

New Results from the S-DALINAC*

Peter von Neumann-Cosel

Institut für Kernphysik, Technische Universität Darmstadt, Germany

- S-DALINAC and its research program
- Electro-induced deuteron breakup at the threshold
- Charge radius of the proton
- Mixed-symmetry states as building blocks of low-energy structure – ⁹⁴Mo
- New insight into the electric Pygmy Dipole Resonance

^{*} Supported by DFG under contract SFB 634

Experiments at the S-DALINAC

3-130 MeV c.w.

Primordial Nucleosynthesis

• D, ³He, ⁴He, ⁷Li are synthesized

Test of Cosmological Standard Model

 Abundances depend on baryon/photon ratio (baryon density)

Observational constraints

S. Burles et al., Phys. Rev. Lett. 82, 4176 (1999)

Uncertainty of ⁷Li Abundance

S. Burles et al., Phys. Rev. Lett. 82, 4176 (1999)

$p(n,\gamma)d$: Data and Predictions

- No data close to threshold
- M1 dominates
- M1/E1 ratio \rightarrow talk of H. Weller

EFT calculations: S. Ando et al., Phys. Rev. C, in press

Electron Scattering at 180°

• At 180° selective excitation of transverse cross section \rightarrow M1 enhanced

D(e,e') at 180°

• Good energy resolution: $\Delta E = 45 \text{ keV}$ (FWHM)

Comparison to Potential Model Calculation

- Absolute and relative normalization agree within 6%
- Excellent agreement with potential model (H. Arenhövel)

$p(n,\gamma)d$: Data and Model Predictions

Deuteron GDH Sum Rule

• Impulse approximation $\rightarrow D \approx p + n$

$$\rightarrow \int_{\mathsf{E}_{\pi}}^{\infty} \mathsf{GDH}_{\mathsf{D}} = 204 \ \mu \mathsf{b} + 232 \ \mu \mathsf{b} = 436 \ \mu \mathsf{b}$$

Low-energy part dominated by resonance at threshold

• With reasonable assumptions $\sigma_P(E) - \sigma_A(E) = -3\sigma_{M1}$

Deuteron GDH Structure

R. Weller and W. Ahmed, Mod. Phys. Lett. A 18, 1569 (2003)

present (e,e') data will provide a sensitive test in the threshold region

Charge Radius of the Proton

• New high-precision measurement needed

New Experiment

Setup

472 mm

Online Results

Mixed-symmetry states in ⁹⁴Mo

• IBM \rightarrow pairing of nucleons to s- / d-bosons • IBM-2 \rightarrow F-spin: π boson: $F_0 = 1/2$ ν boson: $F_0 = -1/2$ $\stackrel{|N_{\pi} - N_{\nu}|}{2} \leq F \leq F_{max} = \frac{N_{\pi} + N_{\nu}}{2}$ $\rightarrow F = F_{max}$: symmetric states $\rightarrow F < F_{max}$: mixed-symmetry states (ms) • Q-phonon scheme: $Q_s \propto Q_{\pi} + Q_{\nu}$ $|2_1^+ \rangle \propto Q_s |0_1^+\rangle$

$$\mathbf{Q}_{\mathrm{ms}} \propto \frac{\mathbf{N}}{2} \left(\frac{\mathbf{Q}_{\pi}}{\mathbf{N}_{\pi}} - \frac{\mathbf{Q}_{\nu}}{\mathbf{N}_{\nu}} \right) \qquad |\mathbf{2}_{\mathrm{ms}}^{\dagger}\rangle \propto \mathbf{Q}_{\mathrm{ms}} |\mathbf{0}_{1}^{\dagger}\rangle$$

- Are ms states elementary excitations like low-energy surface vibrations (phonons)?
- Coupling to multiphonon states
 - → harmonic?
 - → pure?

Signatures of MS States

Strong E2 transitions for decay of symmetric Q-phonon

- Weak E2 transitions for decay of ms Q-phonon
- Strong M1 transitions for decay of ms states to symmetric states

N. Pietralla et al., Phys. Rev. Lett. 83, 1303 (1999); Phys. Rev. Lett. 84, 3775 (2000) C. Fransen et al., Phys. Lett. B 508, 219 (2001); Phys. Rev. C 67, 024307 (2003)

Combined Study of ⁹⁴Mo(e,e') and ⁹⁴Mo(p,p')

- Complete observation of all 2⁺ states up to 4 MeV required
 → high resolution
- Sensitive to one-phonon components of the wave functions
- Mixed-symmetry ↔ isovector excitation in the valence shell
 - \rightarrow isoscalar / isovector decomposition
- UCT / U Cologne / TU Darmstadt / iThemba LABS / Wits collaboration

Data

One-Phonon MS State

Phonon character confirmed

O. Burda et al., Phys. Rev. Lett. (to be published)

Electric Dipole Response in Nuclei

- Two-phonon state $(2^+ \otimes 3^-)$
- Pygmy dipole resonance (PDR)
- Giant dipole resonance (GDR)

PDR in ²⁰⁸Pb

Theoretical Interpretation of the PDR in ²⁰⁸Pb

Very good description by Quasiparticle Phonon Model including complex configurations

Nature of the Mode

PDR charge transition density largely isoscalar

But surface neutron density oscillations

PDR from Coulomb Breakup in Exotic Nuclei

Relation to E1 strength at threshold in stable nuclei?
 P. Adrich et al., Phys. Rev. Lett. 95, 132501 (2005)

PDR in the Sn Isotope Chain

• Recent study of 112,120 Sn(γ,γ')

Connection to E1 Strength above the Threshold in Stable Nuclei

Low Energy Photon Tagger @ S-DALINAC NiederEnergiePhotonenTagger

• High-resolution measurement (< 0.25%) of photon induced reaction rates in the energy range 8 MeV < E_{γ} < 20 MeV

Systematics of the PDR at N = 82

Trend confirmed by ¹³⁶Xe?

0

Gas Target for ¹³⁶Xe(γ , γ')

- Titan walls
- High pressure
 50 bar ²/₂ 700 mg ¹³⁶Xe
- $S_n = 8.06 \text{ MeV}$ $\rightarrow E_0 = 8.2 \text{ MeV}$

Preliminary Result for ¹³⁶Xe

- Similar fragmentation
- **Φ** ΣB(E1) smaller than ¹³⁸Ba
- \rightarrow no simple relation to N/Z ratio

Experimental Test of the Isospin Character of the PDR

Isospin character of PDR

- → use (α, α') : pure isoscalar response but resolution insufficient in heavy nuclei
- \rightarrow (α , $\alpha'\gamma$) with Ge detectors challenging because of background
- → feasibility study at KVI TU Darmstadt / KVI collaboration

Setup at KVI

Total photopeak efficiency: 0.5% at 1.33 MeV
 D. Savran et al., Nucl. Inst. Meth. 561, 267 (2006)

¹⁴⁰Ce(α,α΄γ)

Selectivity by gating on g.s. and 2⁺ decay

¹⁴⁰Ce($\alpha, \alpha' \gamma$) vs. ¹⁴⁰Ce(γ, γ')

Is the PDR a superposition of two modes?

0

Summary

- Broad research program in few-body physics, structure and astrophysics
- Some highlights:
 - \rightarrow D(e,e') at 180° close to threshold
 - \rightarrow charge radius of the proton
 - \rightarrow mixed-symmetry states in ⁹⁴Mo
 - \rightarrow new aspects of the E1 pygmy resonance

>

One-Phonon MS State

Phonon character confirmed

O. Burda et al., Phys. Rev. Lett. (to be published)

Symmetric Two-Phonon State

very pure

two-step contributions

 \rightarrow coupled-channel analysis