

The 7th CNS International Summer School Achim Richter 3rd Lecture

TU DARMSTADT

Nuclear Structure in Astrophysics Studied with Electromagnetic Probes – Some Examples

• The S-DALINAC and its experimental setups

- E1 excitations around the particle threshold: the PDR (TUD / U Giessen / RCNP + U Osaka / iThemba Labs / U Wits)
- Deuteron electrodisintegration under 180° and its importance for the primordial nucleosynthesis of the lightest nuclei
- Electron scattering on ¹²C and the structure of the Hoyle state

Supported by DFG under SFB 634

Experiments at the S-DALINAC

Status

- Nuclear resonance fluorescence
- (e,e') and 180° experiments
- High-resolution (e,e´) experiments

SFB

- Polarized electron source
- 14 MeV bremsstrahlung
- 100 MeV bremsstrahlung for polarizability of the nucleon
- Photon tagger

QCLAM Spectrometer

Lintott Spectrometer

Energy resolution 1.5x10⁻⁴

The Photoresponse of Atomic Nuclei

• Considerable E1 strength is predicted and also observed below the $1\hbar\omega$ region

E1 Excitations Around the Particle Threshold

Nuclear structure phenomenon

Fundamental E1 mode below the GDR called Pygmy Dipole Resonance (PDR)

Importance for understanding of exotic nuclei

Will E1 strength be shifted to lower energies in neutron rich systems ?

Impact on nucleosynthesis

Gamow window for photo-induced reactions in explosive stellar events

Impact on Nucleosynthesis

NEUTRONS -

Origin of the Photons

Cassiopeia A

Temperatures up to 3x10⁹ K ~ 200 keV

The Photon Density: Planck Spectrum

What is the Relevant Energy Range?

Generation of Planck Spectra at S-DALINAC

P. Mohr et al., PLB 488 (2000) 127

Photon Scattering off ¹³⁸Ba

A. Zilges et al., PLB 542 (2002) 43

E1 Strength Distribution in N=82 Nuclei

A. Zilges et al., PLB 542 (2002) 43

E1 Strength Distribution in Ca Isotopes

E1 Strength Distributions in Stable Sn Isotopes

+ Coulomb dissociation expt's at GSI on unstable ¹³⁰Sn and ¹³²Sn

Neutron/Proton "Skin" Excitations in N > Z Nuclei

Oscillations of a neutron or proton rich periphery vs. the core leads to isovector E1 excitations → role of PDR strength for determining the nuclear skin

- Soft Dipole Mode in exotic nuclei
- Located around 7 MeV in stable nuclei
- Up to 1% of EWSR in some stable nuclei
 → major contribution to the nuclear dipole polarizability

see e.g.: J. Chambers et al., PRC 50 (1994) R2671 P. van Isacker et al., PRC 45 (1992) R13

What is the Microscopic Structure of the PDR ? Reminder: ²⁰⁸Pb

E1 Response in ²⁰⁸Pb

Excellent agreement of QPM with experiment

Transition Densities

- PDR largely isoscalar
- Evidence for neutron density oscillations
- Similar results from the Milano and Munich groups

"Snapshots" of Velocity Distributions in ²⁰⁸Pb

- Toroidal (current) mode: zero sound wave
- Restoring force is not of hydrodynamic nature but elastic

Vibrational mode

Electric Dipole Strength and Vorticity

Vorticity density: measure for the strength of the transverse current

Structure of Low-Energy E1 Modes

- How can we elucidate the structure of the low-energy E1 modes ?
- Proton scattering at 0°
 - intermediate energy (300 MeV optimal)
 - high resolution
 - angular distribution (E1/M1 separation)
 - polarisation observables (spinflip / non-spinflip separation)
- Electron scattering (preferentially at 180°)
 - high resolution
 - transverse form factors needed
 - very sensitive to structure of the different modes

Signatures of Different E1 Modes in (p,p')

 Pronounced differences at small angles due to Coulomb-nuclear interference

Signatures of Different E1 Modes in (p,p')

Signature of toroidal mode in the asymmetry at small angles ?

Signatures of Low-Energy E1 Modes in (e,e')

Large difference in the momentum transfer dependence

First Results: Background-Subtracted Spectrum

First Results: Spectrum (Expanded)

First Results: Typical Angular Distributions

First Results: B(E1) Strength

Excellent agreement

Status and Outlook

- PDR in ²⁰⁸Pb identified in (γ, γ') and verified in (\vec{p}, \vec{p}')
- PDR fraction is ~1% EWSR and 5% IEWSR (large contribution to the nuclear dipole polarizability)
- Polarized intermediate energy proton scattering at 0° is established to study B(E1) strength
- High-resolution study of ²⁰⁸Pb as reference case
- E1/M1 decomposition
- Detect PDR and toroidal signatures in (e,e') form factors and (p,p') angular distributions and spin-flip observables
- Importance of PDR in astrophysical processes

Deuteron Electrodisintegration under 180°

- Astrophysical motivation: Big-Bang nucleosynthesis
- Experiment: 180° electron scattering

High selectivity

High energy resolution

Precision test of theoretical models

NN potentials

EFT

Summary and outlook

Primordial Nucleosynthesis

D, ³He, ⁴He, ⁷Li are synthesized

Test of Cosmological Standard Model

- Abundances depend on baryon/photon ratio (baryon density)
- Observational constraints: WMAP disagrees with spectroscopic information and/or BBN
- Critical density derived from ⁴He and ⁷Li is different from D

Adopted from A. Coc et al., ApJ 600 (2004) 544

Uncertainty of ⁷Li Abundance

• Largest uncertainty from $p(n,\gamma)d$ reaction

Relevant energy window 15 - 200 keV above threshold

S. Burles et al., PRL 82 (1999) 4176

d(γ,*n*)*p*: Data and Predictions

- Potential model (AV18) calculations by H. Arenhövel
- EFT calculations (J.-W. Chen and M.J. Savage, S. Ando et al.) are very similar
- Scarce data at the threshold
- M1 dominates: d(e,e') at 180°

Why Electron Scattering under 180°?

Scattering at 180° is ideal for measuring transverse excitations: M1 enhanced

180° System at the S-DALINAC

Decomposition of the Spectra

Absolute and relative normalization agree within 5 - 6%

Comparison to Potential Model and EFT Calculations

Excellent agreement with potential model (H. Arenhövel)

Deviations for EFT (H. Griesshammer) at higher q

Extraction of the Astrophysical $np \rightarrow d\gamma$ **Cross Section**

•
$$\frac{d\sigma}{d\Omega}(\theta = 180^\circ, q) \sim F_T^2(q)$$

•
$$B(M1,q) \sim \frac{1}{q^2} F_T^2(q)$$

• For $q \rightarrow k$ (photon point) take *q*-dependence of B(*M*1,*q*) from elastic scattering $\rightarrow \Gamma_{\gamma}$

•
$$\sigma(d\gamma \to np) \sim \frac{1}{E_{\gamma}^2} \frac{\Gamma_n \Gamma_{\gamma}}{(E_{\gamma} - E_R)^2 + \Gamma^2/4}$$

• Detailed balance $\rightarrow \sigma(np \rightarrow d\gamma)$

Importance for Big-Bang Nucleosynthesis

BBN relevant energy window

Precision test of modern theoretical models (potential model, EFT)

Summary and Outlook

Summary

180° measurements of the M1 deuteron breakup

Precision test of modern theoretical models (potential model, EFT)

Excellent description of the data

Precise prediction for $p(n,\gamma)d$ cross section possible in the astrophysically relevant region

Latest BBN calculations use already EFT calculations

Outlook

⁹Be(e,e') under 180°

Astrophysical Importance of the Hoyle State

• Reaction rate with accuracy $\pm 6\%$ needed

S.M. Austin, NPA 758 (2005) 375c

Uncertainties of the Astrophysical Relevant Quantities

$r_{3\alpha} \propto \Gamma_{rad} \exp\left(-\frac{Q_{3\alpha}}{kT}\right)$ $\Gamma_{rad} = \Gamma_{\gamma} + \Gamma_{\pi} = \frac{\Gamma_{\gamma} + \Gamma_{\pi}}{\Gamma} \cdot \frac{\Gamma}{\Gamma_{\pi}} \cdot \Gamma_{\pi}$				
Quantity	Value	Error (%)		
Q_{3lpha}	$379.38\pm0.20~\rm keV$	$1.2 (T_9=0.2)$		
Γ_{rad}/Γ	$(4.12 \pm 0.11) \times 10^{-4}$	2.7		
Γ_π/Γ	$(6.74 \pm 0.62) \times 10^{-6}$	9.2		
Γ_{π}	$(62.0 \pm 6.0) \times 10^{-6} \text{ eV}$	9.7 Crannell <i>et al.</i> (196	37)	
Γ_{π}	$(59.4 \pm 5.1) \times 10^{-6} \text{ eV}$	8.6 Strehl (1970)		
Γ_{π}	$(52.0 \pm 1.4) \times 10^{-6} \text{ eV}$	2.7 Crannell <i>et al.</i> (200)5)	

• Total uncertainty $\Delta r_{3\alpha}/r_{3\alpha} = \pm 11.6\%$ presently

Transition Form Factor to the Hoyle State

- Extrapolation to zero momentum transfer
- Fourier-Bessel analysis
- H. Crannell, data compilation (2005)

Measured Spectra

Model-independent PWBA Analysis

$$\left(\frac{d\sigma}{d\Omega}\right)_{PWBA} = 4\pi \left(\frac{e^2}{E_0}\right)^2 f_{rec} \ V_L(\theta) \ B(C0,q)$$

$$4\pi B(C0,q) = \left[\langle 0_2^+ | \int \hat{\rho}_N j_0(qr) \ d^3r | 0_1^+ \rangle\right]^2$$

$$\langle r^\lambda \rangle_{tr} = \langle 0_2^+ | \int \hat{\rho}_N \ r^\lambda \ d^3r | 0_1^+ \rangle$$

$$ME = \langle r^2 \rangle_{tr}, \qquad R_{tr}^2 = \frac{\langle r^4 \rangle_{tr}}{\langle r^2 \rangle_{tr}}$$

$$\sqrt{4\pi B(C0,q)} = \frac{q^2}{6} (ME) \left[1 - \frac{q^2}{20} R_{tr}^2 + \cdots\right]$$

$$\Gamma_\pi \propto (ME)^2$$

• Model-independent extraction of the partial pair width Γ_{π}

Model-independent PWBA Analysis

• $ME = 5.37(22) \text{ fm}^2$, $R_{tr} = 4.24(30) \text{ fm}$

Large uncertainty because of narrow momentum transfer region

Model-independent PWBA Analysis

• $ME = 5.37(7) \text{ fm}^2$, $R_{tr} = 4.30(12) \text{ fm}$

Fourier-Bessel Analysis

 Transition form factor is the Fourier-Bessel transform of the transition charge density

$$F(q) = 4\pi \int_{0}^{\infty} \rho_{tr}(r) j_{0}(qr) r^{2} dr$$
$$\rho_{tr}(r) = \begin{cases} \sum_{\mu=1}^{\infty} a_{\mu} j_{0}(q_{\mu}r) & \text{for } r < R_{c} \\ 0 & \text{for } r \ge R_{c} \end{cases}$$

with

$$q_{\mu} = \frac{\mu\pi}{R_c}$$

 Data should be measured over a broad momentum transfer range

Fourier-Bessel Analysis

• q = 0.2 − 3.1 fm⁻¹

• *ME* = 5.55(5) fm²

Results

Year	Analysis	Pair width	Ref.	
1967	PWBA		Crannell <i>et al</i> .	
1970	PWBA		\mathbf{Strehl}	
1970	Old average		Ajzenberg-Selove	
2005	Fourier-Bessel		Crannell et al.	
2008	PWBA	⊢	Present work	
2008	Fourier-Bessel		Present work	
2008	New average	••• •	Present work	
50 55 60 65 $70\Gamma_{\pi} [\mu eV]$				

- $\Gamma_{\pi} = 62.2(10) \times 10^{-6} \,\mathrm{eV}$
- Total uncertainty $\Delta r_{3\alpha}/r_{3\alpha} = \pm 10\%$
- Only Γ_{π}/Γ needs still to be improved now

Structure of the Hoyle State in ¹²C

- The Hoyle state is a prototype of α-cluster states in light nuclei
- Cannot be described within the shell-model but within α-cluster models
- Some α-cluster models predict the Hoyle state to consist of a dilute gas of weakly interacting α particles with properties of a Bose-Einstein Condensate (BEC)

Hoyle state cannot be understood as a true BEC

Some Theoretical Approaches Towards the Hoyle State: FMD model

Antisymmetrized A-body state

$$|Q
angle\,=\,\mathcal{A}(|q_1
angle\otimes|q_2
angle\otimes\ldots\otimes|q_A
angle)$$

Single-particle states

$$\langle \mathbf{x} | q \rangle = \sum_{i} c_{i} \exp \left[-\frac{(\mathbf{x} - \mathbf{b}_{i})^{2}}{2a_{i}} \right] \otimes |\chi_{i}^{\uparrow}, \chi_{i}^{\downarrow} \rangle \otimes |\xi \rangle$$

Gaussian wave packets in phase space (a_i is width, complex parameter \mathbf{b}_i encodes mean position and mean momentum), spin is free, isospin is fixed

Describes α -cluster states as well as shell-model–like configurations

UCOM interaction

Derived form the realistic Argonne V18 interaction

Adjusted to reproduce binding energies and charge radii of some "closed-shell" nuclei

α-cluster model

FMD wave function restricted to α -cluster triangle configurations only

• "BEC" model

System of 3 ⁴He nuclei in 0s state (like α condensate) Hoyle state is a "dilute gas" of α particles

Volkov interaction

Simple central interaction

Parameters adjusted to reproduce α binding energy, radius, $\alpha{-}\alpha$ scattering data and ground state energy of ^{12}C

Only reasonable for ⁴He, ⁸Be and ¹²C nuclei

¹²C Densities

Note the depression of the central density

Electron scattering as test of theoretical predictions

Elastic Form Factor

Described well by FMD

Transition Form Factor to the Hoyle State

Described better by α-cluster models

• FMD might be improved by taking α - α scattering data into account

H. Crannell, data compilation (2005)

What is the Actual Structure of the Hoyle State ?

Overlap with FMD basis states

- In the FMD and α-cluster model the leading components of the Hoyle state are cluster-like and resemble ⁸Be + ⁴He configurations
- But in the "BEC" model the relative positions of α clusters should be uncorrelated

Model Predictions at Low Momentum Transfer

 Theory systematically overpredicts experiment

Elastic and Transition Form Factors at Low Momentum Transfer

•
$$|F_{el}(q^2)|^2 \approx 1 - \frac{q^2 \langle r^2 \rangle}{6} + \dots$$

•
$$F_{tr}(q^2) \propto \frac{q^2 \langle r^2 \rangle_{tr}}{6} - \frac{q^4 \langle r^4 \rangle_{tr}}{120} + \dots$$

• Slope is defined by $\langle r^2 \rangle$ term

- Slope is defined by $\langle r^4 \rangle_{tr}$ term
- $\Gamma_{\pi} \propto (ME)^2 \propto |F_{tr}(q=0)|^2$ also

Summary and Outlook

Summary

Hoyle state is very important in astrophysics

Pair width Γ_{π} for the decay of the Hoyle state has been determined from (e,e')

Hoyle state is not a true "Bose-Einstein condensate"

⁸Be + α structure

Outlook

¹²C: 0_3^+ and 2_2^+ states

¹⁶O: 6th excited 0+ state at 15.1 MeV is the "Hoyle" state ? \rightarrow ¹⁶O(e,e' α) Kyoto/Orsay (2008)