

Light-Ion Induced Nuclear Physics at iThemba LABS – is There a Future? *

Peter von Neumann-Cosel

Institut für Kernphysik, Technische Universität Darmstadt, Germany

- Setting the frame
- Progress in physics through
 - → resolution
 - → selectivity
 - → new observables
- Closing remarks

^{*} Supported by DFG under contracts SFB 634, Ne 679/2-2, and by the NRF

Comparable Research Centers Worldwide

Some Options I Will not Discuss

- Radioactive beams → Second accelerator
- Intermediate energy physics (meson production, structure of the nucleon) → energy upgrade
- Precision tests of the standard model
 - production of selected isotopes, slowing and capturing, traps

Comparable Research Centers Worldwide

Possible Routes

- Progress in physics is closely linked to progress in experimental techniques
 - → resolution
 - → selectivity
 - → new observables a polarimeter

examples

- Use of complementary reactions amplifies the physics insight
 - → combine hadronic and electromagnetic probes

First Example: Fine Structure of Giant Resonances

 $\frac{\Delta E}{TRIUMF} \approx 1 \frac{MeV}{(1981)}$

broad bump Lorentzian centroid and width

 $\frac{\Delta E}{\Delta E} \approx \frac{40 \text{ keV}}{1000 \text{ keV}}$

fine structure not a Lorentzian!

Fine Structure of Giant Resonances

- Different probes but similar structures
- Reproducable \rightarrow fine structure are physics not statistical fluctuations

Wavelet Analysis

Wavelet Analysis of ²⁰⁸Pb

Scales characterize the fine structure

A. Shevchenko et al., Phys. Rev. Lett. 93, 122501 (2004)

Fine Structure of the Spin-Flip GT Resonance

Fine structure of giant resonances is a global phenomenon, e.g. observed also in the GT resonance (a spin-isospin flip mode) Y. Kalmykov et al., Phys. Rev. Lett. 96, 012502 (2006)

Second Example: Mixed-Symmetry States in ⁹⁴Mo

- IBM \rightarrow pairing of nucleons to s- / d-bosons
- IBM-2 \rightarrow F-spin: π boson: $F_0 = 1/2$ v boson: $F_0 = -1/2$

$$\frac{|\mathsf{N}_{\pi}-\mathsf{N}_{\nu}|}{2} \leq \mathsf{F} \leq \mathsf{F}_{\max} = \frac{\mathsf{N}_{\pi}+\mathsf{N}_{\nu}}{2}$$

- \rightarrow F = F_{max}: symmetric states
- \rightarrow F < F_{max}: mixed-symmetry states (ms)

Q-phonon scheme:

$$Q_{s} = Q_{\pi} + Q_{\nu} \qquad |2_{1}^{+}\rangle \propto Q_{s} |0_{1}^{+}\rangle$$
$$Q_{ms} = \frac{N}{2} \left(\frac{Q_{\pi}}{N_{\pi}} - \frac{Q_{\nu}}{N_{\nu}}\right) \qquad |2_{ms}^{+}\rangle \propto Q_{ms} |0_{1}^{+}\rangle$$

- Are ms states elementary excitations like low-energy surface vibrations (phonons)?
- Coupling to multiphonon states
 - → harmonic?
 - → pure?

Signatures of MS States

Strong E2 transitions for decay of symmetric Q-phonon

- Weak E2 transitions for decay of ms Q-phonon
- Strong M1 transitions for decay of ms states to symmetric states

Test case ⁹⁴Mo

N.Pietralla et al., Phys. Rev. Lett. 83, 1303 (1999); Phys. Rev. Lett. 84, 3775 (2000) C.Fransen et al., Phys. Lett. B 508, 219 (2001); Phys. Rev. C 67, 024307 (2003)

Combined Study of ⁹⁴Mo(e,e') and ⁹⁴Mo(p,p')

- Complete observation of all 2⁺ states up to 4 MeV required
 high resolution
- Sensitive to one-phonon components of the wave functions
- Mixed-symmetry isovector excitation in the valence shell
 - → isoscalar / isovector decomposition
- UCT / U Cologne / TU Darmstadt / iThemba LABS / Wits collaboration

Data

One-Phonon MS State

Phonon character confirmed

O. Burda et al., Phys. Rev. Lett. (to be published)

Selectivity

Selectivity can be achieved by

- Kinematics
 - → example: 0° inelastic proton scattering
- Coincidence experiments
 - → example: isospin structure of the pygmy dipole resonance from $(\alpha, \alpha' \gamma)$

3rd Example: Inelastic Proton Scattering under 0°

- At 0° and intermediate energies (100 400 MeV/u)
 GT mode selectively excited
- Gamow-Teller: $\Delta L = 0$, $\Delta S = 1$, $\Delta T = 1$

Isospin Symmetry

A = 58

GT_

 GT_0

H.Fujita et al., EPJ (2002) W.Mett

W.Mettner et al., NPA (1987) M.Hagemann et al., PLB (2005)

Benchmark tests of modern microscopic nuclear theory

GT Strengths in Nuclei and Supernova Physics

- Determine late precollapse stages of massive stars
 - → properties of "iron" core
- Explosive nucleosynthesis during the supernova shock wave
- Example: neutral current neutrino scattering on nuclei

Can State-of-the-Art Shell-Model Be Used to Predict the GT₀ Strength?

Shell model works reasonably

• Probe: B(M1) from (e,e') $\propto |M_S \pm M_L|^2 \rightarrow Spin$ dominant

v – Nucleus Scattering Cross Sections

K.Langanke, G.Martinez-Pinedo, PvNC, A.Richter, Phys. Rev. Lett. 93, 202501 (2004)

Inelastic Proton Scattering under 0°

• Goal: extract
$$GT_0$$
 from $(p,p') \propto |M_s|^2$

- Very difficult: beam scattering, suppression of elastic scattering
- But very rewarding if combined with high resolution
- Initiative at iThemba LABS by UCT / TU Darmstadt / U Gent / iTL / Wits collaboration (with support from experts from RCNP and U Notre Dame)

Very Recent Results from RCNP: ⁴⁸Ca

Very Recent Results from RCNP: ⁴⁸Ca

Weak components of the M1 strength
 A. Tamii et al., to be published

4th Example: Isospin Structure of the PDR from $(\alpha, \alpha' \gamma)$ Coincidence Experiments

E1 Response

- Two-phonon state $(2^+ \otimes 3^-)$
- Pygmy dipole resonance (PDR)
- Giant dipole resonance (GDR)

PDR in ²⁰⁸Pb

Also established at other shell closures (⁴⁸Ca, N=82)
 A. Zilges et al., Phys. Lett. 542B, 43 (2002)
 T. Hartmann et al., Phys. Rev. Lett. 93, 192501 (2004)

Theoretical Interpretation of the PDR in ²⁰⁸Pb

Very good description by Quasiparticle Phonon Model including complex configurations

Isospin Nature of the Mode

PDR charge transition density largely isoscalar

But surface neutron density oscillations

PDR from Coulomb Breakup in Exotic Nuclei

Relation to E1 strength at threshold in stable nuclei? P. Adrich et al., Phys. Rev. Lett. 95, 132501 (2005)

0

Experimental Test of the Isospin Character of the PDR

Isospin character of PDR

- → use (α, α') : pure isoscalar response but resolution insufficient in heavy nuclei
- \rightarrow ($\alpha, \alpha' \gamma$) with Ge detectors challenging because of background
- feasibility study at KVI
 TU Darmstadt / KVI collaboration

Setup at KVI

Total photopeak efficiency: 0.5% at 1.33 MeV
 D.Savran et al., Nucl. Inst. Meth. A (in press)

¹⁴⁰Ce(α,α΄γ)

Selectivity by gating on g.s. and 2⁺ decay

¹⁴⁰Ce($\alpha, \alpha' \gamma$) vs. ¹⁴⁰Ce(γ, γ')

New Observables – a Polarimeter

- Polarization observables help to unravel
 - → nuclear structure
 - → properties of the effective NN interaction

Polarization transfer

- \rightarrow longitudinal spin flip probability S_{LL} = (1 D_{LL}) / 2
- → transverse spin flip probability S_{SS} (or S_{nn}) = (1 D_{SS}) / 2
- → total spin transfer $\Sigma = [3 (D_{LL} + D_{SS} + D_{NN})] / 4$

Application to $J^{\pi} = 1^+$ states in ¹²C

A.Tamii et al., Phys. Lett. B 459, 61 (1999)

5th Example: EURO SUPERNOVA Detector at KVI and Applications

Focal Plane Detector (FPDS): - 2 VDCs

Focal Plane Polarimeter (FPP):

- 4 MWPCs
- graphite analyzer

Electronics:

- fast readout
- VDC readout by pipeline TDCs
- VDC decoding using imaging technics
- DSP based online analysis

Example: Spinflip Strength in ⁴⁸Ca

⁴⁸Ca(\vec{p}, \vec{p}'), E₀ = 172 MeV, Θ = 9.5°

Unique resolution and statistics

Spinflip Cross Sections in ⁵⁸Ni

F.Hofmann et al., Phys. Lett. B 612, 165 (2005), Phys. Rev. Lett. (to be published)

Concluding Remarks: Connection to Radioactive Beam Facilities

 All major radioactive beam facilities have programs to study collective nuclear modes with light-ion reactions in inverse kinematics

Example: R³B Project at FAIR (GSI Upgrade)

Concluding Remarks: Connection to Radioactive Beam Facilities

- All major radioactive beam facilities have programs to study collective nuclear modes with light-ion reactions in inverse kinematics
- Reaction mechanism becomes an issue again
- Effective NN interaction remains an issue

→ precision studies on stable targets needed

Concluding Remarks: Possible Options at iThemba LABS

- High-resolution plus 0° at the spectrometer
 - → strong physics case!
- Combine with (parts of) AFRODITE
 - → promises real physics surprises!
- A polarimeter allowing high data rates
 - → manifold use
- Some options to think about
 - → a second large solid-angle spectrometer
 - neutron and charged particle detector arrays (but state-of-the-art)

Is there a future for light-ion induced Nuclear Physics at iThemba LABS?

YES, there is - and it could be bright

High-Resolution GT₂ Strength from 0° Charge-Exchange Reaction

One-Phonon MS State

Phonon character confirmed

O. Burda et al., Phys. Rev. Lett. (to be published)

Symmetric Two-Phonon State

very pure

two-step contributions

→ coupled-channel analysis

Origin of Scales: Decay of Giant Resonances

 \rightarrow talk at Wednesday, 13:40

v-p Process

PRL 96, 142502 (2006)

PHYSICAL REVIEW LETTERS

week ending 14 APRIL 2006

Neutrino-Induced Nucleosynthesis of A > 64 Nuclei: The νp Process

C. Fröhlich,¹ G. Martínez-Pinedo,^{2,3} M. Liebendörfer,^{4,1} F.-K. Thielemann,¹ E. Bravo,⁵ W. R. Hix,⁶ K. Langanke,^{3,7} and N. T. Zinner⁸

¹Departement für Physik und Astronomie, Universität Basel, CH-4056 Basel, Switzerland
²ICREA and Institut d'Estudis Espacials de Catalunya, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain ³Gesellschaft für Schwerionenforschung, D-64291 Darmstadt, Germany ⁴Canadian Institute for Theoretical Astrophysics, Toronto, Ontario M5S 3H8, Canada ⁵Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, E-08034 Barcelona, Spain ⁶Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ⁷Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany ⁸Institute for Physics and Astronomy, University of Århus, DK-8000 Århus C, Denmark (Received 10 November 2005; published 10 April 2006)

We present a new nucleosynthesis process that we denote as the νp process, which occurs in supernovae (and possibly gamma-ray bursts) when strong neutrino fluxes create proton-rich ejecta. In this process, antineutrino absorptions in the proton-rich environment produce neutrons that are immediately captured by neutron-deficient nuclei. This allows for the nucleosynthesis of nuclei with mass numbers A > 64, making this process a possible candidate to explain the origin of the solar abundances of 92,94 Mo and 96,98 Ru. This process also offers a natural explanation for the large abundance of Sr seen in a hyper-metal-poor star.

DOI: 10.1103/PhysRevLett.96.142502

PACS numbers: 26.30.+k, 25.30.Pt, 97.60.Bw

Asymmetries of E1 transitions in (\vec{p},\vec{p}') Example ²⁰⁸Pb

Prediction of toroidal E1 mode with vortex current distribution Signature in asymmetries?

Symmetric Two-Phonon State

very pure

two-step contributions

→ coupled-channel analysis