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Quantum Manifestations of Classical Chaos —
Some Universal Features of Billiards and Nuclei

@ Classical billiards and quantum billiards

@ Random Matrix Theory (Wigner 1951 — Dyson 1962)

@ Spectral properties of billiards and mesoscopic systems

@ Microwave resonator as a model for the compound nucleus
S-Matrix fluctuations in the regime of overlapping resonances

Induced time-reversal symmetry breaking

Supported by DFG under SFB 634

==

S-DALINAC




Classical Billiard




Regular and Chaotic Dynamics

Regular Bunimovich stadium (chaotic)

@ Energy and p? are conserved @ Only energy is conserved

@ Equations of motion are integrable @ Equations of motion are not integrable

@ Predictable for infinite long times @ Predictable for a finite time only



Tool: Poincaré Sections of Phase Space

@ Paramertization of billiard boindary: L conjugate

@ Momentum component along the boundary: sin() variables
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Small Changes — Large Actions

@ Sensitivity of the solutions of a deterministic problem with respect
to small changes in the initial conditions is called Deterministic Chaos

@ Beyond a fixed, for the system characteristic time becomes
every prediction impossible. The system behaves in such a way
as if not determined by physical laws but randomness




Our Main Interest

@ How are these properties of classical systems transformed into
corresponding quantum-mechanical systems ?
— Quantum chaos ?

@ What might we learn from generic features of billiards
and mesoscopic systems (hadrons, nuclei, atoms, molecules,
metal clusters, quantum dots) ?




The Quantum Billiard and its Simulation
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Schrodinger < Helmholtz

quantum billiard 2D microwave cavity: h, < A../2
(A+K*)w =0 (A+k?)E, =0
- [2mE (2
h C

Helmholtz equation and Schrodinger equation are equivalent in 2D. The
motion of the quantum particle in its potential can be simulated by
electromagnetic waves inside a two-dimensional microwave resonator




Superconducting Niobium Microwave Resonator




Experimental Setup

Network Analyzer

@ Superconducting cavities

@ LHe (T = 4.2 K)
@ f=45MHz ... 50 GHz

@ 103...10% eigenfrequencies

@ Q="f/Af~ 106




Stadium Billiard & n + 232Th

Cross Section

Transmission spectrum for the stadium billiard
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News and Views

Neutron Capture and Nuclear Constitution

Tue new views of nuclear structure and the
processes involved in neutron capture, presented by
Prof. Niels Bohr in an address which appears else-
where In this issue, were expounded by him in a
lecture to the Chemical and Physical Society of
University College, London, on February 11 and
were illustrated by two pictures here reproduced.
The first of these is intended to convey an idea of
events arising out of a collision between a neutron

and the nucleus. Imagine a shallow basin with a
u in it as shown in the accom-

panying figure. If the basin were empty, then upon
striking a ball from the outside, it would go down
one slope and pass out on the opposite side with its
original velocity. But with other balls in the basin,
there would not be a free passage of this kind. The
struck ball would divide its energy first with one of
the balls in the basin, these two would similarly

share their energies with others, and so on until the
original kinetic energy was divided among all the
balls, If the basin and the balls are regarded as
perfectly smooth and elastic, the collisions would
continue until the kinetic energy happens again to
be concentrated upon a ball close to the edge. This
ball would then escape from the basin and the
remainder of the balls would be left with insufficient
total energy for any of them to climb the slope. The
picture illustrates, therefore, *‘that the excess energy
of the incident neutron will be rapidly divided among
all the nuclear particles with the result that for
some time afterwards no single particle will possess
sufficient kinetic energy to leave the nucleus”,

MNuclear Energy Levels

THE second figure illustrates the character of the
distribution of energy levels for a nucleus of not too
small atomic WEISEL The lowest Lines represent the
levels with an excitation of the same order of mag-
nitude as ordinary excited y-ray states. According

to the views developed in Prof. Bohr's address, the
levels will for increasing excitation rapidly become
closer to one another and will, for an excitation of about
15 million elect volts, jponding to & collision
between a nucleus and a high-speed neutron, be
continuously distributed, whereas in the region of
small excess energy of about 10 million volts excita-
tion they will still be sharply separated. This is
illustrated by the two lenses of high magnification
placed over the level-diagram in the two abowve-
mentioned regions. The dotted line in the middle of
the field of the lower magnifying glass represents
zero excess energy, and the fact that one of the levels

Fia. 2,

is wvery close to this line (about } wvolt distant)
corresponds to the possibility of selective capture for
very slow neutrons. The average distance between
the neighbouring levels will in this energy region be
about ten volts as estimated from the statistics for
the occurrence of selective capture. The di

shows no upper limit to the levels, and these actually
extend to very high energy values. If it were possible
to experiment with neutrons or protons of energies
above a hundred million volts, several cl or
uncharged particles would eventually leave the
nucleus as a result of the encounter ; and, adds Prof.
Bohr, “with particles of energies of about a thousand
million wolts, we must even be prepared for the
collision to lead to an explosion of the whole nucleus™.




Random Matrices & Level Schemes

Level Schemes
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Nearest Neighbor Spacings Distribution
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@ GOE and GUE > "Level Repulsion”

@ Poissonian Random Numbers <« "Level Clustering”




Nearest Neighbor Spacings Distribution

stadium billiard nuclear data ensemble
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@ Universal (generic) behaviour of the two systems



Universality in Mesoscopic Systems: Quantum Chaos in
Hadrons

@ Combined data from measured baryon and meson mass
spectra up to 2.5 GeV (from PDG)

@ Spectra can be organized into multiplets characterized by a
set of definite quantum numbers: isospin, spin, parity,
strangeness, baryon number, ...
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Universality in Mesoscopic Systems: Quantum Chaos in
Atoms

@ 8 sets of atomic spectra of highly excited neutral and ionized
rare earth atoms combined into a data ensemble

@ States of same total angular momentum and parity
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Universality in Mesoscopic Systems: Quantum Chaos in
Molecules

@ Vibronic levels of NO,

@ States of same quantum numbers
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Conjecture of Bohigas, Giannoni + Schmit (1984)

@ How is the behaviour of the classical system transferred
to the quantum system ?

@ Answer: There is a one-to-one correspondence between billiards and
mesoscopic systems on all scales

@ For chaotic systems, the spectral fluctuation properties of eigenvalues
coincide with the predictions of random-matrix theory (RMT) for matrices
of the same symmetry class

@ Numerous tests of various spectral properties (NNSD, X2, A,, ...)
and wave functions exist

@ Our aim: to test this conjecture in scattering systems, i.e. in open chaotic
microwave billiards particularly in the regime of weakly overlapping
resonances




Microwave Resonator as a Model for the Compound

Nucleus
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@ Microwave power is emitted into the resonator by antenna ®

and the output signal is received by antenna @
— Open scattering system

@ The antennas act as single scattering channels

@ Absorption into the walls is modelled by additive channels
B. Dietz et al., PRL, submitted




Scattering Matrix Description

@ Scattering matrix for both scattering processes

8(E) =1 - 2ri WT (Bl D+ in WWTY W)

Compound-nucleus Microwave billiard
reactions

nuclear Hamiltonian <« FI —> resonator Hamiltonian
states to channel states «~ W -

states to antenna states
and to the walls

@ Experiment: complex S-matrix elements
T-inv

GOE matrix for systems
GUE T-noninv

@ RMT description: replace H by a



Excitation Spectra

atomic nucleus microwave cavity

overlapping resonances
forI'/D > 1
Ericson fluctuations

I

isolated resonances
forI'/D << 1

LTI T

~

p ~ exp(E'?)

e
l
*

@ Universal description of spectra and fluctuations:
Verbaarschot, Weidenmuller + Zirnbauer (1984)



Spectra and Correlation of S-Matrix Elements

Log(|S$12]) (a.u.)
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12.8

Frequency (GHz) : Frequency (GHz)
@ Regime of isolated resonances @ Overlapping resonances
@ I'/D small @ I'/D~ 1
@ Resonances: eigenvalues @ Fluctuations: I'_,,

Correlation function:  C(£) =(S(F)S"(f +&))—(S ()}S'(f +¢&))




Ericson’s Predictionforl > D
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Measured 1964 for overlapping
compound nuclear resonances

SE— —:ww
Now observed in lots of different ol T
systems: molecules, quantum dots, 0 50 100 50 fev] |
laser cavities, microwave cavities, ... P.v. Brentano et al., PL 9 (1964) 48

Different theoretical approaches: Ericson — energy and time domain
VWZ — RMT
Blimel and Smilansky — semiclassical approach

Applicable for /D >> 1 and for many open channels only



Fluctuations in a Fully Chaotic Cavity with T-Invariance

@ Tilted stadium (Primack + Smilansky, 1994)

@ Height of cavity 15 mm

@ Becomes 3D at 10.1 GHz

@ GOE behaviour checked

@ Measure full complex S-matrix for two antennas: S., S,,, S,




Spectra of S-Matrix Elements

Example: 8-9 GHz
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Distributions of S-Matrix Elements
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@ Ericson regime: Re{S} and Im{S} should be Gaussian and

phases uniformly distributed

@ Clear deviations for ['/D < 1 which still need to be modeled theoretically




Road to Analysis of the Measured Fluctuations

@ Problem: adjacent points in C(g) are correlated

@ Solution: FT of C(e) — uncorrelated Fourier coefficients E(t)
Ericson (1965)

@ Development: Non Gaussian fit and test procedure




Fourier Transform vs. Autocorrelation Function

Time domain Frequency domain
Example 8-9 GHz
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Exact RMT Result for GOE Systems

@ Verbaarschot, Weidenmuller and Zirnbauer (VWZ) 1984 for arbitrary /D

@ VWZ-integral: C=C(T,D;¢)
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@ Rigorous test of VWZ: isolated resonances, i.e. [ << D

@ First test of VWZ in the intermediate regime, i.e. /D = 1, with high
statistical significance only achievable with microwave billiards

@ Note: nuclear cross section fluctuation experiments yield only |S|?



Corollary: Hauser-Feshbach Formula

i T.T,

@ ForrT>>D: S (T)S,(f+e&) — (14—5<,j,0)g+iF ZTC

@ Elastic enhancement factor W

@ Distribution of S-matrix elements yields

5 5 1/2 5
w=(jsif s ) /s <2

@ Over the whole measured frequency range 1 < f< 10 GHz we
find 3.5 > W > 2 in qualitative accordance with VWZ



What Happens in the Region of 3D Modes ?
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@ VWZ curve in (~3(t) progresses through the cloud of points
but it passes too high - GOF test rejects VWZ

@ This behaviour is clearly visible in C(g)

. H GOE O
@ Behaviour can be modelled through H = [ 1 ]

0 H o




Distribution of Fourier Coefficients
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@ Distributions are Gaussian with the same variances

@ Remember: Measured S-matrix elements were non-Gaussian

@ This still remains to be understood




Induced Time-Reversal Symmetry Breaking (TRSB)
in Billiards

@ T-symmetry breaking caused by a magnetized ferrite

@ Coupling of microwaves to the FMR depends on the directiona*= b

bosab/ \-a
'\ /Sba

@ Principle of detailed balance: |Sa5|2 — |Sba|2

@ Principle of reciprocity: Sa,b — Sb-fa



Detailed Balance in Nuclear Reactions

Volume 56B, number 2 PHYSICS LETTERS 14 April 1975

TIME-REVERSIBILITY VIOLATION AND ISOLATED NUCLEAR RESONANCES*

J.M. PEARSON
Laboratoire de Physique Nucléaire, Département de Physigue, Université de Montréal, Montréal, Canada

and

A.RICHTER*
Institut fur Kernphysik, Technische Hochschule Darmstadt, Darmstadt, W Germany

Received 21 January 1975

It is pointed out that measurements of differential cross-sections in nuclear reactions proceeding via an 1solated re-
sonance can provide in principle a test for time reversibility.

@ Search for Time-Reversal Symmetry Breaking (TRSB) in nuclear reactions




Detailed Balance in Nuclear Reactions

“2a1: | Nuclear Physics A317 (1979) 300—312; (C) North-Holland Publishing Co., Amaterdam
2.C Not to be reproduced by photoprint or microfilm without written permission from the publisher

TEST OF DETAILED BALANCE AT ISOLATED RESONANCES
IN THE REACTIONS %7Al+p 2 2*Mg+a AND TIME REVERSIBILITY !

H. DRILLER 't and E. BLANKE 't
Institut fiir Experimentalphysik, Ruhr Universitdt Bochum, 4630 Bochum, Germary
H. GENZ, A. RICHTER and G. SCHRIEDER
Institut fir Kernphysik, Technische Hochschule Darmstadt, 6100 Darmstadt, Germany
and
J. M. PEARSON #

Loboratoire de Physigue Nucléaire,, béparmnml de Physique, Université de Montréal, Montréal, Québec,
Canuda

Received 15 September 1978

Abstract: The principle of detailed balance has been tested in the reactions 2" Al(p, x,)**Mg (Q = 1.600
MeV) and **Mg(a, po)*’Al (Q = —1.600 MeV) at bombarding energies EX® = 1.35-1.46 MeV
and E*® = 3.38-3.52 MeV, respectively. Protons and a-particles were detected at 6, , = 177.7°.
The relative strengths of two resonances at E, = 12,901 MeV (J* = 2%) and E, = 12.974 MeV
(J* = 17) in ?®Si excited in the forward and backward reaction agree within the experimental
uncertainty § = 0.002510.0192. This experimental result is converted into a difference of phase
angles for reduced widths amplitudes, A = (0.3+3)°, which is consistent with time reversibility.

@ Search for TRSB in nuclear reactions — upper limits




Isolated Resonances - Setup




Isolated Resonances - Singlets
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@ Reciprocity holds — TRSB cannot be detected this way




Isolated Doublets of Resonances
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@ Violation of reciprocity due to interference of two resonances




Scattering Matrix and TRSB

@ Scattering matrix element

- 9 7 eff \—1\ A
Sap (@) =6, —27(aW (@ —H")"'W|b)
@ Decomposition of effective Hamiltonian
A = H2 4 A
0 H.
a
-H, O

@ Ansatz for TRSB incorporating the FMR and its selective
coupling to the microwaves




TRSB Matrix Element
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@ Fit parameters: A and @



T-Violating Matrix Element
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@ T-violating matrix element shows resonance like structure

@ Successful description of dependence on magnetic field



Relative Strength of T-Violation

@ Compare: TRSB matrix element Hf‘2 to the energy difference
of two eigenvalues of the T-invariant system
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TRSB in the Region of Overlapping Resonances (I" = D)

@ Antenna 1 and 2 in a 2D tilted stadium billiard

@ Magnetized ferrite F in the stadium

@ Place an additional Fe - scatterer into the stadium and move it
up to 12 different positions in order to improve the statistical
significance of the data sample

— distinction between GOE and GUE behaviour becomes possible




Search for Time-Reversal Symmetry Breaking in Nuclei

VOLUME 19, NUMBER 9 PHYSICAL REVIEW LETTERS 28 AucGusT 1967

UPPER LIMIT OF T NONCONSERVATION IN THE REACTIONS *Mg + o =% Al +p

W. von Witsch, A. Richter, and P. von Brentano*
Max Planck Institut fiir Kernphysik, Heidelberg, Germany
(Received 28 June 1967)

Time-reversal invariance has been tested via detailed balance in the compound-nucle-
ar reactions 2Mg+a %Al +p. The relative differential cross sections agree within the
experimental uncertainties, leading to an estimated upper limit for the ratio of the T-
nonconserving to the T-conserving reaction amplitudes of (2-4) x10~°. The same upper
limit is found for the nuclear matrix elements which are odd with respect to time reversal.

VorLuME 51, NUMBER 5 PHYSICAL REVIEW LETTERS I AuGusT 1983

Improved Experimental Test of Detailed Balance and Time Reversibility
in the Reactions 27Al+p=2*Mg +a

E. Blanke,® H. Driller,!” and W. Glockle
Abteilung fiiv Physik und Astvonomie, Ruhy Univevsitidt Bochum, D-4630 Bochum, Gevrmany

and

H. Genz, A. Richter, and G. Schrieder
Institut fiiv Kevnphysik, Technische Hochschule Davymstadt, D-6100 Darmsiadl, Gevmany
(Received 25 April 1983)

A new test of the principle of detailed balance in the nuclear reactions “"Al(p, o ,) UNg
and *Mgla, p o)*'Al at bombarding energies 7.3 MeV<E,< 7.7 MeV and 10.1 MeV<E,,
=10.5 MeV, respectively, is reported. Measured relative differential cross sections
agree within the experimental uncertainty A=+ 0.51% and hence are consistent with time-
reversal invariance. From this result an upper limit ¢ < 5x 10" (80% confidence) is de-
rived for a possible time-reversal—-noninvariant amplitude in the reaction.




Violation of Reciprocity
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@ Clear violation of reciprocity in the regime of ['/D = 1




Quantification of Reciprocity Violation

@ The violation of reciprocity reflects degree of TRSB

@ Definition of a contrast function

Sb_Sba

a

_‘Sab|+|sba|

@ Quantification of reciprocity violation via A
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S-Matrix Fluctuations and RMT

@ Pure GOE — VWZ 1984
@ Pure GUE — FSS (Fyodorov, Savin + Sommers) 2005
V (Verbaarschot) 2007
@ Partial TRSB — analytical model under development
(based on Pluhaf, Weidenmuller, Zuk +
Wegner, 1995)
@ RMT — H=H’+iaH*®
a =0 GOE
a=1 GUE

@ Full T symmetry breaking sets in experimentally already

for A ~ a/D ~1




Crosscorrelation between S, and S,, ate =0
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@ Data: TRSB is incomplete — mixed GOE / GUE system




Test of VWZ and FSS / V Models

Crosscorrelation
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@ Autocorrelation functions of S-matrix fluctuations can be described

by VWZ for weak TRSB and by FSS / V for strong TRSB




First Approach towards the TRSB Matrix Element
based on RMT
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Determination of the rms Value of T-breaking Matrix Element

Crosscorrelation
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Summary

@ Investigated a chaotic T-invariant microwave resonator (i.e. a
GOE system) in the regime of weakly overlapping resonances
('~ D)

@ Distributions of S-matrix elements are not Gaussian

@ However, distribution of the 2400 uncorrelated Fourier
coefficients of the scattering matrix is Gaussian

@ Data are limited by rather small FRD errors, not by noise

@ Data were used to test VWZ theory of chaotic scattering and the
predicted non-exponential decay in time of resonator modes and
the frequency dependence of the elastic enhancement factor are
confirmed

@ The most stringend test of the theory yet uses this large number
of data points and a goodness-of-fit test




Summary ctd.

@ Investigated furthermore a chaotic T-noninvariant microwave
resonator (i.e. a GUE system) in the regime of weakly overlapping
resonances

@ Principle of reciprocity is strongly violated (S_, # S,,)

@ Data show, however, that TRSB is incomplete
— mixed GOE / GUE system

@ Data were subjected to tests of VWZ theory (GOE) and FFS / V
theory (GUE) of chaotic scattering

@ S-matrix fluctuations are described in spectral regions of weak
TRSB by VWZ and for strong TRSB by FSS / V

@ Analytical model for partial TRSB is under development

@ First approach using RMT shows that full TRSB sets already in
when the symmetry breaking matrix element is of the order of the
mean level spacing of the overlapping resonances




