Eichung von Flüssigszintillatoren eines Neutronenballes für koinzidente Elektronenstreuexperimente am S-DALINAC mit Photonen

Anna Maria Heilmann

TU Darmstadt

18. Dezember 2007

Übersicht

- Motivation
 - Giant Resonances wie man sie gut messen kann
 - Aufbau eines Neutronenballes am S-DALINAC
- Energieeichung mit Photonen
 - Simulation PHRESP
 - Experimenteller Aufbau
- Analyse der Messdaten
 - Totzeit-Korrektur
 - Fitroutine
- Ergebnisse
- Zusammenfassung und Ausblick

Giant Monopole Resonances

http://www.jinaweb.org/events/nuclear05/

announcement.html

Ziele

- kollektive Anregungsmoden
- Informationen über Kerne und Wechselwirkung zwischen Kernen
- nukleare Kompressibilität
 k∞
- Aussagen über die Zustandsgleichung von Kernmaterie
- Aussagen über Neutronensterne

Isoscaler Giant Dipole Resonances

http://www.jinaweb.org/events/nuclear05/

announcement.html

Ziel

- Lage der Schwerpunktsenergie (centroid energy) in Abhängigkeit von der Massenzahl
- nukleare Kompressibilität k_∞

Isoscaler Giant Dipole Resonances

S. Strauch, Dissertation, D17, Institut für Kernphysik, TU Darmstadt, (1998).

Methode

- Koinzidenzmessung in Elekronenstreuexperimenten
- Unterdrückung des Strahlenschwanzes
- fast frei von Untergrund
- Messungen für weitere Kerne wie ⁵⁸Ni, ⁹⁰Zr, ¹⁴⁰Ce, ²⁰⁸Pb

Reaktionsmechanismus von (e,e'x)

S. Strauch, Dissertation, D17, Institut für Kernphysik, TU Darmstadt, (1998).

Detektorenball für den Nachweis von Neutronen

M. Chernykh, Dissertation, D17, Institut für Kernphysik, TU Darmstadt, In Vorbereitung.

Detektorenball für den Nachweis von Neutronen

Eigenschaften

- 13 Detektoren
- Raumwinkel von 1.3π

Anforderungen an die Detektoren

- hohe Neutroneneffizienz
- ullet Unterscheidung von Neutronen und γ
- schnelle Detektorantwort
- kompakte Geometrie
- zweitrangig: Energieauflösung

Detektorenball für den Nachweis von Neutronen

Eigenschaften

- 13 Detektoren
- Raumwinkel von 1.3π

Anforderungen an die Detektoren

- hohe Neutroneneffizienz
- ullet Unterscheidung von Neutronen und γ
- schnelle Detektorantwort
- kompakte Geometrie
- zweitrangig: Energieauflösung
- ullet \Longrightarrow Flüssigszintillatoren des Materials BC501A von Bicron

Charakteristische Zeitabhängigkeit der Lichtproduktion

Neutronen \longrightarrow produzieren Recoil-Protonen Photonen \longrightarrow produzieren Elektronen

Daten von L.M. Bollinger, G.E. Thomas, Rev. Sci. Instr. 32 (1961) 1044.

Wechselwirkung von Photonen mit Materie

Daten von Photon Cross Sections Database, National Institute of Standards and Technology, USA, http://physics.nist.gov/xcom

Simulation der Comptonkante mit dem Code PHRESP

Entwicklung des Codes: G. Dietze, H. Klein, PTB-ND 22, (1982). T. Novotný, PTB-N 28, (1997).

Simulation der Comptonkante mit dem Code PHRESP

Entwicklung des Codes: G. Dietze, H. Klein, PTB-ND 22, (1982). T. Novotný, PTB-N 28, (1997).

Experimenteller Aufbau (I)

Experimenteller Aufbau (II)

Experimenteller Aufbau (III)

Totzeit-Korrektur

- Aufspalten eines logischen 50 MHz Pulses vom Frequenz Generator im fan-out Modul
- Zählen beider Signale: erstes als C_{live} direkt, zweites in Koinzidenz mit dem invertierten Totzeitausgabe des Ausleseprozessors
- scaler in preset-Modus: Stop nach 10 s ($C_{live} = 5 \cdot 10^8$)

Totzeit-Korrektur

$$T_{d} [\%] = 100 \cdot \left(1 - \frac{C_{real}}{C_{live}}\right)$$

$$N_{corr} [i] = N_{meas} [i] \cdot \frac{100}{100 - T_{d} [\%]}$$
(2)
(3)

während der Datenaufnahme wurde der Wert alle 10 s berechnet, und angewandt

٨

Messungen (1)

Messungen (2)

Bereinigung des Untergrundes:

$$N_{corr}^{subt}\left[i\right] = N_{corr}\left[i\right] - N_{corr}^{back}\left[i\right] \cdot \frac{T}{T_{back}}$$
(4)

Bereinigung des Untergrundes:

$$N_{corr}^{subt}\left[i\right] = N_{corr}\left[i\right] - N_{corr}^{back}\left[i\right] \cdot \frac{T}{T_{back}}$$
(4)

Bereinigung des Untergrundes:

$$N_{corr}^{subt}\left[i\right] = N_{corr}\left[i\right] - N_{corr}^{back}\left[i\right] \cdot \frac{T}{T_{back}} \tag{4}$$

Analyse: Faltung der Simulation mit Normalverteilung

Analyse: Faltung der Simulation mit Normalverteilung

Schritte in der Analyse

- Beginn mit der höchsten γ Energie.
- Faltung der Simulation für verschiedene Breiten.
- $\bullet\,$ Für jedes Parameterset wurde die Abweichung zum Spektrum mit χ^2 bestimmt.
- Die besten Werte für a, b und die Breite wurden gespeichert,
- \bullet um in kleineren Intervallen
 ${\it a}, {\it b},$ zu variieren um das Beste χ^2 zu bestimmen.
- Die beste Simulation wird von dem vorhergehenden Spektrum abgezogen.
- Wiederholung des Verfahrens für die weiteren Comptonkanten.

Ergebnisse (I): Energiekalibrierung

Ergebnisse (II): Energieauflösung

empirische Formel: H. Schölermann, H. Klein, Nucl. Instr. Meth. 41 (1980) 25.

Ergebnisse (II): Energieauflösung

empirische Formel: H. Schölermann, H. Klein, Nucl. Instr. Meth. 41 (1980) 25.

Ergebnisse (II): Energieauflösung

empirische Formel: H. Schölermann, H. Klein, Nucl. Instr. Meth. 41 (1980) 25.

Zusammenfassung und Ausblick (I)

- Koinzidenzexperimente mit Elektronenstreuung sind für Untersuchungen an Riesenresonanzen sehr gut geeignet
- Neutronendetektorball am S-DALINAC ist ein einzigartiger Aufbau

Methode dieser Arbeit:

- Simulation der Detektor-Response mit dem Code PHRESP
- Fitroutine f
 ür die gemessenen Daten
- Bestimmung der Comptonkanten

Zusammenfassung und Ausblick (II)

Verbesserungsvorschläge:

- Vergrößerung des Abstandes von Quelle zu Detektor
- erhöhter Aufbau zur Vermeidung von Streueffekten durch den Boden
- Fitroutine für die gemessenen Daten

Weiteres Vorgehen:

Bestimmung der Ansprechwahrschinlichkeit für Neutronen mit ²⁵²Cf

Simulation der Comptonkante mit dem Code PHRESP

- Incoherent scattering,
- Photoelectrical effect,
- Compton scattering,
- Pair production,
- Positron annihilation,
- Bremsstrahlung production,
- Continuous energy loss applied to charged particle tracks between interactions,
- Multiple Coulomb scaterring from nuclei,
- Møller (e^-e^-) and Bhabha (e^+e^-) scattering.