

2007

Nuclear Structure in Astrophysics – Recent Examples from the S-DALINAC

- S-DALINAC and research program an overview
- Selected examples:
 - Deuteron electrodisintegration under 180° and its importance for the primordial nucleosynthesis of the lightest nuclei
 - Possible role of ⁹Be in the production of ¹²C
 - Electron scattering on ¹²C and the structure of the Hoyle state
 - Electron scattering on *fp*-shell nuclei and supernova inelastic neutrinonucleus cross sections
 - Neutrino nucleosynthesis of the exotic odd-odd nuclei ¹³⁸La and ¹⁸⁰Ta

Supported by the SFB 634 of the Deutsche Forschungsgemeinschaft

Experiments at the S-DALINAC

Status

- Nuclear resonance fluorescence
- (e,e') and 180° experiments
- High-resolution (e,e') experiments

SFB

- Polarized electron source
- 14 MeV bremsstrahlung
- 100 MeV bremsstrahlung for polarizability of the nucleon

Photon tagger

Deuteron electrodisintegration under 180°

- Astrophysical motivation: Big-Bang nucleosynthesis
- Experiment: 180° electron scattering
 - High selectivity
 - High energy resolution
- Precision test of theoretical models
 - NN potentials
 - EFT
- Summary and outlook

N. Ryezayeva et al., to be published

Primordial nucleosynthesis

• D, ³He, ⁴He, ⁷Li are synthesized

Test of cosmological standard model

- Abundances depend on baryon/photon ratio (baryon density)
- Observational constraints: WMAP disagrees with spectroscopic information and/or BBN
- Critical density derived from ⁴He and ⁷Li is different from D

Adopted from A. Coc et al., Ap. J. 600, 544 (2004)

Uncertainty of ⁷Li abundance

- Largest uncertainty from *p(n,γ)d* reaction
- Relevant energy window
 15 200 keV above
 threshold

S. Burles *et al.*, PRL 82, 4176 (1999)

$d(\gamma, n)p$: data and predictions

- Potential model (AV18) calculations by H. Arenhövel
- EFT calculations (J.-W. Chen and M.J. Savage, S. Ando et al.) are very similar
- Scarce data at the threshold
- M1 dominates: d(e,e') at 180°

Why electron scattering under 180°?

Scattering at 180° is ideal for measuring transverse excitations: M1 enhanced

180° system at the S-DALINAC

Decomposition of the spectra

Absolute and relative normalization agree within 5 - 6%

Comparison to potential model and EFT calculations

Excellent agreement with potential model (H. Arenhövel)

• Deviations for EFT (H. Griesshammer) at higher q

Extraction of the astrophysical $np \rightarrow d\gamma$ **cross section**

•
$$\frac{d\sigma}{d\Omega}(\theta = 180^\circ, q) \sim F_T^2(q)$$

•
$$B(M1,q) \sim \frac{1}{q^2} F_T^2(q)$$

• For $q \to k$ (photon point) take *q*-dependence of B(*M*1,*q*) from elastic scattering $\to \Gamma_{\gamma}$

•
$$\sigma(d\gamma \to np) \sim \frac{1}{E_{\gamma}^2} \frac{\Gamma_n \Gamma_{\gamma}}{(E_{\gamma} - E_R)^2 + \Gamma^2/4}$$

• Detailed balance $\rightarrow \sigma(np \rightarrow d\gamma)$

Importance for Big-Bang Nucleosynthesis

BBN relevant energy window

Precision test of modern theoretical models (potential model, EFT)

Summary and outlook

Summary

- 180° measurements of the *M*1 deuteron breakup
- Precision test of modern theoretical models (potential model, EFT)
- Excellent description of the data
- Precise prediction for $p(n,\gamma)d$ cross section possible in the astrophysically relevant region
- Latest BBN calculations use already EFT calculations
- Outlook
 - ⁹Be(e,e´) under 180°

Possible role of ⁹Be in the production of ¹²C

- In *n*-rich environment (core-collapse supernovae) this reaction path may provide an alternative route for building up the heavy elements and triggering the *r* process
- O. Burda et al., to be published

$J^{\pi} = \frac{1}{2^{+}}$ state at threshold

Lintott spectrometer

Detector system

- Si microstrip detector system: 4 modules, each 96 strips with pitch of 650 μm
- Count rate up to 100 kHz
- Energy resolution 1.5x10⁻⁴

Comparison: ⁹Be(γ,n) and ⁹Be(e,e[´])

- Final values: $E_x = 1.748(6)$ MeV and $\Gamma = 274(8)$ keV of $J^{\pi} = \frac{1}{2^+}$ resonance
 - For $T_9 = 0.1 3$ K this resonance determines exclusively ${}^{4}\text{He}(\alpha,\gamma){}^{8}\text{Be}(n,\gamma){}^{9}\text{Be}$ chain
 - Determined reaction rate differs up to 20% from adopted values

Form factor of the $J^{\pi} = \frac{1}{2}$ state

- NCSM: correct q dependence but difference in magnitude compared to the data (C. Forssén)
- $B(C1) \neq B(E1)$ at photon point k = q \rightarrow violation of Siegert theorem ?

Hoyle state in ¹²C

Astrophysical motivation

Experiment

- High-resolution electron scattering
- Nuclear structure
 - Structure of the Hoyle state: a "BEC" ?
 - Higher lying 0+ and 2+ states
 - Comparison with FMD and α -cluster model predictions
- Summary and outlook

M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel and A. Richter, PRL 98, 032501 (2007)

Motivation: triple alpha process

• Reaction rate:

$$\Gamma_{rad} = \Gamma_{\gamma} + \Gamma_{\pi} = \frac{\Gamma_{\gamma} + \Gamma_{\pi}}{\Gamma} \cdot \frac{\Gamma}{\Gamma_{\pi}} \cdot \Gamma_{\pi}$$
$$r_{3\alpha} \propto \Gamma_{rad} \exp\left(-\frac{Q_{3\alpha}}{kT}\right)$$

S.M. Austin, NPA 758, 375c (2005)

- Electron scattering $\rightarrow M(E0) \rightarrow extraction of \Gamma_{\pi}$
- 0⁺₁ and 0⁺₂ (7.654 MeV) states in ¹²C
 - Density distributions
 - Model predictions

Measured spectra

Antisymmetrized A-body state

$$|Q\rangle = \mathcal{A}(|q_1\rangle \otimes |q_2\rangle \otimes \ldots \otimes |q_A\rangle)$$

- Single-particle states

$$\langle \mathbf{x} | q
angle = \sum_{i} c_{i} \exp \left[-rac{(\mathbf{x} - \mathbf{b}_{i})^{2}}{2a_{i}}
ight] \otimes |\chi_{i}^{\uparrow}, \chi_{i}^{\downarrow}
angle \otimes |\xi
angle$$

- Gaussian wave packets in phase space (a_i is width, complex parameter \mathbf{b}_i encodes mean position and mean momentum), spin is free, isospin is fixed
- Describes α -cluster states as well as shell-model–like configurations

UCOM interaction

- Derived form the realistic Argonne V18 interaction
- Adjusted to reproduce binding energies and charge radii of some "closed-shell" nuclei

Theoretical approaches: α **-cluster and "BEC" models**

α-cluster model

- FMD wave function restricted to α -cluster triangle configurations only
- "BEC" model
 - System of 3 ⁴He nuclei in 0s state (like α condensate)
 - Hoyle state is a "dilute gas" of α particles

Volkov interaction

- Simple central interaction
- Parameters adjusted to reproduce α binding energy, radius, $\alpha-\alpha$ scattering data and ground state energy of ¹²C
- Only reasonable for ⁴He, ⁸Be and ¹²C nuclei

¹²C densities

Electron scattering as test of theoretical predictions

Elastic form factor

- H. Crannell, data compilation
- Described well by FMD

Transition form factor to the Hoyle state

- H. Crannell, data compilation
- Described better by α-cluster models
- FMD might be improved by taking α - α scattering data into account

What is actual structure of the Hoyle state ?

Overlap with FMD basis states

- In the FMD and α-cluster model the leading components of the Hoyle state are cluster-like and resemble ⁸Be + ⁴He configurations
- But in the "BEC" model the relative positions of α clusters should be uncorrelated

Summary and outlook

Summary

- Hoyle state is not a true Bose-Einstein condensate
- ⁸Be + α structure
- Outlook
 - ¹²C: 0⁺₃ and 2⁺₂ states
 - ¹⁶O: broad 0⁺ state at 14 MeV
 - Γ_{π} for decay of the Hoyle state

Supernova inelastic neutrino-nucleus cross section

(i) Important for

- r process
- v process
- v detectors
- Supernova physics
 - Opacities and thermalization during collapse phase
 - Delayed explosion mechanism
 - Explosive nucleosynthesis
- (ii) v scattering so far not included in supernova modeling

K. Langanke, G. Martínez-Pinedo, P. von Neumann-Cosel and A. Richter, PRL 93, 202501 (2004)

Supernova dynamics and explosive nucleosynthesis

Neutrino interactions during the collapse

- Elastic scattering: $v + A \Leftrightarrow v + A$ (trapping)
- Absorption: $v_e + (N, Z) \Leftrightarrow e^- + (N - 1, Z + 1)$
- v-e scattering: v + e⁻ \Leftrightarrow v + e⁻
- Inelastic v-nucleus scattering: $v + A \Leftrightarrow v + A^*$

- Inelastic neutrino-nucleus interactions had not been included in collapse simulations
- S.W. Bruenn and W.C. Haxton, Ap. J. 376, 678 (1991); based on results for ⁵⁶Fe

Experimental information

• Direct: ¹²C,
$$J^{\pi} = 1^+$$
, T = 1, E_x = 15.11 MeV

• Indirect: low energy v's \rightarrow low multipolarity transitions

Idea: extract GT₀ strength in nuclei from *M*1 response

$$T(M1)_{IV} = \sqrt{\frac{3}{4\pi}} \sum_{i} [\vec{l}_{i}\vec{t}_{zi} + (g_{s}^{p} - g_{s}^{n})\vec{s}_{i}\vec{t}_{zi}]\mu_{N}$$
$$\downarrow$$
$$T(GT_{0}) = 2\sum_{i} [\vec{s}_{i}\vec{t}_{zi}]$$

v-nucleus scattering cross section

•
$$\sigma(i \rightarrow f) = \frac{G_F^2}{\pi} (E_v - E_x)^2 B(GT_0)$$

• B(GT₀) from isovector *M*1 strength

- Orbital and isoscalar pieces small

 Test cases: ⁵⁰Ti, ⁵²Cr, ⁵⁴Fe with precision data on *M*1 strength from (e,e') experiments

⁵²Cr: experiment vs. "state of the art" SM calculations

• Still significant differences between different effective interactions

• Role of orbital strength ?

Role of orbital M1 strength

• Orbital M1 strength is negligible

K. Langanke et al., PRL 93, 202501 (2004)

Differential v nucleus cross section

•
$$E_v(final) = E_v - E_x(GT_-)$$

 Good agreement between experiment and theory → shell-model results can be used for systematic treatment

Influence on neutrino spectra

- Spectrum of the initial v_e burst is affected by the inclusion of inelastic neutrino scattering on nuclei (B. Müller *et al.*)
- What is the impact on supernova neutrino detection ?

Impact on typical detector materials

Material	$\left<\sigma ight>(10^{-}$	Change	
	Without INNS	With INNS	
е	0.110	0.106	3%
d	5.36	4.92	8%
$^{12}\mathrm{C}$	0.080	0.050	37%
$^{16}\mathrm{O}$	0.0128	0.0053	58%
$^{40}\mathrm{Ar}$	15.1	13.4	11%
$^{56}\mathrm{Fe}$	7.5	6.2	17%
$^{208}\mathrm{Pb}$	124.5	103.3	17%

- This correction has to be included if one wants to extract information on supernova dynamics
- At later times (relevant for nucleosynthesis) v spectra are unchanged as all nuclei are dissociated

Neutrino nucleosynthesis of exotic, odd-odd nuclei ¹³⁸La and ¹⁸⁰Ta

Motivation

Neutrino nucleosynthesis of ¹³⁸La and ¹⁸⁰Ta

• High resolution measurement of GT strength

Results and conclusions

A. Byelikov et al., PRL 98, 082501 (2007)

Exotic nuclides

Nucleosynthesis of ¹³⁸La

Nd137 38.5 m	Nd138	Nd139 29.7 m	Nd140	Nd141 2.49 h	Nd142	Nd143	Nd144 2.29E+15 v	Nd145	Nd146	Nd147
1/2+	0+	3/2+	0+	3/2+	0+	7/2-	0+	7/2-	0+	5/2-
EC *	EC	EC *	EC	EC *	27.13	12.18	α 23.80	8.30	17.19	β-
Pr136	Pr137	Pr138	Pr139	Pr140	Pr141	Pr142	Pr143	Pr144	Pr145	Pr146
13.1 m 2+	1.28 h 5/2+	1.45 m 1+	4.41 h 5/2+	3.39 m 1+	5/2+	19.12 h 2-	13.57 d 7/2+	17.28 m 0-	5.984 h 7/2+	24.15 m (2)-
EC	EC	* EC	EC	EC	100	* ΕC,β-	β-	β- *	β-	β-
Ce135	Ce136	Ce137	Ce138	Ce139	Ce140	Ce141	Ce142	Ce143	Ce144	Ce145
17.7 h 1/2(+)	0+	9.0 h 3/2+	0+	137.640 d 3/2+	0	32,501 d	5E+16 y 0+	33.039 h 3/2-	284.893 d 0+	3.01 m (3/2)-
* EC	0.19	* EC	* 0.25	* EC	88.48	β-	11.08	β-	β-	β-
La134	La135	La136	La137	La138	La139	La140	La141	La142	La143	La144
6.45 m	19.5 h 5/2+	9.87 m	6E4 y	1.05E+11 y	7/1-	1.6781 d	3.92 h	91.1 m	14.2 m (7/2)+	40.8 s
FC	FC	FC *	FC	EC,β-		B-	(//2·)	 β_	(//2) ·	(J-) B-
R9133	Ra134	Ra135	Ra136	0.0902 Ra137	99.9098 Ra138	P Ra130	P Ra140	P Re141	P Ra142	P R9143
10.51 y	Daist	Daiss	Daiso	Dals	Da150	83.06 m	12.752 d	18.27 m	10.6 m	14.33 s
1/2+ *		Ji2+ *	<u>}</u> +	*		- m-	l 0+	3/2-	0+	5/2-
EC	2.417	6.592	7.854	11.23	71.70	β-	β-	β-	β-	β-
Cs132	Cs133	Cs134	Cs135	Cs136	Cs137	Cs138	Cs139	Cs140	Cs141	Cs142
0.479 d 2+	7/2-	2.1046 y	2.5E+0 y 7/2+	13.10 d 5+	7/2+	35.41 m	7/2+	13.78	7/2+	0-
EC,β-	100	* ΕC,β-	β- *	β-	β-	β-	β-	β-	β-n	β-n
Xe131	Xe132	Xe133	Xe134	Xe135	Xe136	Xe137	Xe138	Xe139	Xe140	Xe141
3/2+		5.243 d	0+	9.14 h 3/2+	2.36E21 y 0+	3.818 m 7/2-	14.08 m	39.68 s	13.60 s	1.73 s 5/2(-)
*	*	κ.	*	ß-	0.	ß-	ß-	B-	ß-	B-n
21.2	20.9	þ	10.4	þ	8.9	Р	þ	P	þ	PI
<i>s</i> process <i>r</i> process <i>p</i> process <i>p</i> process								rocess		

Production through neutrino process

Neutral current reactions:

¹³⁹La(v,v´n)¹³⁸La ¹⁸¹Ta(v,v´n)¹⁸⁰Ta

- Charged current reactions: ${}^{138}Ba(v_e,e^-){}^{138}La$ ${}^{180}Hf(v_e,e^-){}^{180}Ta$
- Complete stellar evolution in massive stars → realistic distribution of seed nuclei and for core properties
 - T. Rauscher et al., Ap. J. 576, 323 (2002)
- Supernova calculations with improved RPA input for v-nucleus reactions
 A. Heger *et al.*, PLB 606, 285 (2005)

Different production processes of ¹³⁸La

- ¹³⁸La: pure v process production
- ¹⁸⁰Ta: 50% v process, 50% *p* process

Theoretical prediction

• Low neutrino energies \rightarrow small $q \rightarrow \Delta L = 0 \rightarrow GT$ strength

RPA predicts main GT resonance well above neutron threshold

• Predictions for the low-lying strength are questionable

Experimental requirements

• $(v_e, e) \rightarrow \text{Gamow-Teller strength} \leftarrow (p, n) \text{ or } (^{3}\text{He}, t)$

Gamow-Teller part → narrow angle cut around 0°

• Intermediate energies \rightarrow simple one-step reaction mechanism

Grand Raiden

¹³⁸La spectrum

Target: ¹³⁸BaCO₄ embedded in polyvinylalcohol (PVA)

GT strength distribution in ¹³⁸La

Cumulated strength for ¹³⁸La

• $B(GT_{-})_{exp} \approx 1.17 \cdot B(GT_{-})_{theo}$ at 7.47 MeV

Cumulated strength for ¹⁸⁰Ta

B(GT_)_{exp} ≈ 2.76 · B(GT_)_{theo} at 6.64 MeV

Yields of ¹³⁸La and ¹⁸⁰Ta for a 15 M_☉ star

Solar abundances are reproduced by neutral and charge current reactions

Branching ratio to ¹⁸⁰Ta isomer neglected

Conclusions

• GT strength in ¹³⁸La and ¹⁸⁰Ta below particle threshold extracted

• ¹³⁸La is essentially produced in the v process

• ¹⁸⁰Ta at least partially produced in the v process

Collaborations

• ²H(e,e´)

TU Darmstadt / U of Mainz / U of Saskatchewan / George Washington U

• ⁹Be(e,e´)

Chalmers TU / TU Darmstadt

• ¹²C(e,e´)

TU Darmstadt / GSI Darmstadt / MSU

• ⁵²Cr(e,e´)

TU Darmstadt / GSI Darmstadt

¹³⁸Ba(³He, *t*)¹³⁸La
 ¹⁸⁰Hf (³He, *t*)¹⁸⁰Ta

U of California / TU Darmstadt / GSI Darmstadt / iThemba LABS / Los Alamos / RCNP and Osaka U