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Some Aspects of Collective Oscillations and
Superfluidity in Atomic Nuclel

@ Examples of modes of nuclear sound

@ Remarks on nuclear superfluidity (pairing) and its experimental
manifestation

@ The magnetic dipole Scissors Mode in nuclei revisited

@ Magnetic quadrupole resonances — the nuclear Twist Mode
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Examples of Modes of Nuclear Sound
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Examples of Modes of Nuclear Sound
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Some Remarks on Nuclear Superfluidity and its
Experimental Manifestation

Nuclei are build up from protons (r) and neutrons (v), i.e. fermions,
interacting with essentially charge independent NN forces.

The independent particle shell model (Mayer/Jensen) explains a large
fraction of experimental data (g.s. spins, shell gaps as seen at given
numbers of abundances of elements, excitation energies of first excited
states, magnetic moments of s.p. states, ...).

Later Hartree-Fock theory has shown how this mean field (1-body field)
could be derived from an effective 2-body interaction acting inside the
nucleus: U(7) = /p(?"") v(r,7")dr" (Hartree term).

But important facts could not be understood at all on the basis of the
independent particle motion of n's and v’s.
Let’s summarize them:




Evidence for Pairing Correlations in Nuclel

(i) Odd-even effect: mass of an odd-even nucleus is larger than the mean of
adjacent two even-even nuclear masses — shows up in S, and S, for all

nuclei.
Example: S, =BE(A,Z) — BE(A-1,Z) of Ce nuclei
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@ Behavior points towards pair formation of nucleons.




Evidence for Pairing Correlations in Nuclel

(i) The excitation energy of the first excited 2* state in nuclei remains

remarkably constant over large intervals of neutron (proton) numbers.

Example: 2; excitation energy in Sn nuclei
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@ These 2* states are not rotational states but are connected to a coherent

pairing condensate.

@ Pair breaking energy: 2A=2 MeV




Evidence for Pairing Correlations in Nuclel

(iif) Energy gap: odd-even and even-odd nuclei (especially deformed nuclei)
have energy spectra different from even-even nuclei.
Example: Ni isotopes

I \N\

0.0

@ e-e nuclei: only a few states at
most (vibrations, rotations) appear
below the pairing gap 2A.

@ But in 0-e and e-o nuclei (where

i — —_ the last nucleon is unpaired) many
I — I — = s.p. and collective states appear.
24 ~2A  — _,, |@ Note: above the pair breaking
! — ! | energy 2A many excited states are
! T ! —_ ! possible — level density p = p(A)
vy =4 — 2nd Lecture
58 59 60 61 62




Evidence for Pairing Correlations in Nuclel

(iv) Moment of inertia: extracted from level spacing in rotational bands

2
E=o

6 J(J+1)

deviates about a factor of two from the rigid rotor values.
Example: Moments of inertia of even-nuclei in the rare-earth region
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@ Pairing correlations
have a dramatic
influence on collective
modes.



BCS Theory and Pairing in Nucleli

@ Soon after BCS theory (1957) for electrons in metals had been formulated it

was adopted for nuclei (Bohr, Mottelson, Pines (1958), Belyaev (1959),
Nilsson, Prior (1960), ...).

@ Although in finite microscopic systems like nuclei direct evidence of
superfluid flow cannot be obtained, the experimental evidence (i) — (iv) for

the existing of pairing of nucleons (and hence of a short-range pairing force)
points naturally to correlations of two electrons in a superconductor.

Example: BCS ground state and concept of quasiparticles

BCS
J ﬂ? \ \
prob. amplitude of ... a state being vacuum state of

a state j not

occupied real particle
occupied by a pair
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Discrete vs. BCS-Pair Distribution

Example: distribution of a number of nucleons over five orbitals
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@ Short-range pairing force scatters pairs of particles across the sharp Fermi

level leading to 2p —2h, 4p — 4h, ... correlations in the g.s.

@ BCS pairing correlations modify the nuclear g.s. nucleon distribution.

@ Electromagnetic properties (EA, MA, Q, u, ...) are influenced by various

combinations of pairing factors [(U;u;£v;v;), (Ui —v?),..].




Breaking the Pairs by Heating the Nucleus

Schematically: what happens in a finite system ?
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@ Quantum fluctuations cause broadening.
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Thermodynamics in Hot Nuclel

1
(A) g = = Tr, (Ae™PH)
C ™
Zp
arbitrary partition microscopic
observable function propagator

H = HMean field + HPairiﬂg T HQQ

Model space: 50 orbitals for n's and v's each

Technique: shell model Monte-Carlo
Koonin et al. (1992)




Realistic Examples

Langanke, Dean, Nazarewicz (2005)

Specific Heat
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@ Pairing correlations in a finite system
vanish if the nucleus is excited to
about 6 — 10 MeV internal (excitation)
energy.

RN
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@ Specific heat is related to level density p
— experimental test possible?

— 2nd Lecture
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The Magnetic Dipole Scissors Mode in Nucleil Revisited
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Overview

@ Qualitative nature of the nuclear M1 response

@ Scissors Mode

@ Excitation energy and strength

@ Collectivity: sum-rule approach

@ Collectivity and fine structure: level spacing statistics

@ The Scissors Mode in nuclei and BECs




Qualitative Nature of the M1 Response in Nuclei

(i) Structure of the M1 operator

(i) Properties of the known p —h interactions

Z{g; i + 95(3) 5} = T(M1)py + T(M1)1s  [uy]

—

1. 1 L1
T(MU)s=5J+5(9p+9n)S=5J+0385  [up]
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Qualitative Nature of the M1 Response in Nuclei
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rotation generator enhanced “spin-flip”

“scissors motion” (Gamow-Teller)




Qualitative Nature of the M1 Response in Nuclei

(iii) Schematically: RPA calculation
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“Scissors Mode” but strong on the s.p. scale

@ |deal candidate for the test of models !



Discovery of the Scissors Mode

Volume 1378, number 1.2 PHYSICS LETTERS 22 March 1984
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Systematics of the Scissors Mode in Heavy Deformed

Nuclei
Au
Pt 194 |196
Ir
Os 190  [192
Re 116 118
W 182| [184| [186| |114
Ta 181 112
L Hf 178 [180[ [110
La Lu 175
7 Ba [134 Yb 172 174 176 108
Cs 133 80 Tm 169 106
78 Er 164| [166|167[168] [170] [104
V4 Ho 165 102
Dy 160|161(162[163|164|  |100
Tb 159
Gd 154(155(156|157|158| ~ [160] |98
Eu 153 96
Sm |144 148 |150| [152| |154| |94 U 236 238
Pm 92 Pa 146
Nd [142| [144| |14 [148] |150 Th 232
82 84 86 88 90 " 142 144




Magnetic Dipole Response in Heavy Deformed Nuclel
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Correlation between B(M1) and B(E2) Strengths
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@ Experimentally: B(M1) ~ 02 — strong dependence on deformation

@ Since also B(E2) ~ 02 and pairing plays a dominant role in explaining this

deformation dependence — B(M1) must also depend strongly on pairing.




M1 Response in a Heavy Deformed Nucleus

Scissors Mode Gamow-Teller Mode
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Energy and Strength of the Scissors Mode

E. (MeV)
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@ Excitation energy
approximately constant,
independent of deformation

@ Strength depends strongly
on deformation:

) B(M1) ~ §* ~ B(E2)

@ Collectivity

@ Sum-rule approach



Sum-rule Approach

Lipparini and Stringari (1983)
@ Sum rules S;(M) = Z B;(M)E’.

@ Structure of the field operator — commutation relations

S41(M) = 2 (0] [M, [H, M]}[0)
S_1(M) = = (0 [+, H], X] |0)

b2 |

with X from [H,X]=M




Physics Parameters

@ Mean excitation energy and summed excitation strength

E,=+/5:1/5_1

B(M1) = \/S+1 - S—1
@ Sum rules depend on two parameters:

Irv ~ 9rg = 9(2_{)

O, = O, = 3&2/Egl+




Transition Operator

Enders et al. (2005)

@ Isovector rotation (TRM of Lo ludice and Palumbo) M(M1) x Z JZ 73

3 . ‘
O Su(M1) =3 B(M1)-E, = 15 A6 Egppmy gjy
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@ 5—1(M1)=Z (Em )zm_?T@Ml 9iv

_ 1 1
with: g, = (9) — gh) ~ 3 gy (=~ 9(21))




Moments of Inertia

Mass Number A
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@ Strong effect of pairing (nuclear superfluidity) is evident.
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Parameter-free Sum Rule Description
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i.e. contributions from deformation
and moment of inertia cancel each
other.

)
i.e. “02 law” results from an interplay

of deformation and the moment of
inertia.

@ Deformed mean field — B(M1) depends on occupation probabilities, i.e. the

pairing factor (u,v,-u,v,)? vanishes for o =0 but becomes sizable for a
large 6 (De Coster and Heyde, 1989).



Example for Fragmentation and Spreading of

Scissors Mode Strength
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— 2nd Lecture




Level Spacing Distribution of Scissors Mode Strength

Enders et al. (2000)

Nuclear data ensemble: 152 J™ = 1+ states from 13 nuclei

P(s)

@ Non-generic behavior according to Poisson
— 4th Lecture

@ Proof of a simple collective excitation



Magnetic Dipole Scissors Mode

Sum-rule approach

All physics parameters are fixed by known nuclear properties:
- deformation
- magnetic g factor of collective states
- giant dipole (and isoscalar giant quadrupole resonance)

Properties of the Scissors Mode result from an interplay of
- moment of inertia

}—» pairing (superfluidity)

- deformation
Number of microscopic models 2
(IBM, QRPA, ...) for the Scissors Mode % Vin
which is a paradigm of mixed symmetry states ot

“n

— pn-symmetry in valence shell, e.g.

M1

E2
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Temperature Dependence of Damping and Frequency Shifts of the Scissors Mode
of a Trapped Bose-Einstein Condensate

Onofrio Maragd, Gerald Hechenblaikner, Eleanor Hodby, and Christopher Foot

Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, OXI 3PU, United Kingdom

The experimental discovery of the scissors mode [1],
first predicted in a geometrical model [2], has been one of
the most exciting findings in nuclear physics during the
past two decades (see [3] for a review). According to the
geometrical picture, such a mode arises from a counter-
rotational oscillation of the deformed proton and neutron
fluids. Extensive studies of this mode in the past two
decades investigated the dependence of its strength on
the nuclear deformation and the relationship with the
quadrupole collective mode and with the superfluid
moment of inertia of the nucleus [3].

Recently it has been possible to study the scissors mode
in Bose-Einstein condensates (BEC) of dilute gases [4].
This transverse mode of excitation was used to demon-
strate that the condensate can flow only in an irrotational

In this paper we report a systematic study of the tem-
perature dependent damping and frequency shifts of the
scissors mode excitation in a trapped condensed gas. After
a brief description of the experimental procedure, we pre-
sent the scissors mode data for the frequency shifts and
damping rates. We then compare our results with the
available theoretical calculations for other collective
modes. Finally, we show how the scissors mode fre-
quency shifts are related to quenching of the moment of
inertia of the boson gas.

We excite the scissors mode by using the technique de-
scribed in our previous paper [6]. In summary we prepare
atoms at the desired temperature 7" in an untilted time-
averaged orbiting potential (TOP) trap (w, = w, =
126 Hz, w, = V8 w.). We then adiabatically tilt the con-



Deformed Nuclei

Scissors Mode
Trapped BEC

Protons —

Neutrons

10 fm
< >

\ Bose-Einstein
\ Condensate

@ Superfluidity ?

@ Moment of inertia ?

Guéry-Odelin and Stringari (1999)




Experimental Studies
Deformed Nuclel

Trapped BEC
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La superfluidite
des condensats

DAVID GUERY-ODELIN POUR LA SCIENCE - N" 296 JUIN 2002
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Magnetic Quadrupole Resonance —the Nuclear Twist
Mode




Magnetic Quadrupole Response in Nuclei

@ Scarcely studied as compared to the M1 response
- 907y, 38Nj, 48Ca

@ Spin and orbital parts are about of equal magnitude

@ Orbital M2 mode (“Nuclear Twist Mode”)
- existence ?
- nature ?
- general feature of finite Fermi systems ?




The J®=2- Twist Mode

Holzwarth and Eckart (1977)

@ No restoring force in an ideal fluid — its observation would be a direct proof
of the zero-sound nature of magnetic giant resonances in nuclei.

15.3 MeV nuclear matter
@ Shear module u/p =<5 6.3 MeV 48Ca
7.2 MeV 99Zr




The Nuclear “Twist”

@ Operator T = e % — 2TV ith @ = (yz, —zz2,0)
i.e. rotation around the body-fixed z-axis with a
rotation angle proportional to z (clockwise for z> 0
and counterclockwise for z <0)

@ Operator zl, has spin-parity J™= 2~ (because the scalar part of
the tensor product ¥® [ ,i.e. ¥-1 , vanishes
identically).

@ Although for axially symmetric nuclei there is evidently no change in the
local density, the “twist” still creates a distortion of the local Fermi surface
characterized by a.




180° Electron Scattering: Selectivity
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M2 Transitions in Medium Heavy Nuclei

11/2

i 'y A 'y ,t

’

bt o Lh
2py,
N=3 & s
) A A " =T zp_i,f?,

' T -t ==
=
’

1Py

48Ca SSNi 9021'

eh . 2
M(M2) = 52 >~ (9,6) 5+ 5 9/6) ;) Vir? Y,

i




B(M2) Strength in 9Zr: Spin and Orbital Parts
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Direct Evidence for Orbital M2 Excitations

Reitz et al. (2002)
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Decomposition: Spin vs. Orbital M2 Excitations
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Orbital Transition Currents of the Twist Mode

@ Clockwise respective counterclockwise flow in the two hemispheres

@ Note the reversal of direction of flow in the interior — node of the transition

current.
@ Semiclassical picture of the Twist Mode is confirmed.



Twist Mode in Metallic Clusters

Nestorenko et al. (2000)
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Twist Mode in Ultracold Atomic Fermi Gases

Vinas et al. (2001)

|

' Trapped Fermi gas within
. k?
- T< B =g

' (e.g. SLi, 4K at=600 nK)

I
—

@ Unique mode for degenerate Fermi gases

@ Landau theory predicts quadrupole deformation of the Fermi sphere:
- anisotropic pressure tensor
- transverse zero sound
- "R-Modes” in neutron stars

@ But excitation of the Twist Mode in traps difficult




