
Simulation des Magnetsystems des 180° Streuexperiments am QClam-Spektrometer in CST Studio

Vortrag zur Bachelor-Thesis von Sebastian Heil

Gliederung

Grundlagen

Elektronenstreuung

180° Streuexperiment

QClam-Spektrometer

Geometrie und Simulation einzelner Komponenten

Separationsmagnet

Pentapol

QClam-Dipol

Gesamtsimulation

Streuung

- ► Formfaktor enthält Informationen über das Target
- Formfaktor wird ermittelt durch Messung des differenziellen Wirkungsquerschnitts $\frac{d\sigma}{d\Omega}$
- Wirkungsquerschnitt lässt sich zerlegen in elektrischen und magnetischen Anteil

Magnetischer und elektrischer Anteil

Coulomb-Anteil

$$\left(\frac{d\sigma}{d\Omega}\right)_C = \left(\frac{Ze^2}{E_0}\right)^2 \frac{1}{\eta} \frac{\cos^2(\theta/2) + \gamma^{-2}\sin^2(\theta/2)}{4\sin^4(\theta/2)} |F_C|^2$$

$$\eta = 1 + \frac{2E_0}{M_t c^2} \sin^2(\theta/2)$$

Magnetischer und elektrischer Anteil

Coulomb-Anteil

$$\left(\frac{d\sigma}{d\Omega}\right)_C = \left(\frac{Ze^2}{E_0}\right)^2 \frac{1}{\eta} \frac{\cos^2(\theta/2) + \gamma^{-2}\sin^2(\theta/2)}{4\sin^4(\theta/2)} |F_C|^2$$

magnetischer Anteil

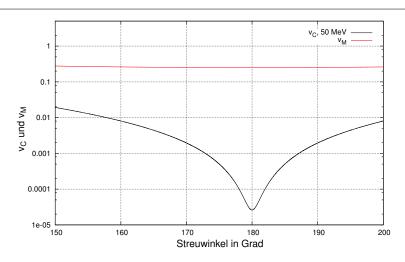
$$\left(\frac{d\sigma}{d\Omega}\right)_{M} = \left(\frac{Ze^{2}}{M_{p}c^{2}}\right)^{2} \frac{1}{\eta^{2}} \frac{1 + \sin^{2}(\theta/2)}{8\sin^{4}(\theta/2)} \frac{2(J+1)}{3J} \mu_{N}^{2} |F_{M}|^{2}$$

$$\eta = 1 + \frac{2E_0}{M_t c^2} \sin^2(\theta/2)$$

Magnetischer und elektrischer Anteil

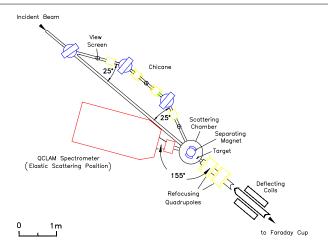
Coulomb-Anteil

$$\left(\frac{d\sigma}{d\Omega}\right)_{C} = \left(\frac{Ze^{2}}{E_{0}}\right)^{2} \frac{1}{\eta} \frac{\cos^{2}(\theta/2) + \gamma^{-2}\sin^{2}(\theta/2)}{4\sin^{4}(\theta/2)} |F_{C}|^{2}$$

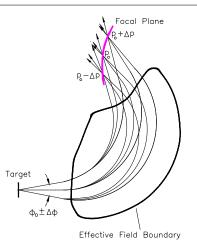

magnetischer Anteil

$$\left(\frac{d\sigma}{d\Omega}\right)_{M} = \left(\frac{Ze^{2}}{M_{p}c^{2}}\right)^{2} \frac{1}{\eta^{2}} \frac{1 + \sin^{2}(\theta/2)}{8\sin^{4}(\theta/2)} \frac{2(J+1)}{3J} \mu_{N}^{2} |F_{M}|^{2}$$

$$\eta = 1 + \frac{2E_0}{M_t c^2} \sin^2(\theta/2)$$


Winkelabhängigkeit

180° Streuexperiment

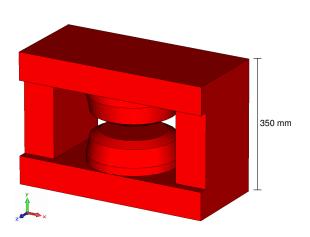


[G.C. Lüttge: Dissertation, Technische Hochschule Darmstadt (1994)]

QClam-Spektrometer

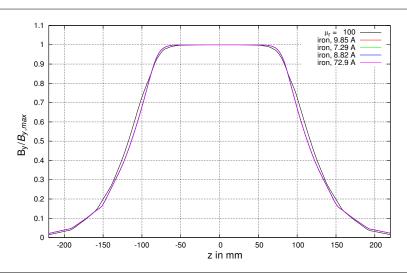
[G.C. Lüttge: Dissertation, Technische Hochschule Darmstadt (1994)]

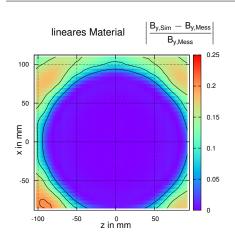
Gliederung

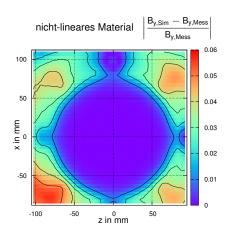

Grundlagen
Elektronenstreuung
180° Streuexperiment
QClam-Spektrometer

Geometrie und Simulation einzelner Komponenten Separationsmagnet Pentapol QClam-Dipol

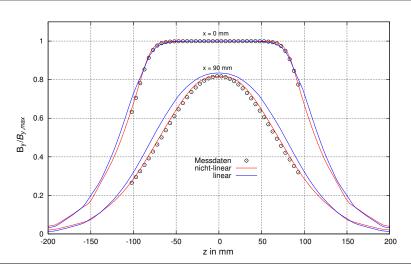
Gesamtsimulation

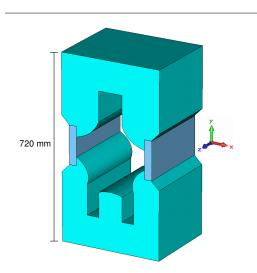

Separationsmagnet Geometrie

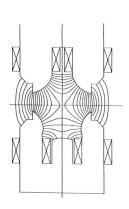

Lineare und nicht-lineare Simulation



Vergleich mit Messung




Vergleich mit Messung



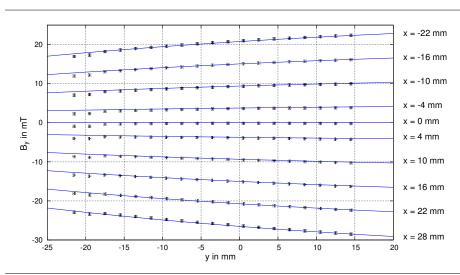
Geometrie

[M. Knirsch: Dissertation, Technische Hochschule Darmstadt (1991)]

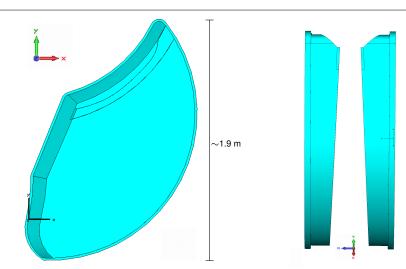
- ► Polschuhform nicht verfügbar
 - \Rightarrow Näherung durch Kreisabschnitte

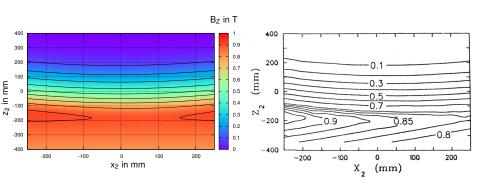
- Polschuhform nicht verfügbar
 - ⇒ Näherung durch Kreisabschnitte
- Simulation zeigte nicht die aus der Dokumentation erwartete Symmetrie
 - ⇒ konnte durch Wahl der Radien nicht wesentlich beeinflusst werden

- Polschuhform nicht verfügbar
 - ⇒ Näherung durch Kreisabschnitte
- Simulation zeigte nicht die aus der Dokumentation erwartete Symmetrie
 - ⇒ konnte durch Wahl der Radien nicht wesentlich beeinflusst werden
- Auch eigene Messwerte wichen ab

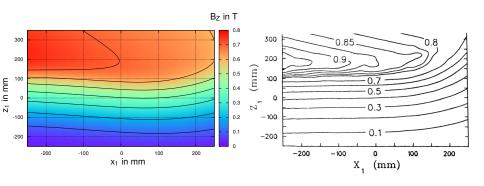

- Polschuhform nicht verfügbar
 - ⇒ Näherung durch Kreisabschnitte
- Simulation zeigte nicht die aus der Dokumentation erwartete Symmetrie
 - ⇒ konnte durch Wahl der Radien nicht wesentlich beeinflusst werden
- Auch eigene Messwerte wichen ab
- Simulation mit Herstellerdaten zeigte noch immer Asymmetrie

- Polschuhform nicht verfügbar
 - ⇒ Näherung durch Kreisabschnitte
- Simulation zeigte nicht die aus der Dokumentation erwartete Symmetrie
 - ⇒ konnte durch Wahl der Radien nicht wesentlich beeinflusst werden
- Auch eigene Messwerte wichen ab
- Simulation mit Herstellerdaten zeigte noch immer Asymmetrie
- Eigene Messdaten wiesen einen Offset von 7 mT auf
 - ⇒ gute Übereinstimmung mit Simulation
 - ⇒ Dokumentation enthält tatsächlich die horizontale Komponente


Vergleich mit Messung


Geometrie

Vergleich mit Messung - Strahlaustritt

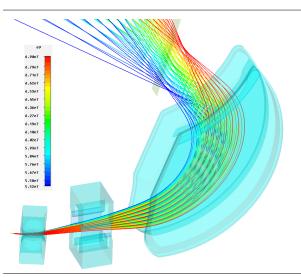


[M. Knirsch: Dissertation, Technische Hochschule Darmstadt (1991)]

Vergleich mit Messung - Strahleintritt

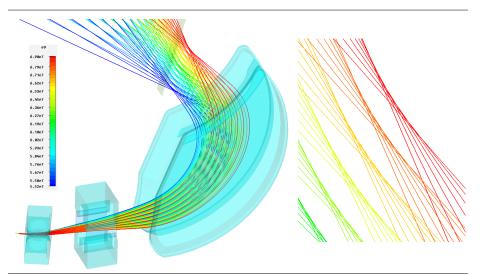
[M. Knirsch: Dissertation, Technische Hochschule Darmstadt (1991)]

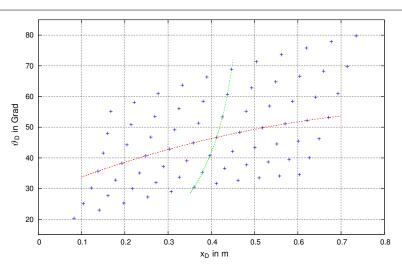
Gliederung

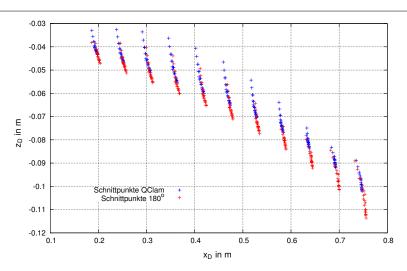

Grundlagen
Elektronenstreuung
180° Streuexperiment
OClam-Spektrometer

Geometrie und Simulation einzelner Komponenten Separationsmagnet Pentapol QClam-Dipol

Gesamtsimulation

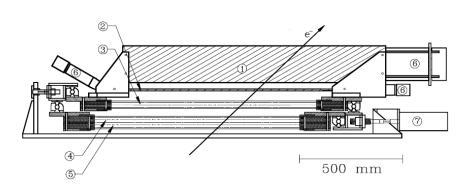

Vertikale Streuebene des 180° Systems


Vertikale Streuebene des 180° Systems


Vertikale Streuebene des 180° Systems

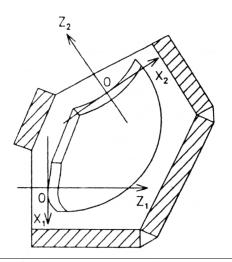
Abstand der Fokalebenen von der Detektorebene

Zusammenfassung

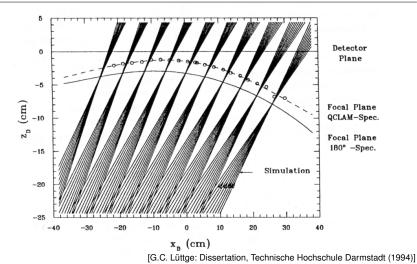

- Nur Separationsmagnet konnte nicht-linear simuliert werden
- Separationsmagnet und Pentapol zeigen gute Übereinstimmung mit Messung
- QClam-Dipol zeigt deutliche Abweichungen am Strahleintritt
- Gesamtsimulation zeigt keinen eindeutigen Fokus
 - ⇒ Fokalebenen konnten nicht abschließend bestimmt werden
- Mögliche Ursachen
 - lineare Simulation nicht ausreichend
 - ► Fehler in Geometrie des QClam-Dipols
 - QClam-Dipol nicht korrekt zur Strahlachse ausgerichtet

Vielen Dank für die Aufmerksamkeit

QClam Detektorsystem



QClam


Koordinatensysteme der Konturplots

Abstand der Fokalebenen von der Detektorebene

Pentapol Polschuhradien

Pol	R_{Fit}	R _{techn.Zeichn.}	R _{gemessen}	R _{Hersteller}	
oben links	123,5 mm	113 mm	117,8 mm	126,0 mm	
oben rechts	127,2 mm	113111111	117,011111	120,0 11111	
unten links	93,3 mm	86 mm	85,3 mm	77,2 mm	
unten rechts	93,8 mm	00 111111	05,5 11111	77,211111	
mitte	130,2 mm	130 mm	136,7 mm	140,5 mm	

Felddaten für verschiedene Polformen

oben

unten

mitta

polynom

Radien in mm					
113	125	100	150		

70

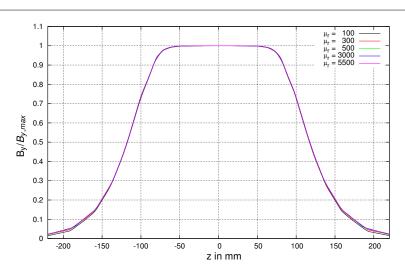
135

70

135

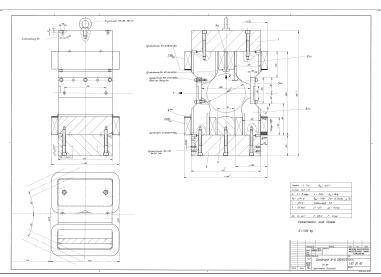
93,5

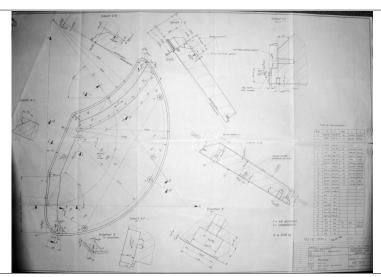
130


		mitte	130	130	135	135	
X in mm	Y in mm	B _{y,mess} in T	B _{y,sim} in T			B _{x,sim} in T	
40	40	0,11995	0,12694	0,12426	0,13423	0,12533	0,11600
40	-40	0,11525	0,07333	0,07169	0,07743	0,07409	0,10917
30	30	0,08627	0,09179	0,08982	0,09720	0,09105	0,08693
30	-30	0,08493	0,06177	0,06036	0,06544	0,06237	0,07777
20	20	0,05559	0,05870	0,05742	0,06220	0,05840	0,05894
20	-20	0,05552	0,04537	0,04433	0,04812	0,04567	0,04891
10	10	0,02760	0,02797	0,02735	0,02963	0,02786	0,03180
10	-10	0,02759	0,02464	0,02408	0,02612	0,02468	0,02155
-10	10	0,02741	0,02783	0,02721	0,02963	0,02796	0,03180
-10	-10	0,02759	0,02450	0,02394	0,02611	0,02478	0,02156
-20	20	0,05510	0,05856	0,05728	0,06220	0,05851	0,05895
-20	-20	0,05527	0,04524	0,04420	0,04811	0,04577	0,04892
-30	30	0,08519	0,09165	0,08968	0,09720	0,09115	0,08694
-30	-30	0,08435	0,06164	0,06023	0,06544	0,06246	0,07779
-40	40	0,11804	0,12671	0,12401	0,13424	0,12541	0,11602
-40	-40	0,11425	0,07320	0,07157	0,07743	0,07418	0,10921

86

130


Lineares Material


Technische Zeichnung

Technische Zeichnung des Polschuhs

