

(e,e'x) and (e,e') at 180° Experiments at the S-DALINAC

S-DALINAC

QCLAM Spectrometer

Yaroslav Kalmykov

Darmstadt 2003

- Requirements for the spectrometer
- Construction and ion-optical properties
- Detector system
- 180° System
- Status and outlook

Requirements

S-DALINAC

•
$$\Delta E/E = 1 \cdot 10^{-4}$$

small cross sections is big acceptance

•
$$E_x = E_0 - cp_{cent}(p/p_{cent}) - T_{rec} - E_{targ} \Rightarrow \Delta \Theta = 0.5^\circ$$

backward and forward angles

Operational Modes of Magnetic Spectrometer

 $\begin{aligned} x_{2} &= (x/x)x_{1} + (x/\Theta)\Theta_{1} + (x/\delta)\delta + \\ &+ (x/x_{2})x_{1}^{2} + (x/x\Theta)x_{1}\Theta_{1} + (x/\Theta^{2})\Theta_{1}^{2} + (x/x\delta)x_{1}\delta + (x/\Theta\delta)\Theta_{1}\delta + \\ &+ (x/\delta^{2})\delta^{2} + (x/y^{2})y^{2} + (x/y\Phi)y_{1}\Phi_{1} + (x/\Phi^{2})\Phi_{1}^{2} + \\ &+ higher order terms \end{aligned}$

(x/x) - magnification (x/δ) - dispersion

 $(x/\Theta)=0, (y/\Phi)=0$ - focus

Parameters of the QCLAM Spectrometer

- $E_o = 20 \div 130 \text{ MeV} \Rightarrow B_{\rho} \le 1.2 \text{ T m}$
- $\Delta E/E = 1 \cdot 10^{-4}$, $\Delta \Theta = 0.5^{\circ} \Rightarrow (x/x) = -0.492$, $(x/\delta) = 2.32$ cm/%,

 (Θ/x) =-23.073 mrad/cm, (Θ/Θ) =2.02, (Θ/δ) =9.42 mrad/%

- $\Delta p/p = \pm 10\%$, $\Delta \Omega = 35$ msr \Rightarrow **Q**uadrupole + **CLAM** shell dipole
- backward and forward angles \$\Rightarrow\$ "vertical" spectrometer

- 120÷220 mm
- tilted planes 2.54°

Pole geometry

- Maximal field

Quadrupole Magnet

3 T/m Maximal field gradient

402 mm

Requirements for the Detector System

•	Energy range	20 ÷ 130 MeV
•	Efficiency	100%
•	Length	670 mm
•	Width	80 mm
•	Angular acceptance	40°
•	Position resolution	0.3 mm
•	Angular resolution	3 mrad
•	Time resolution	< 1 ns

Operation of Vertical Drift Chamber

Vertical Drift Chambers at the QCLAM Spectrometer

X1, X2 ➡ x, φ U, x ➡ y

S-DALINAC

Goniometer for (e,e'x) Experiments

- 1. Target ladder tube
- 2. Motors for target positioning
- 3. Vertical motion gearbox
- 4. Vacuum drain
- 5. Valve
- 6. Scattering chamber lid
- 7. Upper goniometer ring
- 8. Target ladder
- 9. Middle goniometer ring
- 10. Stabilizing rod
- 11. Optical encoder
- 12. Lower goniometer ring
- 13. Detector telescope

Setup for (e,e'n) Experiments

Why 180° ?

$$\left(\frac{d\sigma}{d\Omega}\right)_{L} \approx V_{L} \times \left|F_{L}\left(q\right)\right|^{2} \left(\frac{d\sigma}{d\Omega}\right)_{T} + \left(\frac{d\sigma}{d\Omega}\right)_{T}$$

transverse excitations

Scattering at 180° is ideal for measuring

180° System at the S-DALINAC

Incident Beam

Parameters of the 180° System at the S-DALINAC

		Full solid angle	Limited solid angle
Central energy range	MeV	25 · 85	25 · 85
Momentum acceptance	%	[- 10 ; + 10]	[- 6 ; + 8]
Effective scattering angle	deg	ca. 177.5	ca. 178
Acceptance of the horizontal scattering angle	mrad	· 60	· 40
Acceptance of the vertical scattering angle	mrad	· 40	· 40
Solid angle acceptance	msr	9.6	6.4
Momentum transfer	fm⁻¹	0.2 · 0.85	0.2 · 0.85
Intrinsic energy resolution		2·10 ⁻⁴	2·10 ⁻⁴

Event Reconstruction

Raw Data (MWDCs):

- x = dispersive coordinate at the detector plane
- y = non-dispersive coordinate
- ϕ = vertical intersection angle at the detector plane

Physical Information:

= horizontal angle at the target (H) horiz

⊖_{vert} = vertical angle at the target

Background Sources in 180° Mode

S-DALINAC

Trigger Electronics

S-DALINAC

Excitation Energy Spectrum of ¹²C

Status and Outlook

S-DALINAC

- Larger momentum acceptance than that of any previous 180° system
- Unprecedented capabilities for solid angle definition
- Effective background suppression
- Possibilities for alignment and monitoring of the system
- New separating magnet
 - ⇒ higher momentum transfer
 - ➡ better background suppression
- New VDCs

⇒ improvement of the event reconstruction