

2007

Giant resonances, fine structure, wavelets and spin- and parity-resolved level densities

- Motivation
- Experimental data
- Fluctuation analysis
- Discrete wavelet transform and determination of background
- Results and test of models
- Summary and outlook

Y. Kalmykov, K. Langanke, G. Martínez-Pinedo, P. von Neumann-Cosel, C. Özen, A. R.

S-DALINAC / iThemba LABS / RCNP / KVI Supported by the SFB 634 of the Deutsche Forschungsgemeinschaft

TU DARMSTADT

Level densities: Recent results

 Back-shifted Fermi gas model* semiempirical approach, shell and pairing effects

Many-body density of states**

two-component Fermi gas, shell effects, deformations, periodic orbits

HF-BCS***

microscopic statistical model, MSk7 force, shell effects, pairing correlations, deformation effects, collective excitations

- * T. Rauscher, F.-K. Thielemann, and K.-L. Kratz, Phys. Rev. C56 (1997) 1613
 - T. von Egidy and D. Bucurescu, Phys. Rev. C72 (2005) 044311; Phys. Rev. C73 (2006) 049901(E)
- ** P. Leboeuf and J. Roccia, Phys. Rev. Lett. 97 (2006) 010401
- *** P. Demetriou and S. Goriely, Nucl. Phys. A695 (2001) 95

Level densities: Recent results

HFB*

microscopic combinatorial model, MSk13 force, shell effects, pairing correlations, deformation effects, collective excitations

 Large-scale prediction of the parity distribution in the level density** macroscopic-microscopic approach, deformed Wood-Saxon potential, BCS occupation numbers, back-shifted Fermi Gas model

Monte-Carlo shell model***

microscopic model, large model space, pairing+quadrupole force

- * S. Hilaire and S. Goriely, Nucl. Phys. A779 (2006) 63
- ** D. Mocelj et al., Phys. Rev. C75 (2007) 045805
- *** C. Özen, K. Langanke, G. Martinez-Pinedo, and D.J. Dean, nucl-th/0703084 (2007)

Monte-Carlo shell model predictions: pf + g_{9/2} shell

- Total level density (not spin projected) shows strong parity dependence*
- Questioned by recent experiments (⁴⁵Sc)**
- * Y. Alhassid, G.F. Bertsch, S. Liu, and H. Nakada, Phys. Rev. Lett. 84 (2000) 4313
- ** S.J. Lokitz, G.E.Mitchell, and J.F. Shriner, Jr., Phys. Rev. C71 (2005) 064315

Fine structure of the spin-flip GTR: A = 90

Selective excitation of 1+ states

Y. Kalmykov et al., Phys. Rev. Lett. 96 (2006) 012502

Fine structure of the ISGQR: A = 90

Selective excitation of 2+ states

A. Shevchenko et al., Phys. Rev. Lett. 93 (2004) 122501

Fine structure of the M2 resonance: A = 90

Selective excitation of 2⁻ states

P. von Neumann-Cosel et al., Phys. Rev. Lett. 82 (1999) 1105

Summary of experiments

A = 58 A = 90 • ⁵⁸Ni(³He,t)⁵⁸Cu • ⁹⁰Zr(³He,t)⁹⁰Nb $J^{\pi} = 1^{+}$ $J^{\pi} = 1^{+}$ • ⁵⁸Ni(e,e´) • ⁹⁰Zr(e,e´) $J^{\pi} = 2^{-}$ $J^{\pi} = 2^{-}$ • ⁹⁰Zr(p,p´) • ⁵⁸Ni(p,p[′]) $J^{\pi} = 2^{+}$ $J^{\pi} = 2^{+}$

Experimental techniques

Selectivity

hadron scattering at extremely forward angles and intermediate energies electron scattering at 180° and low momentum transfers

High resolution

lateral and angular dispersion matching faint beam method*

 Level density fluctuation analysis**

Background discrete wavelet transform***

- * H. Fujita et al., Nucl. Instr. and Meth. A484 (2002) 17
- ** P.G. Hansen, B. Jonson, and A. Richter, Nucl. Phys. A518 (1990) 13
- *** Y. Kalmykov et al., Phys. Rev. Lett. 96 (2006) 012502

Fluctuations and level densities

Fluctuation analysis

Autocorrelation function and mean level spacing

•
$$C(\varepsilon) = \frac{\langle d(E_X)d(E_X + \varepsilon) \rangle}{\langle d(E_X) \rangle \langle d(E_X + \varepsilon) \rangle}$$

• $C(\varepsilon = 0) - 1 = \frac{\langle d^2(E_X) \rangle - \langle d(E_X) \rangle^2}{\langle d(E_X) \rangle^2}$

autocorrelation function

variance

•
$$C(\varepsilon) - 1 = \frac{\alpha \langle D \rangle}{2\sigma \sqrt{\pi}} \times f(\sigma, \varepsilon)$$

level spacing $\langle D \rangle$

• $\alpha = \alpha_{PT} + \alpha_W$

selectivity

σ

resolution

S. Müller, F. Beck, D. Meuer, and A. Richter, Phys. Lett. 113B (1982) 362

P.G. Hansen, B. Jonson, and A. Richter, Nucl. Phys. A518 (1990) 13

How to determine the background in the spectra?

Wavelets and wavelet transform

•
$$\int_{-\infty}^{+\infty} \Psi^*(E) dE = 0$$
 wavelet

+∞ • $\int |\Psi^*(E)|^2 dE < \infty$ finite support (square integrable) $-\infty$

•
$$C(\delta E, E_X) = \frac{1}{\sqrt{\delta E}} \int_{-\infty}^{+\infty} \sigma(E) \Psi * \left(\frac{E_X - E}{\delta E}\right) dE$$

wavelet coefficients

Discrete wavelet transform

•
$$C(\delta E, E_X) = \frac{1}{\sqrt{\delta E}} \int_{-\infty}^{+\infty} \sigma(E) \Psi * \left(\frac{E_X - E}{\delta E}\right) dE$$

wavelet coefficients

• Discrete wavelet transform* $\delta E = 2^{j}$ and $E_{X} = k \cdot \delta E$ with j, k = 1,2,3, ...exact reconstruction is possible is fast

•
$$\int_{-\infty}^{+\infty} E^n \Psi * \left(\frac{E_x - E}{\delta E}\right) dE = 0, \quad n = 0, 1...m - 1 \quad \text{vanishing moments}$$

this defines the shape and magnitude of the background

http://www.mathworks.com/products/wavelet/

Decomposition of spectra

Application: Decomposition of ⁹⁰Zr(³He,t)⁹⁰Nb spectrum

Fluctuation analysis

Angular distribution: ⁹⁰Zr(³He,t)⁹⁰Nb

 The requirement of a constant level density in all spectra is a constraint in the analysis

Results and model predictions: A = 90, J^{π} = 1⁺

Y. Kalmykov et al., Phys. Rev. Lett. 96 (2006) 012502

Results and model predictions: A = 58, J^{π} = 2⁺

Phenomenological and microscopic models

Different quality of model predictions

BSFG, MB DOS

parameters fitted to experimental data no distinction of parity

HF-BCS

microscopic no distinction of parity

• HFB, SMMC

fully microscopic calculation of levels with spin and parity

HFB

fine structure of level densities

Ingredients of HFB

• Nuclear structure: HFB calculation with a conventional Skyrme force

single particle energies pairing strength for each level quadrupole deformation parameter deformation energy

Collective effects

rotational enhancement vibrational enhancement disappearance of deformation at high energies

Ingredients of SMMC

• Partition function of many-body states with good J^{π}

$$Z_J^{\pi}(\beta) = \operatorname{Tr}_{J,\pi} e^{-\beta h}$$

• Expectation values at inverse temperature $\beta = 1/kT$

$$E_J^{\pi}(\beta) = \frac{\int dE' e^{-\beta E'} E' \rho_J^{\pi}(E')}{Z_J^{\pi}(\beta)}$$

• Level density from inverse Laplace transform in the saddle-point approximation

$$\rho_J^{\pi}(E) = \frac{e^{\beta E_J^{\pi} + \ln Z_J^{\pi}(\beta)}}{\sqrt{-2\pi \frac{d E_J^{\pi}(\beta)}{d\beta}}}$$

Fine structure of level density: A = 90, J^{π} = 1⁺

Fine structure of level density: A = 58, J^{π} = 2⁺

Both for A = 90 and A = 58 level densities at this E_x seem not to be a smooth function

Level density of 2⁺ and 2⁻ states: ⁹⁰Zr

Level density of 2⁺ and 2⁻ states: ⁵⁸Ni

Test of parity dependence of level densities

Equilibration of parity-projected level densities

• ⁵⁸Ni ρ₋ ≈ ρ₊ at E_x ≈ 20 MeV

• ⁹⁰Zr

 $\rho_{-} \approx \rho_{+}$ at $E_{x} \approx 5 - 10$ MeV

 Two energy scales which determine ρ_/ρ_+ pair-breaking

 5 - 6 MeV for intermediate mass nuclei shell gap between opposite-parity states near the Fermi level
 depends strongly on the shell structure, e.g. ⁶⁸Zn Δ_{pf-g9/2} is small

 Core breaking

 e.g. near shell closure ⁵⁸Ni Δ_{sd-pf} transitions are important
 ρ_ would be enlarged

Summary and outlook

- Fine structure of giant resonances
- Wavelet analysis for a nearly model-independent background determination
- Fluctuation analysis
- Spin- and parity-resolved level densities in ⁵⁸Ni, ⁹⁰Zr, ⁹⁰Nb
- Comparison with current nuclear structure model predictions
- Indication for fine structure of level densities at high excitation energies
- No parity dependence for J = 2 in ⁵⁸Ni and ⁹⁰Zr
- Further applications to GTR, IVGDR, ISGQR ... in a wide range of nuclei