strength $\approx 50\%$ reduced

⁴⁸Ca as a prime example of quenching

⁴⁸Ca as a prime example of quenching

⁴⁸Ca as a prime example of quenching

still sizable discrepancies between experiment and theory

M1 strength: two alternative approaches

• 2nd RPA (2p - 2h) + $n\hbar\omega$

• SM (np - nh) + 0 $\hbar\omega$ (one major shell)

• examples: N=28 isotones

N=28 isotones: experiment vs. shell model predictions

• data show considerable fine structure: sign of configuration mixing

global description quite good (apart from the interaction)

N=28 isotones: extraction of quenching factor

⁵²Cr: experiment vs. "state of the art" SM calculations

still significant differences between different effective interaction

• knowledge of these strength distributions are important for astrophysics

First example: v scattering cross sections on nuclei

- (i) Important for
 - r process
 - v process
 - v detectors
 - supernova physics
 - opacities and thermalization during collapse phase
 - delayed explosion mechanism
 - explosive nucleosysnthesis
- (ii) ν scattering so far not included in supernova modeling

Experimental information

• direct:
$${}^{12}C$$
, $J^{\pi} = 1^+$, $T = 1$, $E_x = 15.11$ MeV

• indirect: low energy v's \Rightarrow low multipolarity transitions

• idea: extract GT₀ strength in nuclei from M1 response

$$T(M1)_{iv} = \sqrt{\frac{3}{4\pi}} \sum_{i} \left[\vec{l}_i \vec{t}_{zi} + (g_s^p - g_s^n) \vec{s}_i \vec{t}_{zi} \right] \mu_N$$
$$T(GT_0) = 2 \sum_{i} \left[\frac{1}{2\pi} \sum_{i} \vec{t}_{zi} \right]$$

v nucleus scattering cross section

•
$$\sigma(i \to f) = \frac{G_F^2}{\pi} (E_v - E_x)^2 B(GT_0)$$

B(GT₀) from isovector M1 strength orbital and isoscalar pieces small

test cases: ⁵⁰Ti, ⁵²Cr, ⁵⁴Fe with precision data on M1 strength from (e,e') experiments

Differential v nucleus cross section

- $E_v(final) = E_v E_x(GT_)$
- good agreement between experiment and theory
 shell-model results can
 be used for systematic treatment

Influence of finite temperature

- thermally populated excited states in the nucleus
- increase of GT₀ strength
- upscattering of neutrinos

Influence of finite temperature

• upscattering of neutrinos increases cross section at low energies

Return to fine structure in the strength distribution: sign of configuration mixing

A=58: GT_{-} , GT_{0} and GT_{+} strength distributions

- fine structure is evident in all 3 excitation modes
- complete isospin decomposition possible
- great experimental progress is a challenge to theory

Fine structure of the spin-flip GTR in a heavy nucleus

• fine structure observed for the first time

Fine structure of the spin-flip GTR

high energy resolution

asymmetric fluctuations

What is the physics behind the fluctuations ?

characteristic scales
 wavelet analysis

 comparison of those scales with nuclear model predictions including various levels of configuration mixing

results: 2p - 2h mixing is predominant => spreading of strength => quenching

 method is complementary to Hide Sakai's approach where this spreading of strength to high excitation energy is directly determined

Wavelet analysis

Extraction of scales from the data

$$\begin{array}{c} \widehat{\text{Op}} \\ \widehat{\text{Stund}} \\ \widehat{\text{Stund}} \\ \widehat{\text{Op}} \\ 4 \\ \theta = 0^{\circ} \\ M_{\text{M}} \\ M_{\text{M} \\ M_{\text{M}} \\ M_{\text{M}} \\ M_{\text{M}} \\ M_{\text{M}} \\ M_{M$$

scales at 80, 300, 950, 2500 keV

Extraction of scales from the RPA

Extraction of scales from the QPM

 2 phonon QPM is equivalent to 2nd RPA and yields scales at 100, 380, 950, 1600 keV very similar to experiment

Scales of the spin-flip GTR in ⁹⁰Nb

• very similar scales

scales are a global phenomenon of giant resonances (GQR, GDR, ...)

Test of physical significance of these scales: discrete wavelet analysis

Decomposition of spectra

Decomposition of ⁹⁰**Zr(**³**He,t)**⁹⁰**Nb spectrum**

Discrete wavelet transform: reconstructed spectra

- DWT and CWT give the same range of scales
- scales are quantitative measure of 2p 2h configuration mixing

Spreading of a GR due to the coupling to doorway states and decay into compound nucleus states

• with present energy resolution 2p-2h doorway states have been identified

Second example: determination of spin and parity separated level densities – important for astrophysics

Third example: nucleosynthesis of ¹³⁸La and ¹⁸⁰Ta and the rôle of the GT strength distribution

• prediction of production rates in massive starts exists (Rauscher et al., 2002)

Importance of different processes

• ¹³⁸La: produced in a pure v process of the type $(v_e, e^-) \Rightarrow GT_dominant$

Prediction of the cross section

- but sizeable GT_ strength below E_{th}
- high-resolution measurement of GT₁ strength distribution in ¹³⁸La and ¹⁸⁰Ta is mandatory

Comparison of experiment with RPA prediction

• absolute normalization of B(GT) from comparison of (³He,t) to β decay

configuration mixing leads to large differences between experiment and RPA

Comparison of experiment with RPA prediction

B(GT_)_{exp} ≈ ½ B(GT_)_{the} ⇒ problem

• use of experimental B(GT) in supernova models is underway

- study of M1 and GT modes are ideal testing grounds for configuration mixing which has been proposed first by Arima and Horie 50 years ago for magnetic moments
- most of the information rests in the fine structure of spectra
 highest
 experimental energy resolution is a prerequisite to obtain this information

 first rate nuclear structure experiments and many-body calculations are very important for astrophysics

S-DALINAC