Simulation des Magnetsystems des 180° Streuexperiments am QClam-Spektrometer in CST Studio

Vortrag zur Bachelor-Thesis von Sebastian Heil

Gliederung

Grundlagen Elektronenstreuung 180° Streuexperiment QClam-Spektrometer

Geometrie und Simulation einzelner Komponenten Separationsmagnet Pentapol QClam-Dipol

Gesamtsimulation

Streuung

- Formfaktor enthält Informationen über das Target
- Formfaktor wird ermittelt durch Messung des differenziellen Wirkungsquerschnitts ^{dσ}/_{dΩ}
- Wirkungsquerschnitt lässt sich zerlegen in elektrischen und magnetischen Anteil

Magnetischer und elektrischer Anteil

Coulomb-Anteil

$$\left(\frac{d\sigma}{d\Omega}\right)_{C} = \left(\frac{Ze^{2}}{E_{0}}\right)^{2} \frac{1}{\eta} \frac{\cos^{2}(\theta/2) + \gamma^{-2}\sin^{2}(\theta/2)}{4\sin^{4}(\theta/2)} |F_{C}|^{2}$$

$$\eta = 1 + \frac{2E_0}{M_t c^2} \sin^2(\theta/2)$$

Magnetischer und elektrischer Anteil

Coulomb-Anteil

$$\left(\frac{d\sigma}{d\Omega}\right)_{C} = \left(\frac{Ze^{2}}{E_{0}}\right)^{2} \frac{1}{\eta} \frac{\cos^{2}(\theta/2) + \gamma^{-2}\sin^{2}(\theta/2)}{4\sin^{4}(\theta/2)} |F_{C}|^{2}$$

magnetischer Anteil

$$\left(\frac{d\sigma}{d\Omega}\right)_{M} = \left(\frac{Ze^{2}}{M_{p}c^{2}}\right)^{2} \frac{1}{\eta^{2}} \frac{1+\sin^{2}(\theta/2)}{8\sin^{4}(\theta/2)} \frac{2(J+1)}{3J} \mu_{N}^{2} |F_{M}|^{2}$$

$$\eta = 1 + \frac{2E_0}{M_t c^2} \sin^2(\theta/2)$$

Magnetischer und elektrischer Anteil

Coulomb-Anteil

$$\left(\frac{d\sigma}{d\Omega}\right)_{C} = \left(\frac{Ze^{2}}{E_{0}}\right)^{2} \frac{1}{\eta} \frac{\cos^{2}(\theta/2) + \gamma^{-2}\sin^{2}(\theta/2)}{4\sin^{4}(\theta/2)} |F_{C}|^{2}$$

magnetischer Anteil

$$\left(\frac{d\sigma}{d\Omega}\right)_{M} = \left(\frac{Ze^{2}}{M_{p}c^{2}}\right)^{2} \frac{1}{\eta^{2}} \frac{1 + \sin^{2}(\theta/2)}{8\sin^{4}(\theta/2)} \frac{2(J+1)}{3J} \mu_{N}^{2} |F_{M}|^{2}$$

$$\eta = 1 + \frac{2E_0}{M_t c^2} \sin^2(\theta/2)$$

Winkelabhängigkeit

TECHNISCHE UNIVERSITÄT DARMSTADT

180° Streuexperiment

[G.C. Lüttge: Dissertation, Technische Hochschule Darmstadt (1994)]

QClam-Spektrometer

[G.C. Lüttge: Dissertation, Technische Hochschule Darmstadt (1994)]

Gliederung

Grundlagen Elektronenstreuung 180° Streuexperiment QClam-Spektrometer

Geometrie und Simulation einzelner Komponenten Separationsmagnet Pentapol QClam-Dipol

Gesamtsimulation

Geometrie

Lineare und nicht-lineare Simulation

Vergleich mit Messung

Vergleich mit Messung

Polschuhform nicht verfügbar
 Näherung durch Kreisabschnitte

- Polschuhform nicht verfügbar
 Näherung durch Kreisabschnitte
- Simulation zeigte nicht die aus der Dokumentation erwartete Symmetrie
 konnte durch Wahl der Radien nicht wesentlich beeinflusst werden

- Polschuhform nicht verfügbar
 Näherung durch Kreisabschnitte
- Simulation zeigte nicht die aus der Dokumentation erwartete Symmetrie
 konnte durch Wahl der Radien nicht wesentlich beeinflusst werden
- Auch eigene Messwerte wichen ab

- Polschuhform nicht verfügbar
 Näherung durch Kreisabschnitte
- Simulation zeigte nicht die aus der Dokumentation erwartete Symmetrie
 konnte durch Wahl der Radien nicht wesentlich beeinflusst werden
- Auch eigene Messwerte wichen ab
- Simulation mit Herstellerdaten zeigte noch immer Asymmetrie

- Polschuhform nicht verfügbar
 Näherung durch Kreisabschnitte
- Simulation zeigte nicht die aus der Dokumentation erwartete Symmetrie
 konnte durch Wahl der Radien nicht wesentlich beeinflusst werden
- Auch eigene Messwerte wichen ab
- Simulation mit Herstellerdaten zeigte noch immer Asymmetrie
- Eigene Messdaten wiesen einen Offset von 7 mT auf
 - \Rightarrow gute Übereinstimmung mit Simulation
 - \Rightarrow Dokumentation enthält tatsächlich die horizontale Komponente

Pentapol Vergleich mit Messung

^{29.11.2011 |} Institut für Kernphysik – Technische Universität Darmstadt | Sebastian Heil | 15

QClam-Dipol

Geometrie

QClam-Dipol Vergleich mit Messung – Strahlaustritt

[M. Knirsch: Dissertation, Technische Hochschule Darmstadt (1991)]

QClam-Dipol Vergleich mit Messung – Strahleintritt

[M. Knirsch: Dissertation, Technische Hochschule Darmstadt (1991)]

Gliederung

Grundlagen Elektronenstreuung 180° Streuexperiment QClam-Spektrometer

Geometrie und Simulation einzelner Komponenten Separationsmagnet Pentapol QClam-Dipol

Gesamtsimulation

Vertikale Streuebene des 180° Systems

Vertikale Streuebene des 180° Systems

Vertikale Streuebene des 180° Systems

Abstand der Fokalebenen von der Detektorebene

Zusammenfassung

- Nur Separationsmagnet konnte nicht-linear simuliert werden
- Separationsmagnet und Pentapol zeigen gute Übereinstimmung mit Messung
- QClam-Dipol zeigt deutliche Abweichungen am Strahleintritt
- Gesamtsimulation zeigt keinen eindeutigen Fokus
 ⇒ Fokalebenen konnten nicht abschließend bestimmt werden
- Mögliche Ursachen
 - lineare Simulation nicht ausreichend
 - Fehler in Geometrie des QClam-Dipols
 - QClam-Dipol nicht korrekt zur Strahlachse ausgerichtet

Vielen Dank für die Aufmerksamkeit

29.11.2011 | Institut für Kernphysik - Technische Universität Darmstadt | Sebastian Heil | 24

QClam Detektorsystem

QClam

Koordinatensysteme der Konturplots

Abstand der Fokalebenen von der Detektorebene

29.11.2011 | Institut für Kernphysik - Technische Universität Darmstadt | Sebastian Heil | 27

Polschuhradien

Pol	R _{Fit}	R _{techn.Zeichn.}	R _{gemessen}	R _{Hersteller}	
oben links	123,5 mm	113 mm	117.8 mm	126.0 mm	
oben rechts	127,2 mm		117,01111	120,0 11111	
unten links	93,3 mm	86 mm	85.3 mm	77.2 mm	
unten rechts	93,8 mm	00 1111	00,0 1111	<i>, , , , , , , , , , , , , , , , , , , </i>	
mitte	130,2 mm	130 mm	136,7 mm	140,5 mm	

Felddaten für verschiedene Polformen

Radien in mm									
		oben	113	125	100	150			
		unten	86	93,5	70	70	polynom		
		mitte	130	130	135	135			
X in mm	Y in mm	$\boldsymbol{B}_{\boldsymbol{y}, mess}$ in T		$\mathbf{B}_{\mathbf{x}, \mathbf{sim}}$ in T					
40	40	0,11995	0,12694	0,12426	0,13423	0,12533	0,11600		
40	-40	0,11525	0,07333	0,07169	0,07743	0,07409	0,10917		
30	30	0,08627	0,09179	0,08982	0,09720	0,09105	0,08693		
30	-30	0,08493	0,06177	0,06036	0,06544	0,06237	0,07777		
20	20	0,05559	0,05870	0,05742	0,06220	0,05840	0,05894		
20	-20	0,05552	0,04537	0,04433	0,04812	0,04567	0,04891		
10	10	0,02760	0,02797	0,02735	0,02963	0,02786	0,03180		
10	-10	0,02759	0,02464	0,02408	0,02612	0,02468	0,02155		
-10	10	0,02741	0,02783	0,02721	0,02963	0,02796	0,03180		
-10	-10	0,02759	0,02450	0,02394	0,02611	0,02478	0,02156		
-20	20	0,05510	0,05856	0,05728	0,06220	0,05851	0,05895		
-20	-20	0,05527	0,04524	0,04420	0,04811	0,04577	0,04892		
-30	30	0,08519	0,09165	0,08968	0,09720	0,09115	0,08694		
-30	-30	0,08435	0,06164	0,06023	0,06544	0,06246	0,07779		
-40	40	0,11804	0,12671	0,12401	0,13424	0,12541	0,11602		
-40	-40	0,11425	0,07320	0,07157	0,07743	0,07418	0,10921		

Lineares Material

Technische Zeichnung

29.11.2011 | Institut für Kernphysik – Technische Universität Darmstadt | Sebastian Heil | 31

QClam-Dipol

Technische Zeichnung des Polschuhs

29.11.2011 | Institut für Kernphysik – Technische Universität Darmstadt | Sebastian Heil | 32