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Examples of Modes of Nuclear Sound



Examples of Modes of Nuclear Sound



Nuclei are build up from protons (π) and neutrons (ν), i.e. fermions,
interacting with essentially charge independent NN forces.

The independent particle shell model (Mayer/Jensen) explains a large
fraction of experimental data (g.s. spins, shell gaps as seen at given
numbers of abundances of elements, excitation energies of first excited
states, magnetic moments of s.p. states, …). 

Some Remarks on Nuclear Superfluidity and its 
Experimental Manifestation

But important facts could not be understood at all on the basis of the
independent particle motion of π’s and ν’s.
Let’s summarize them:

Later Hartree-Fock theory has shown how this mean field (1-body field)
could be derived from an effective 2-body interaction acting inside the 
nucleus:                                            (Hartree term).



Evidence for Pairing Correlations in Nuclei

(i)   Odd-even effect: mass of an odd-even nucleus is larger than the mean of
adjacent two even-even nuclear masses → shows up in Sn and Sp for all 
nuclei.
Example: Sn = BE(A,Z) – BE(A-1,Z) of Ce nuclei

Behavior points towards pair formation of nucleons.



Evidence for Pairing Correlations in Nuclei

(ii) The excitation energy of the first excited 2+ state in nuclei remains 
remarkably constant over large intervals of neutron (proton) numbers.
Example: 2+ excitation energy in Sn nuclei  1

Pair breaking energy: 2Δ ≈ 2 MeV

These 2+ states are not rotational states but are connected to a coherent 
pairing condensate. 

(ii) The excitation energy of the first excited 2+ state in nuclei remains 
remarkably constant over large intervals of neutron (proton) numbers.
Example: 2+ excitation energy in Sn nuclei  1



Evidence for Pairing Correlations in Nuclei

(iii) Energy gap: odd-even and even-odd nuclei (especially deformed nuclei) 
have energy spectra different from even-even nuclei.
Example: Ni isotopes  

e-e nuclei: only a few states at 
most (vibrations, rotations) appear
below the pairing gap 2Δ.

But in o-e and e-o nuclei (where 
the last nucleon is unpaired) many
s.p. and collective states appear.

Note: above the pair breaking 
energy 2Δ many excited states are 
possible → level density ρ = ρ(Δ)

→ 2nd Lecture



Pairing correlations
have a dramatic 
influence on collective
modes. 

Evidence for Pairing Correlations in Nuclei

(iv) Moment of inertia: extracted from level spacing in rotational bands

deviates about a factor of two from the rigid rotor values.
Example: Moments of inertia of even-nuclei in the rare-earth region  Example: Moments of inertia of even-nuclei in the rare-earth region  



Soon after BCS theory (1957) for electrons in metals had been formulated it 
was adopted for nuclei (Bohr, Mottelson, Pines (1958), Belyaev (1959),
Nilsson, Prior (1960), …).

Although in finite microscopic systems like nuclei direct evidence of
superfluid flow cannot be obtained, the experimental evidence (i) – (iv) for 
the existing of pairing of nucleons (and hence of a short-range pairing force)
points naturally to correlations of two electrons in a superconductor.
Example: BCS ground state and concept of quasiparticles

BCS Theory and Pairing in Nuclei

prob. amplitude of 
a state j not 
occupied by a pair

… a state being    
… occupied

vacuum state of 
real particle 

Example: BCS ground state and concept of quasiparticles



Example: distribution of a number of nucleons over five orbitals

Discrete vs. BCS-Pair Distribution

BCS pairing correlations modify the nuclear g.s. nucleon distribution. 

Short-range pairing force scatters pairs of particles across the sharp Fermi 
level leading to 2p – 2h, 4p – 4h, … correlations in the g.s.

Electromagnetic properties (Eλ, Mλ, Q, μ, …) are influenced by various
combinations of pairing factors                            .),...]v(u),vvu[(u 22

iijiji −±



Schematically: what happens in a finite system ?

Breaking the Pairs by Heating the Nucleus

Quantum fluctuations cause broadening.



Thermodynamics in Hot Nuclei

Model space: 50 orbitals for π‘s and ν‘s each

Technique: shell model Monte-Carlo

Koonin et al. (1992)

arbitrary 
observable

partition 
function

microscopic 
propagator



Langanke, Dean, Nazarewicz (2005)

Realistic Examples

Specific heat is related to level density ρ
→ experimental test possible?

Pairing correlations in a finite system 
vanish if the nucleus is excited to 
about 6 – 10 MeV internal (excitation) 
energy.  

→ 2nd Lecture



The Magnetic Dipole Scissors Mode in Nuclei Revisited 



Overview

Qualitative nature of the nuclear M1 response 

Collectivity and fine structure: level spacing statistics

Excitation energy and strength

Scissors Mode

Collectivity: sum-rule approach

The Scissors Mode in nuclei and BECs



Qualitative Nature of the M1 Response in Nuclei

(i) Structure of the M1 operator

(ii)  Properties of the known p – h interactions (ii)  Properties of the known p – h interactions 

small “spin“



Qualitative Nature of the M1 Response in Nuclei

rotation generator

“scissors motion“

enhanced “spin-flip”

(Gamow-Teller)



Qualitative Nature of the M1 Response in Nuclei

(iii) Schematically: RPA calculation

unperturbed p-h strength

Ideal candidate for the test of models !

almost 
pure 
GT

strongly
collective

“Scissors Mode“ but strong on the s.p. scale

almost   pure 

weakly



Discovery of the Scissors Mode



Systematics of the Scissors Mode in Heavy Deformed 
Nuclei



Magnetic Dipole Response in Heavy Deformed Nuclei



Correlation between B(M1) and B(E2) Strengths

Since also B(E2) ~ δ2 and pairing plays a dominant role in explaining this 
deformation dependence → B(M1) must also depend strongly on pairing. 

Experimentally: B(M1) ~ δ2 → strong dependence on deformation



M1 Response in a Heavy Deformed Nucleus



Energy and Strength of the Scissors Mode

Excitation energy
approximately constant,
independent of deformation

Strength depends strongly
on deformation:

Collectivity

Sum-rule approach



Sum-rule Approach

Lipparini and  Stringari (1983)

Sum rules 

Structure of the field operator → commutation relations 



Physics Parameters

Mean excitation energy and summed excitation strength

Sum rules depend on two parameters:



Transition Operator

Enders et al. (2005)

Isovector rotation (TRM of Lo Iudice and Palumbo)



Moments of Inertia

Strong effect of pairing (nuclear superfluidity) is evident.



Parameter-free Sum Rule Description

,

i.e. contributions from deformation   
and moment of inertia cancel each  
other.

Deformed mean field → B(M1) depends on occupation probabilities, i.e. the
pairing factor (u1v2-u2v1)2 vanishes for δ ≈ 0 but becomes sizable for a 
large δ (De Coster and Heyde, 1989).

, 

i.e. “δ 2 law” results from an interplay  
of deformation and the moment of 
inertia.



Example for Fragmentation and Spreading of
Scissors Mode Strength

→ 2nd Lecture



Level Spacing Distribution of Scissors Mode Strength

Nuclear data ensemble: 152 Jπ = 1+ states from 13 nuclei

Proof of a simple collective excitation

Non-generic behavior according to Poisson

Enders et al. (2000)

→ 4th Lecture



Properties of the Scissors Mode result from an interplay of
- moment of inertia

pairing (superfluidity)
- deformation 

Number of microscopic models 
(IBM, QRPA, …) for the Scissors Mode 
which is a paradigm of mixed symmetry states 
→ pn-symmetry in valence shell, e.g. 

Magnetic Dipole Scissors Mode

Sum-rule approach

All physics parameters are fixed by known nuclear properties:
- deformation
- magnetic g factor of collective states
- giant dipole (and isoscalar giant quadrupole resonance)  

Properties of the Scissors Mode result from an interplay of
- moment of inertia

pairing (superfluidity)
- deformation 





Scissors Mode
Deformed Nuclei                                 Trapped BEC

Guéry-Odelin and Stringari (1999)

Superfluidity ?

Moment of inertia ?



Experimental Studies
Deformed Nuclei                                 Trapped BEC

ν ≈ 7·1020 s-1

α ≈ 6.0° (collective model)

Bohle et al. (1984)

ν ≈ 3·102 s-1

α ≈ 5.5° (measured)

Marago et al. (2000)





Magnetic Quadrupole Resonance – the Nuclear Twist 
Mode



Magnetic Quadrupole Response in Nuclei

Scarcely studied as compared to the M1 response
- 90Zr, 58Ni, 48Ca

Spin and orbital parts are about of equal magnitude

Orbital M2 mode (“Nuclear Twist Mode”)
- existence ?
- nature ?
- general feature of finite Fermi systems ? 



The Jπ = 2- Twist Mode

Holzwarth and Eckart (1977)

15.3 MeV nuclear matter  
Shear module μ/ρ = 6.3 MeV 48Ca  

7.2 MeV 90Zr 

No restoring force in an ideal fluid → its observation would be a direct proof 
of the zero-sound nature of magnetic giant resonances in nuclei.   



The Nuclear “Twist”

Operator 
i.e. rotation around the body-fixed z-axis with a 
rotation angle proportional to z (clockwise for z > 0 
and counterclockwise for z < 0) 

Operator has spin-parity Jπ = 2- (because the scalar part of 
the tensor product           , i.e.          , vanishes 
identically).

Although for axially symmetric nuclei there is evidently no change in the  
local density, the “twist” still creates a distortion of the local Fermi surface   
characterized by α.   



180° Electron Scattering: Selectivity



M2 Transitions in Medium Heavy Nuclei



B(M2) Strength in 90Zr: Spin and Orbital Parts



Direct Evidence for Orbital M2 Excitations

Reitz et al. (2002)

orbital

+ spin

spin



Decomposition: Spin vs. Orbital M2 Excitations

Ex (MeV)



Orbital Transition Currents of the Twist Mode

Semiclassical picture of the Twist Mode is confirmed. 

Note the reversal of direction of flow in the interior → node of the transition  
current.

Clockwise respective counterclockwise flow in the two hemispheres



Twist Mode in Metallic Clusters

Nestorenko et al. (2000)



Twist Mode in Ultracold Atomic Fermi Gases

Viñas et al. (2001)

Landau theory predicts quadrupole deformation of the Fermi sphere:
- anisotropic pressure tensor
- transverse zero sound
- ”R-Modes” in neutron stars

Unique mode for degenerate Fermi gases

But excitation of the Twist Mode in traps difficult 

Trapped  Fermi  gas  within

(e.g.    6Li,    40K   at ≅ 600  nK)


