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Spectral properties of billiards and mesoscopic systems

Microwave resonator as a model for the compound nucleus

S-Matrix fluctuations in the regime of overlapping resonances

Induced time-reversal symmetry breaking



Classical Billiard



Regular and Chaotic Dynamics

Regular Bunimovich stadium (chaotic)

Equations of motion are integrable

Predictable for infinite long times

Energy and px are conserved2

Equations of motion are not integrable

Predictable for a finite time only

Only energy is conserved



Tool: Poincaré Sections of Phase Space

conjugate
variables

L

sin(φ)

Paramertization of billiard boindary: L

Momentum component along the boundary: sin(φ)



Small Changes → Large Actions

Beyond a fixed, for the system characteristic time becomes 
every prediction impossible. The system behaves in such a way 
as if not determined by physical laws but randomness

Sensitivity of the solutions of a deterministic problem with respect 
to small changes in the initial conditions is called Deterministic Chaos



Our Main Interest

What might we learn from generic features of billiards
and mesoscopic systems (hadrons, nuclei, atoms, molecules, 
metal clusters, quantum dots) ?

How are these properties of classical systems transformed into
corresponding quantum-mechanical systems ? 
→ Quantum chaos ?



The Quantum Billiard and its Simulation
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Schrödinger ↔ Helmholtz

( ) 02 =+Δ zEk

2D microwave cavity: hz < λmin/2

( ) 02 =Ψ+Δ k

quantum billiard
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Helmholtz equation and Schrödinger equation are equivalent in 2D. The
motion of the quantum particle in its potential can be simulated by
electromagnetic waves inside a two-dimensional microwave resonator



Superconducting Niobium Microwave Resonator



Experimental Setup

Superconducting cavities

LHe (T = 4.2 K)

f = 45 MHz ... 50 GHz

103...104 eigenfrequencies

Q = f/Δf ≈ 106



Stadium Billiard ↔ n + 232Th





Random Matrices ↔ Level Schemes
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Nearest Neighbor Spacings Distribution

Poissonian Random Numbers ↔ ″Level Clustering″

GOE and GUE ↔ ″Level Repulsion″



Nearest Neighbor Spacings Distribution

Universal (generic) behaviour of the two systems

stadium billiard nuclear data ensemble



Universality in Mesoscopic Systems: Quantum Chaos in 
Hadrons

Combined data from measured baryon and meson mass
spectra up to 2.5 GeV (from PDG)

P(
s)

Pascalutsa (2003)

Spectra can be organized into multiplets characterized by a 
set of definite quantum numbers: isospin, spin, parity, 
strangeness, baryon number, ...

Scale: 10-16 m



Universality in Mesoscopic Systems: Quantum Chaos in 
Atoms

8 sets of atomic spectra of highly excited neutral and ionized
rare earth atoms combined into a data ensemble

Camarda + Georgopulos (1983)

States of same total angular momentum and parity

Scale: 10-10 m



Universality in Mesoscopic Systems: Quantum Chaos in 
Molecules

Vibronic levels of NO2

Zimmermann et al. (1988)

States of same quantum numbers

Scale: 10-9 m

S



Conjecture of Bohigas, Giannoni + Schmit (1984)

How is the behaviour of the classical system transferred 
to the quantum system ?

Answer: There is a one-to-one correspondence between billiards and 
mesoscopic systems on all scales

For chaotic systems, the spectral fluctuation properties of eigenvalues
coincide with the predictions of random-matrix theory (RMT) for matrices 
of the same symmetry class

Numerous tests of various spectral properties (NNSD, Σ2, Δ3, …) 
and wave functions exist

Our aim: to test this conjecture in scattering systems, i.e. in open chaotic 
microwave billiards particularly in the regime of weakly overlapping   
resonances



Microwave Resonator as a Model for the Compound 
Nucleus

Compound
NucleusA+a B+b

C+
c

D+d

rf power
in     

rf power
out     

Microwave power is emitted into the resonator by antenna
and the output signal is received by antenna
→ Open scattering system
The antennas act as single scattering channels

Absorption into the walls is modelled by additive channels
B. Dietz et al., PRL, submitted



Scattering Matrix Description

Microwave billiardCompound-nucleus
reactions

resonator Hamiltonian

coupling of resonator
states to antenna states
and to the walls

nuclear Hamiltonian

coupling of quasi-bound
states to channel states

← Ĥ →

← Ŵ →

Ŝ(E) =  - 2πi ŴT (E - Ĥ + iπ ŴŴT)-1 Ŵ

Scattering matrix for both scattering processes 

Experiment:                                                     complex S-matrix elements

RMT description: replace Ĥ by a matrix for systemsGOE T-inv
GUE T-noninv



Excitation Spectra

overlapping resonances
 for Γ/D > 1 
 Ericson fluctuations

isolated resonances
for Γ/D << 1

atomic nucleus

ρ ~ exp(E1/2)

M

microwave cavity

ρ ~ f

M

Universal description of spectra and fluctuations: 
Verbaarschot, Weidenmüller + Zirnbauer (1984)



Spectra and Correlation of S-Matrix Elements

Correlation function: )()()()()( εεε +−+= ∗∗ fSfSfSfSC

Γ/D small

Resonances: eigenvalues

Regime of isolated resonances

Γ/D ~ 1

Fluctuations: Γcoh

Overlapping resonances



Ericson’s Prediction for Γ > D
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P. v. Brentano et al., PL 9 (1964) 48

Ericson fluctuations (1960):

Correlation function is Lorentzian

Measured 1964 for overlapping
compound nuclear resonances

Now observed in lots of different 
systems: molecules, quantum dots, 
laser cavities, microwave cavities, … 

Applicable for Г/D >> 1 and for many open channels only

Different theoretical approaches: Ericson → energy and time domain
VWZ → RMT
Blümel and Smilansky → semiclassical approach



Fluctuations in a Fully Chaotic Cavity with T-Invariance

Tilted stadium (Primack + Smilansky, 1994)

GOE behaviour checked

Measure full complex S-matrix for two antennas: S11, S22, S12

Height of cavity 15 mm 

Becomes 3D at 10.1 GHz



Spectra of S-Matrix Elements

Example: 8-9 GHz

Frequency (GHz)

|S
|

S12 →

S11 →

S22 →



Distributions of S-Matrix Elements

Clear deviations for Γ/D d 1 which still need to be modeled theoretically

Ericson regime: Re{S} and Im{S} should be Gaussian and 
phases uniformly distributed



Road to Analysis of the Measured Fluctuations

~
Solution: FT of C(ε) → uncorrelated Fourier coefficients C(t)

Ericson (1965)

Problem: adjacent points in C(ε) are correlated

Development: Non Gaussian fit and test procedure



Fourier Transform vs. Autocorrelation Function

Time domain Frequency domain

← S12 →

← S11 →

← S22 →

Example 8-9 GHz
Frequency domain



Note: nuclear cross section fluctuation experiments yield only |S|2

First test of VWZ in the intermediate regime, i.e. Г/D ≈ 1, with high
statistical significance only achievable with microwave billiards

Rigorous test of VWZ: isolated resonances, i.e. Г << D

Exact RMT Result for GOE Systems
Verbaarschot, Weidenmüller and Zirnbauer (VWZ) 1984 for arbitrary Г/D :

VWZ-integral: C = C(Ti, D ; ε)

Transmission coefficients Average level distance

Rigorous test of VWZ: isolated resonances, i.e. Г << D

First test of VWZ in the intermediate regime, i.e. Г/D ≈ 1, with high
statistical significance only achievable with microwave billiards

Note: nuclear cross section fluctuation experiments yield only |S|2



Corollary: Hauser-Feshbach Formula

For Γ >> D: 
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Distribution of S-matrix elements yields

Over the whole measured frequency range 1 < f < 10 GHz we
find 3.5 > W > 2 in qualitative accordance with VWZ

Elastic enhancement factor W



What Happens in the Region of 3D Modes ?
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VWZ curve in C(t) progresses through the cloud of points
but it passes too high → GOF test rejects VWZ

~

This behaviour is clearly visible in C(ε)

Behaviour can be modelled through



Distribution of Fourier Coefficients

Distributions are Gaussian with the same variances

Remember: Measured S-matrix elements were non-Gaussian

This still remains to be understood



Induced Time-Reversal Symmetry Breaking (TRSB) 
in Billiards

Principle of reciprocity:

Sab

Sba

ab

a b
• •

Principle of detailed balance: 

T-symmetry breaking caused by a magnetized ferrite

Coupling of microwaves to the FMR depends on the direction a b



Detailed Balance in Nuclear Reactions

Search for Time-Reversal Symmetry Breaking (TRSB) in nuclear reactions



Detailed Balance in Nuclear Reactions

Search for TRSB in nuclear reactions → upper limits



Isolated Resonances - Setup



Isolated Resonances - Singlets

Reciprocity holds → TRSB cannot be detected this way
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Isolated Doublets of Resonances

Violation of reciprocity due to interference of two resonances
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Scattering Matrix and TRSB

Scattering matrix element

bWHWaiS eff
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Decomposition of effective Hamiltonian

Ansatz for TRSB incorporating the FMR and its selective
coupling to the microwaves



TRSB Matrix Element

Fit parameters:     and λ ω

TiB
TBiBH Ma
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T-Violating Matrix Element

T-violating matrix element shows resonance like structure

Successful description of dependence on magnetic field
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Relative Strength of T-Violation

Compare: TRSB matrix element to the energy difference
of two eigenvalues of the T-invariant system
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TRSB in the Region of Overlapping Resonances (Γ t D)

1
2

F

Antenna 1 and 2 in a 2D tilted stadium billiard

Magnetized ferrite F in the stadium

Place an additional Fe - scatterer into the stadium and move it
up to 12 different positions in order to improve the statistical
significance of the data sample

→ distinction between GOE and GUE behaviour becomes possible



Search for Time-Reversal Symmetry Breaking in Nuclei



Violation of Reciprocity

S12
S21 

Clear violation of reciprocity in the regime of Γ/D t 1



Quantification of Reciprocity Violation

Quantification of reciprocity violation via Δ
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Definition of a contrast function

The violation of reciprocity reflects degree of TRSB



Magnitude and Phase of Δ Fluctuate

← B º 200 mT

←
B º 0 mT:
no TRSB



S-Matrix Fluctuations and RMT

as HiHH ˆˆˆ α+=
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Pure GOE → VWZ 1984

Pure GUE  → FSS (Fyodorov, Savin + Sommers) 2005
V (Verbaarschot) 2007

Partial TRSB      → analytical model under development
(based on Pluhař, Weidenmüller, Zuk + 
Wegner, 1995)

RMT →

Full T symmetry breaking sets in experimentally already
for λ º α/D º1



Crosscorrelation between S12 and S21 at ε = 0

C(S12, S21) =
1 for GOE
0 for GUE

*

Data: TRSB is incomplete → mixed GOE / GUE system



Test of VWZ and FSS / V Models

Autocorrelation functions of S-matrix fluctuations can be described
by VWZ for weak TRSB and by FSS / V for strong TRSB

VWZ VWZ VWZ VWZFSS/V



First Approach towards the TRSB Matrix Element 
based on RMT

Full T-breaking already sets in for α º D

as HiHH ˆˆˆ α+=
1
0

=
=

α
α GOE

GUE

maximal observed T-symmetry
breaking

RMT      →



Determination of the rms Value of T-breaking Matrix Element

α
(M

H
z)



Summary

Distributions of S-matrix elements are not Gaussian

Investigated a chaotic T-invariant microwave resonator (i.e. a 
GOE system) in the regime of weakly overlapping resonances
(Γ º D)

However, distribution of the 2400 uncorrelated Fourier
coefficients of the scattering matrix is Gaussian

Data were used to test VWZ theory of chaotic scattering and the
predicted non-exponential decay in time of resonator modes and 
the frequency dependence of the elastic enhancement factor are
confirmed

Data are limited by rather small FRD errors, not by noise

The most stringend test of the theory yet uses this large number
of data points and a goodness-of-fit test



Summary ctd.

Principle of reciprocity is strongly violated (Sab ≠ Sba)

Investigated furthermore a chaotic T-noninvariant microwave
resonator (i.e. a GUE system) in the regime of weakly overlapping
resonances

Data show, however, that TRSB is incomplete
→ mixed GOE / GUE system

S-matrix fluctuations are described in spectral regions of weak
TRSB by VWZ and for strong TRSB by FSS / V

Data were subjected to tests of VWZ theory (GOE) and FFS / V 
theory (GUE) of chaotic scattering

Analytical model for partial TRSB is under development

First approach using RMT shows that full TRSB sets already in 
when the symmetry breaking matrix element is of the order of the
mean level spacing of the overlapping resonances


