Weiterentwicklung der Online-Datenanalyse sowie der Ladungs- und Stromauslese am LINTOTT-Spektrometer Sergej Bassauer

TECHNISCHE UNIVERSITÄT DARMSTADT

26. Juni 2012 | TU Darmstadt | Institut für Kernphysik | Sergej Bassauer | 1

Alte Auslese

- Alte Auslese
- Anforderungen und Konzept

- Alte Auslese
- Anforderungen und Konzept
- LINTOTT-Spektrometer

- Alte Auslese
- Anforderungen und Konzept
- LINTOTT-Spektrometer
- Stromauslese

- Alte Auslese
- Anforderungen und Konzept
- LINTOTT-Spektrometer
- Stromauslese
- ► HDTV-Programm und erweiterte Befehle

- Alte Auslese
- Anforderungen und Konzept
- LINTOTT-Spektrometer
- Stromauslese
- HDTV-Programm und erweiterte Befehle
- Erster Testlauf

- Alte Auslese
- Anforderungen und Konzept
- LINTOTT-Spektrometer
- Stromauslese
- HDTV-Programm und erweiterte Befehle
- Erster Testlauf
- Zusammenfassung und Ausblick

Spektrum lediglich als Bild im Browser darstellbar

Anforderungen

Einfache und sofortige Anzeige des Spektrums

26. Juni 2012 | TU Darmstadt | Institut für Kernphysik | Sergej Bassauer | 3

- Einfache und sofortige Anzeige des Spektrums
- Möglichkeit zur Änderung der Darstellungsart

- Einfache und sofortige Anzeige des Spektrums
- Möglichkeit zur Änderung der Darstellungsart
- Diverse Manipulationsmöglichkeiten

- Einfache und sofortige Anzeige des Spektrums
- Möglichkeit zur Änderung der Darstellungsart
- Diverse Manipulationsmöglichkeiten
- Möglichkeit zum Abspeichern und Ausdrucken des Spektrums

- Einfache und sofortige Anzeige des Spektrums
- Möglichkeit zur Änderung der Darstellungsart
- Diverse Manipulationsmöglichkeiten
- Möglichkeit zum Abspeichern und Ausdrucken des Spektrums
- Modernisierung der Stromauslese

- Einfache und sofortige Anzeige des Spektrums
- Möglichkeit zur Änderung der Darstellungsart
- Diverse Manipulationsmöglichkeiten
- Möglichkeit zum Abspeichern und Ausdrucken des Spektrums
- Modernisierung der Stromauslese
- Einbindung der Stromauslese in den Ausleseprozess

Verwendung eines Programms namens HDTV

- Verwendung eines Programms namens HDTV
- Erweiterung des Programms mittels eines Plug-ins

- Verwendung eines Programms namens HDTV
- Erweiterung des Programms mittels eines Plug-ins
- Vollständige Steuerung der Online-Auslese über HDTV

- Verwendung eines Programms namens HDTV
- Erweiterung des Programms mittels eines Plug-ins
- Vollständige Steuerung der Online-Auslese über HDTV
- Stromauslese mit der QM07-Elektronik

- Verwendung eines Programms namens HDTV
- Erweiterung des Programms mittels eines Plug-ins
- Vollständige Steuerung der Online-Auslese über HDTV
- Stromauslese mit der QM07-Elektronik
- Stromauslese ebenfalls über HDTV

S-DALINAC

Quelle: O. Burda, Dissertation, 2007

 Ablenkung der Elektronen um 169° und Nachweis am Fokalebenendetektor

- Ablenkung der Elektronen um 169° und Nachweis am Fokalebenendetektor
- Messungen zwischen 33° und 165° in Schritten von 12° möglich

- Ablenkung der Elektronen um 169° und Nachweis am Fokalebenendetektor
- Messungen zwischen 33° und 165° in Schritten von 12° möglich
- Fokalebenendetektor besteht aus 4 Modulen à 96 Streifenzählern

- Ablenkung der Elektronen um 169° und Nachweis am Fokalebenendetektor
- Messungen zwischen 33° und 165° in Schritten von 12° möglich
- Fokalebenendetektor besteht aus 4 Modulen à 96 Streifenzählern
- Zwei Betriebsmodi

- Ablenkung der Elektronen um 169° und Nachweis am Fokalebenendetektor
- Messungen zwischen 33° und 165° in Schritten von 12° möglich
- Fokalebenendetektor besteht aus 4 Modulen à 96 Streifenzählern
- Zwei Betriebsmodi
 - Dispersiver Modus

- Ablenkung der Elektronen um 169° und Nachweis am Fokalebenendetektor
- Messungen zwischen 33° und 165° in Schritten von 12° möglich
- Fokalebenendetektor besteht aus 4 Modulen à 96 Streifenzählern
- Zwei Betriebsmodi
 - Dispersiver Modus
 - Energieverlustmodus

Stromauslese

Verwendung von QM07 mit verschiedenen Einschüben

Foto: Andreas Krugmann

CAN-Adapter

Foto: Andreas Krugmann

26. Juni 2012 | TU Darmstadt | Institut für Kernphysik | Sergej Bassauer | 8

PEAK-Adapterkarte

Quelle: http://gridconnect.com/pcan/pcan-adapters/can-pci.html

26. Juni 2012 | TU Darmstadt | Institut für Kernphysik | Sergej Bassauer | 9

Erhaltene Daten sind hexadezimal kodiert

- Erhaltene Daten sind hexadezimal kodiert
- Positiver Strom

$$I = I_{dez} \cdot \frac{101, 6 \times 10^{-6} \,\mathrm{A}}{2^{28} - 1}$$

- Erhaltene Daten sind hexadezimal kodiert
- Positiver Strom

$$I = I_{dez} \cdot \frac{101, 6 \times 10^{-6} \,\mathrm{A}}{2^{28} - 1}$$

Negativer Strom

$$I = (2^{32} - I_{dez}) \cdot \frac{-101, 6 \times 10^{-6} \,\mathrm{A}}{2^{28}}$$

- Erhaltene Daten sind hexadezimal kodiert
- Positiver Strom

$$I = I_{dez} \cdot \frac{101, 6 \times 10^{-6} \,\mathrm{A}}{2^{28} - 1}$$

Negativer Strom

$$I = (2^{32} - I_{dez}) \cdot \frac{-101, 6 \times 10^{-6} \,\mathrm{A}}{2^{28}}$$

Aufaddierter Strom

$$I = I_{dez} \cdot 256 \cdot \frac{101, 6 \times 10^{-6} \,\mathrm{A}}{2^{28}}$$

Berechnung der gesammelten Ladung und des mittleren Stroms

Gesammelte Ladung

$$Q = (I_{Ende} - I_{Start}) \cdot \frac{T_{Ende} - T_{Start}}{N_{Ende} - N_{Start}}$$
Berechnung der gesammelten Ladung und des mittleren Stroms

Gesammelte Ladung

$$Q = (I_{Ende} - I_{Start}) \cdot \frac{T_{Ende} - T_{Start}}{N_{Ende} - N_{Start}}$$

Mittlerer Strom

$$I_{Mittel} = \frac{I_{Ende} - I_{Start}}{N_{Ende} - N_{Start}}$$

Messung der Stromschwankung über eine Stunde bei 1 μA

TADT

Messung der Stromschwankung über eine Stunde bei 1 μA

Messung der Stromschwankung über eine Stunde bei 100 μA

FCHNISCHE

Messung der Stromschwankung über eine Stunde bei 100 μA

Gaußsche Fehlerfortpflanzung

Unsicherheit der gesammelten Ladung

$$\Delta Q = \sqrt{2 \cdot (\frac{I_{Ende} - I_{Start}}{N_{Ende} - N_{Start}} \cdot \Delta T)^2 + 2 \cdot (\frac{T_{Ende} - T_{Start}}{N_{Ende} - N_{Start}} \cdot \Delta I)^2}$$

Gaußsche Fehlerfortpflanzung

Unsicherheit der gesammelten Ladung

$$\Delta Q = \sqrt{2 \cdot (\frac{I_{Ende} - I_{Start}}{N_{Ende} - N_{Start}} \cdot \Delta T)^2 + 2 \cdot (\frac{T_{Ende} - T_{Start}}{N_{Ende} - N_{Start}} \cdot \Delta I)^2}$$

Unsicherheit des mittleren Stroms

$$\Delta I_{Mittel} = \sqrt{2 \cdot (\frac{\Delta I}{N_{Ende} - N_{Start}})^2}$$

Abschätzung der Unsicherheiten

Unsicherheit des Stroms

 $\Delta I = 0,023 \,\text{nA} + 0,096515 \,\text{nA} \approx 0,12 \,\text{nA}$

Abschätzung der Unsicherheiten

Unsicherheit des Stroms

 Δ I = 0,023 nA + 0,096515 nA pprox 0,12 nA

Unsicherheit der gesammelten Ladung

$$\Delta Q = \sqrt{2 \cdot (1 \,\mu\text{A} \cdot 1 \times 10^{-3} \,\text{s})^2 + 2 \cdot (\frac{0, 12 \times 10^{-3} \,\mu\text{A}}{7 \,\text{Hz}})^2} \approx 1,4 \,\text{nC}$$

Abschätzung der Unsicherheiten

Unsicherheit des Stroms

4

$$\Delta I$$
 = 0, 023 nA + 0, 096515 nA $pprox$ 0, 12 nA

Unsicherheit der gesammelten Ladung

$$\Delta Q = \sqrt{2 \cdot (1 \,\mu\text{A} \cdot 1 \times 10^{-3} \,\text{s})^2 + 2 \cdot (\frac{0, 12 \times 10^{-3} \,\mu\text{A}}{7 \,\text{Hz}})^2} \approx 1,4 \,\text{nC}$$

Unsicherheit des mittleren Stroms

$$\Delta I_{\textit{Mittel}} = \sqrt{2 \cdot (0, 12 \, \text{nA})^2} pprox 0, 17 \, \text{nA}$$

Entwickelt an der Uni Köln

- Entwickelt an der Uni Köln
- Geschrieben in C++ und Python

- Entwickelt an der Uni Köln
- Geschrieben in C++ und Python
- Möglichkeit zum fitten von Elektronenstreuspektren

- Entwickelt an der Uni Köln
- Geschrieben in C++ und Python
- Möglichkeit zum fitten von Elektronenstreuspektren
- Diverse weitere Manipulationsmöglichkeiten

lintott start [Auslesezeit]

🧬 linux21.ikp.physik.tu-darmstadt.de - PuTTY experiment@linux21:~/Desktop/hdtvtest/QMO7/CAN\$ exit hdtv> lintott start 1 Connecting to Lintott... Running manual trigger... Resetting counters... Starting counters... Starting current measurement... Starting read out... Measurement successfully started. Please enter a name for your spectrum: 0001 Gold 81deg hdtv>

- lintott start [Auslesezeit]
- lintott update [Auslesezeit]

TECHNISCHE UNIVERSITÄT DARMSTADT

Putty linux21.ikp.physik.tu-darmstadt.de - Putty experiment@linux21:/usr/local/lib/python2.6/dist-packages/hdtv/plugins\$ exit hdtv> lintott update Connecting to Lintott... Reading out current... Running manual trigger... Reading out counter information... Reading out spectrum... On-Time-Armed = 3457025719Life-Time-Armed = 3432203433Trigger-Got = 107498 Trigger-Lost = 963 Lost/Got = 0.008958 HitsA = 38774 HitsB = 69488 Hits) + HitsB = 108262 Dead time [per cent] = 0.7 Dead time correction factor = 1.007232 Read-out time [s] = 2.482 Measurement time [min] = 5.762 Rate [Hz] = 151 Average current [microA] = -0.4693674050 Collected charge [mC] = -0.1620932171QM07-Time [min] = 5.7557333333 Normalised countrate [Counts/mC]= 667899.6315786174 Loaded si spe.tmp'col into O Spectrum successfully updated. hdtv>

	🕏 linux21.ikp.physik.tu-darmstadt.de - PuTTY	
	experiment@linux21:/usr/local/lib/python2.6/dist-packages/hdtv/plugins\$ exit	^
	hdtv> lintott update	
	Connecting to Lintott	
	Reading out current	
	Running manual trigger	
	Reading out counter information	
	Reading out spectrum	
\rightarrow	On-Time-Armed = 3457025719	
\neg	Life_Time_Armed = 3432203433	
	Trigger-Got = 107498	
	Trigger-Lost = 963	
	Lost/Got = 0.008958	
	Hitsh = 38774	
	HitsB = 69488	
	Hits + Hits = 108262	
	Dead time [per cent] = 0.7	
	Dead time correction factor = 1.007232	
	Read-out time [s] = 2.482	
	Measurement time [min] = 5.762	
	Rate [Hz] = 151	
	Average current [microA] = -0.4693674050	
	Collected charge $[mC] = -0.1620932171$	
	QM07-Time [min] = 5.7557333333	
	Normalised countrate [Counts/mC] = 667899.6315786174	
	Loaded si spe.tmp'col into O	
	Spectrum successfully updated.	
	hdtv>	

🗬 linux21.ikp.physik.tu-darmstadt.de - PuTTY experiment@linux21:/usr/local/lib/python2.6/dist-packages/hdtv/plugins\$ exit hdtv> lintott update Connecting to Lintott... Reading out current... Running manual trigger... Reading out counter information... Reading out spectrum... On-Time-Armed = 3457025719 \implies Life-Time-Armed = 3432203433 Trigger-Got = 107498 Trigger-Lost = 963 Lost/Got = 0.008958 HitsA = 38774 HitsB = 69488 Hits) + HitsB = 108262 Dead time [per cent] = 0.7 Dead time correction factor = 1.007232 Read-out time [s] = 2.482 Measurement time [min] = 5.762 Rate [Hz] = 151 Average current [microA] = -0.4693674050 Collected charge [mC] = -0.1620932171QM07-Time [min] = 5.7557333333 Normalised countrate [Counts/mC]= 667899.6315786174 Loaded si spe.tmp'col into O Spectrum successfully updated. hdtv>

TECHNISCHE UNIVERSITÄT DARMSTADT

🗬 linux21.ikp.physik.tu-darmstadt.de - PuTTY experiment@linux21:/usr/local/lib/python2.6/dist-packages/hdtv/plugins\$ exit hdtv> lintott update Connecting to Lintott... Reading out current... Running manual trigger... Reading out counter information... Reading out spectrum... On-Time-Armed = 3457025719Life-Time-Armed = 3432203433 \longrightarrow Trigger-Got = 107498 Trigger-Lost = 963 Lost/Got = 0.008958 HitsA = 38774 HitsB = 69488 Hits) + HitsB = 108262 Dead time [per cent] = 0.7 Dead time correction factor = 1.007232 Read-out time [s] = 2.482 Measurement time [min] = 5.762 Rate [Hz] = 151 Average current [microA] = -0.4693674050 Collected charge [mC] = -0.1620932171QM07-Time [min] = 5.7557333333 Normalised countrate [Counts/mC]= 667899.6315786174 Loaded si spe.tmp'col into O Spectrum successfully updated. hdtv>

🗬 linux21.ikp.physik.tu-darmstadt.de - PuTTY experiment@linux21:/usr/local/lib/python2.6/dist-packages/hdtv/plugins\$ exit hdtv> lintott update Connecting to Lintott... Reading out current... Running manual trigger... Reading out counter information... Reading out spectrum... On-Time-Armed = 3457025719Life-Time-Armed = 3432203433Trigger-Got = 107498 Trigger-Lost = 963 Lost/Got = 0.008958 HitsA = 38774 HitsB = 69488 Hits) + HitsB = 108262 Dead time [per cent] = 0.7 Dead time correction factor = 1.007232 Read-out time [s] = 2.482 Measurement time [min] = 5.762 Rate [Hz] = 151 Average current [microA] = -0.4693674050 Collected charge [mC] = -0.1620932171QM07-Time [min] = 5.7557333333 Normalised countrate [Counts/mC]= 667899.6315786174 Loaded si spe.tmp'col into O Spectrum successfully updated. hdtv>

🗬 linux21.ikp.physik.tu-darmstadt.de - PuTTY experiment@linux21:/usr/local/lib/python2.6/dist-packages/hdtv/plugins\$ exit hdtv> lintott update Connecting to Lintott... Reading out current... Running manual trigger... Reading out counter information... Reading out spectrum... On-Time-Armed = 3457025719Life-Time-Armed = 3432203433Trigger-Got = 107498 Trigger-Lost = 963 Lost/Got = 0.008958 HitsA = 38774 HitsB = 69488 Hits) + HitsB = 108262 Dead time [per cent] = 0.7 Dead time correction factor = 1.007232 Read-out time [s] = 2.482 Measurement time [min] = 5.762 Rate [Hz] = 151 Average current [microA] = -0.4693674050 Collected charge [mC] = -0.1620932171QM07-Time [min] = 5.7557333333 Normalised countrate [Counts/mC]= 667899.6315786174 Loaded si spe.tmp'col into O Spectrum successfully updated. hdtv>

TECHNISCHE UNIVERSITÄT DARMSTADT

🗬 linux21.ikp.physik.tu-darmstadt.de - PuTTY experiment@linux21:/usr/local/lib/python2.6/dist-packages/hdtv/plugins\$ exit hdtv> lintott update Connecting to Lintott... Reading out current... Running manual trigger... Reading out counter information... Reading out spectrum... On-Time-Armed = 3457025719Life-Time-Armed = 3432203433Trigger-Got = 107498 Trigger-Lost = 963 Lost/Got = 0.008958 → HitsA = 38774 HitsB = 69488 Hits) + HitsB = 108262 Dead time [per cent] = 0.7 Dead time correction factor = 1.007232 Read-out time [s] = 2.482 Measurement time [min] = 5.762 Rate [Hz] = 151 Average current [microA] = -0.4693674050 Collected charge [mC] = -0.1620932171QM07-Time [min] = 5.7557333333 Normalised countrate [Counts/mC]= 667899.6315786174 Loaded si spe.tmp'col into O Spectrum successfully updated. hdtv>

🗬 linux21.ikp.physik.tu-darmstadt.de - PuTTY experiment@linux21:/usr/local/lib/python2.6/dist-packages/hdtv/plugins\$ exit hdtv> lintott update Connecting to Lintott... Reading out current... Running manual trigger... Reading out counter information... Reading out spectrum... On-Time-Armed = 3457025719Life-Time-Armed = 3432203433Trigger-Got = 107498 Trigger-Lost = 963 Lost/Got = 0.008958 HitsA = 38774 → HitsB = 69488 HitsA + HitsB = 108262 Dead time [per cent] = 0.7 Dead time correction factor = 1.007232 Read-out time [s] = 2.482 Measurement time [min] = 5.762 Rate [Hz] = 151 Average current [microA] = -0.4693674050 Collected charge [mC] = -0.1620932171QM07-Time [min] = 5.7557333333 Normalised countrate [Counts/mC]= 667899.6315786174 Loaded si spe.tmp'col into O Spectrum successfully updated. hdtv>

🗬 linux21.ikp.physik.tu-darmstadt.de - PuTTY experiment@linux21:/usr/local/lib/python2.6/dist-packages/hdtv/plugins\$ exit hdtv> lintott update Connecting to Lintott... Reading out current... Running manual trigger... Reading out counter information... Reading out spectrum... On-Time-Armed = 3457025719Life-Time-Armed = 3432203433Trigger-Got = 107498 Trigger-Lost = 963 Lost/Got = 0.008958 HitsA = 38774 HitsB = 69488 Hits& + HitsB = 108262 Dead time [per cent] = 0.7 Dead time correction factor = 1.007232 Read-out time [s] = 2.482 Measurement time [min] = 5.762 Rate [Hz] = 151 Average current [microA] = -0.4693674050 Collected charge [mC] = -0.1620932171QM07-Time [min] = 5.7557333333 Normalised countrate [Counts/mC]= 667899.6315786174 Loaded si spe.tmp'col into O Spectrum successfully updated. hdtv>

🗬 linux21.ikp.physik.tu-darmstadt.de - PuTTY experiment@linux21:/usr/local/lib/python2.6/dist-packages/hdtv/plugins\$ exit hdtv> lintott update Connecting to Lintott... Reading out current... Running manual trigger... Reading out counter information... Reading out spectrum... On-Time-Armed = 3457025719Life-Time-Armed = 3432203433Trigger-Got = 107498 Trigger-Lost = 963 Lost/Got = 0.008958 HitsA = 38774 HitsB = 69488 Hits) + HitsB = 108262 \implies Dead time [per cent] = 0.7 Dead time correction factor = 1.007232 Read-out time [s] = 2.482 Measurement time [min] = 5.762 Rate [Hz] = 151 Average current [microA] = -0.4693674050 Collected charge [mC] = -0.1620932171QM07-Time [min] = 5.7557333333 Normalised countrate [Counts/mC]= 667899.6315786174 Loaded si spe.tmp'col into O Spectrum successfully updated. hdtv>

TECHNISCHE UNIVERSITÄT DARMSTADT

🗬 linux21.ikp.physik.tu-darmstadt.de - PuTTY experiment@linux21:/usr/local/lib/python2.6/dist-packages/hdtv/plugins\$ exit hdtv> lintott update Connecting to Lintott... Reading out current... Running manual trigger... Reading out counter information... Reading out spectrum... On-Time-Armed = 3457025719Life-Time-Armed = 3432203433Trigger-Got = 107498 Trigger-Lost = 963 Lost/Got = 0.008958 HitsA = 38774 HitsB = 69488 Hits) + HitsB = 108262 Dead time [per cent] = 0.7 Dead time correction factor = 1.007232 Read-out time [s] = 2.482 Measurement time [min] = 5.762 Rate [Hz] = 151 Average current [microA] = -0.4693674050 Collected charge [mC] = -0.1620932171QM07-Time [min] = 5.7557333333 Normalised countrate [Counts/mC]= 667899.6315786174 Loaded si spe.tmp'col into O Spectrum successfully updated. hdtv>

TECHNISCHE UNIVERSITÄT DARMSTADT

🗬 linux21.ikp.physik.tu-darmstadt.de - PuTTY experiment@linux21:/usr/local/lib/python2.6/dist-packages/hdtv/plugins\$ exit hdtv> lintott update Connecting to Lintott... Reading out current... Running manual trigger... Reading out counter information... Reading out spectrum... On-Time-Armed = 3457025719Life-Time-Armed = 3432203433Trigger-Got = 107498 Trigger-Lost = 963 Lost/Got = 0.008958 HitsA = 38774 HitsB = 69488 Hits) + HitsB = 108262 Dead time [per cent] = 0.7 Dead time correction factor = 1.007232 \implies Read-out time [s] = 2.482 Measurement time [min] = 5.762 Rate [Hz] = 151 Average current [microA] = -0.4693674050 Collected charge [mC] = -0.1620932171QM07-Time [min] = 5.7557333333 Normalised countrate [Counts/mC]= 667899.6315786174 Loaded si spe.tmp'col into O Spectrum successfully updated. hdtv>

TECHNISCHE UNIVERSITÄT DARMSTADT

🗬 linux21.ikp.physik.tu-darmstadt.de - PuTTY experiment@linux21:/usr/local/lib/python2.6/dist-packages/hdtv/plugins\$ exit hdtv> lintott update Connecting to Lintott... Reading out current... Running manual trigger... Reading out counter information... Reading out spectrum... On-Time-Armed = 3457025719Life-Time-Armed = 3432203433Trigger-Got = 107498 Trigger-Lost = 963 Lost/Got = 0.008958 HitsA = 38774 HitsB = 69488 Hits) + HitsB = 108262 Dead time [per cent] = 0.7 Dead time correction factor = 1.007232 Read-out time [s] = 2.482 Measurement time [min] = 5.762 Rate [Hz] = 151 Average current [microA] = -0.4693674050 Collected charge [mC] = -0.1620932171QM07-Time [min] = 5.7557333333 Normalised countrate [Counts/mC]= 667899.6315786174 Loaded si spe.tmp'col into O Spectrum successfully updated. hdtv>

TECHNISCHE UNIVERSITÄT DARMSTADT

🗬 linux21.ikp.physik.tu-darmstadt.de - PuTTY experiment@linux21:/usr/local/lib/python2.6/dist-packages/hdtv/plugins\$ exit hdtv> lintott update Connecting to Lintott... Reading out current... Running manual trigger... Reading out counter information... Reading out spectrum... On-Time-Armed = 3457025719Life-Time-Armed = 3432203433Trigger-Got = 107498 Trigger-Lost = 963 Lost/Got = 0.008958 HitsA = 38774 HitsB = 69488 Hits) + HitsB = 108262 Dead time [per cent] = 0.7 Dead time correction factor = 1.007232 Read-out time [s] = 2.482 Measurement time [min] = 5.762 → Rate [Hz] = 151 Average current [microA] = -0.4693674050 Collected charge [mC] = -0.1620932171QM07-Time [min] = 5.7557333333 Normalised countrate [Counts/mC]= 667899.6315786174 Loaded si spe.tmp'col into O Spectrum successfully updated. hdtv>

🗬 linux21.ikp.physik.tu-darmstadt.de - PuTTY experiment@linux21:/usr/local/lib/python2.6/dist-packages/hdtv/plugins\$ exit hdtv> lintott update Connecting to Lintott... Reading out current... Running manual trigger... Reading out counter information... Reading out spectrum... On-Time-Armed = 3457025719Life-Time-Armed = 3432203433Trigger-Got = 107498 Trigger-Lost = 963 Lost/Got = 0.008958 HitsA = 38774 HitsB = 69488 Hits) + HitsB = 108262 Dead time [per cent] = 0.7 Dead time correction factor = 1.007232 Read-out time [s] = 2.482 Measurement time [min] = 5.762 Rate [Hz] = 151 \Rightarrow Average current [microl] = -0.4693674050 Collected charge [mC] = -0.1620932171QM07-Time [min] = 5.7557333333 Normalised countrate [Counts/mC]= 667899.6315786174 Loaded si spe.tmp'col into O Spectrum successfully updated. hdtv>

TECHNISCHE UNIVERSITÄT DARMSTADT

Putty linux21.ikp.physik.tu-darmstadt.de - Putty experiment@linux21:/usr/local/lib/python2.6/dist-packages/hdtv/plugins\$ exit hdtv> lintott update Connecting to Lintott... Reading out current... Running manual trigger... Reading out counter information... Reading out spectrum... On-Time-Armed = 3457025719Life-Time-Armed = 3432203433Trigger-Got = 107498 Trigger-Lost = 963 Lost/Got = 0.008958 HitsA = 38774 HitsB = 69488 Hits) + HitsB = 108262 Dead time [per cent] = 0.7 Dead time correction factor = 1.007232 Read-out time [s] = 2.482 Measurement time [min] = 5.762 Rate [Hz] = 151 Average current [microA] = -0.4693674050 \implies Collected charge [mC] = -0.1620932171 QM07-Time [min] = 5.75<u>57333333</u> Normalised countrate [Counts/mC]= 667899.6315786174 Loaded si spe.tmp'col into O Spectrum successfully updated. hdtv>

TECHNISCHE UNIVERSITÄT DARMSTADT

Putty linux21.ikp.physik.tu-darmstadt.de - Putty experiment@linux21:/usr/local/lib/python2.6/dist-packages/hdtv/plugins\$ exit hdtv> lintott update Connecting to Lintott... Reading out current... Running manual trigger... Reading out counter information... Reading out spectrum... On-Time-Armed = 3457025719Life-Time-Armed = 3432203433Trigger-Got = 107498 Trigger-Lost = 963 Lost/Got = 0.008958 HitsA = 38774 HitsB = 69488 Hits) + HitsB = 108262 Dead time [per cent] = 0.7 Dead time correction factor = 1.007232 Read-out time [s] = 2.482 Measurement time [min] = 5.762 Rate [Hz] = 151 Average current [microA] = -0.4693674050 Collected charge [mC] = -0.1620932171QM07-Time [min] = 5.7557333333 Normalised countrate [Counts/mC]= 667899.6315786174 Loaded si spe.tmp'col into O Spectrum successfully updated. hdtv>

TECHNISCHE UNIVERSITÄT DARMSTADT

🗬 linux21.ikp.physik.tu-darmstadt.de - PuTTY experiment@linux21:/usr/local/lib/python2.6/dist-packages/hdtv/plugins\$ exit hdtv> lintott update Connecting to Lintott... Reading out current... Running manual trigger... Reading out counter information... Reading out spectrum... On-Time-Armed = 3457025719Life-Time-Armed = 3432203433Trigger-Got = 107498 Trigger-Lost = 963 Lost/Got = 0.008958 HitsA = 38774 HitsB = 69488 Hits) + HitsB = 108262 Dead time [per cent] = 0.7 Dead time correction factor = 1.007232 Read-out time [s] = 2.482 Measurement time [min] = 5.762 Rate [Hz] = 151 Average current [microA] = -0.4693674050 Collected charge [mC] = -0.1620932171QM07-Time [min] = 5.7557333333 Normalised countrate [Counts/mC] = 667899.6315786174 Loaded si spe.tmp'col into O Spectrum successfully updated. hdtv>

26. Juni 2012 | TU Darmstadt | Institut für Kernphysik | Sergej Bassauer | 17

- lintott start [Auslesezeit]
- lintott update [Auslesezeit]
- Iintott stop [Auslesezeit]

TECHNISCH
UNIVERSITÄ
DARMSTAD

🖉 linux21.ikp.physik.tu-darmstadt.de - PuTTY
experiment@linux21:~\$ exit
hdtv> lintott stop
Connecting to LINTOTT
Reading out current
Stopping read out
Running manual trigger
Reading out counter information
Reading out spectrum
On-Time-Armed = 72698360236
Life-Time-Armed = 72695992970
Trigger-Got = 10253
Trigger-Lost = 1
Lost/Got = 0.000098
HitsA = 97
HitsB = 75
Hits& + HitsB = 172
Dead time [per cent] = 0.0
Dead time correction factor = 1.000033
Read-out time [s] = 0.237
Measurement time [min] = 121.164
Rate [Hz] = 1
Average current [microA] = -0.0000915119
Collected charge [mC] = -0.0006652615
QMO7-Time [min] = 121.1612166667
Normalised countrate [Counts/mC]= 258544.9438787405
Loaded si spe.tmp'col into O
The spectrum was saved in /home/experiment/Work/Lintott/Lintott Control/lintottd
ata/0001 Gold 81deg 2012-03-15 17-15-11/
Measurement successfully stopped.
hdtv>

- lintott start [Auslesezeit]
- lintott update [Auslesezeit]
- Iintott stop [Auslesezeit]
- lintott status

🖻 linux21.ikp.physik.tu-darmstadt.de - PuTTY	
experiment@linux21:~\$ exit hdtv> lintott status	~
LINTOTT is offline. No measurement is in process.	
hdtv>	~

- lintott start [Auslesezeit]
- lintott update [Auslesezeit]
- lintott stop [Auslesezeit]
- lintott status
- ▶ lintott load [Datei1, Datei2, ...]

26. Juni 2012 | TU Darmstadt | Institut für Kernphysik | Sergej Bassauer | 17

- lintott start [Auslesezeit]
- lintott update [Auslesezeit]
- lintott stop [Auslesezeit]
- lintott status
- Iintott load [Datei1, Datei2, ...]
- Iintott graph [Datei1, Datei2, ...]

Neue Befehle Spektrum von ⁷⁰Zn unter 93°

26. Juni 2012 | TU Darmstadt | Institut für Kernphysik | Sergej Bassauer | 17

Testlauf mit einer Batterie und einem Widerstand

- Testlauf mit einer Batterie und einem Widerstand
- Testen der Datenauslese und Umwandlung in Stromwerte

- Testlauf mit einer Batterie und einem Widerstand
- Testen der Datenauslese und Umwandlung in Stromwerte
- Testen der Zuleitungen vom Messraum zum Faraday-Cup

- Testlauf mit einer Batterie und einem Widerstand
- Testen der Datenauslese und Umwandlung in Stromwerte
- Testen der Zuleitungen vom Messraum zum Faraday-Cup

•
$$I = \frac{U}{R} = \frac{1,5 \text{ V}}{120 \text{ k}\Omega} = 12,5 \,\mu\text{A}$$

Messung einer Batterieentladung

^{26.} Juni 2012 | TU Darmstadt | Institut für Kernphysik | Sergej Bassauer | 20

 Open-Source-Software zur Entwicklung von Kontrollsystemen f
ür Beschleuniger

- Open-Source-Software zur Entwicklung von Kontrollsystemen f
 ür Beschleuniger
- Ermöglicht Informationsabruf von angeschlossenen Systemen

- Open-Source-Software zur Entwicklung von Kontrollsystemen f
 ür Beschleuniger
- Ermöglicht Informationsabruf von angeschlossenen Systemen
- Steuerung der HF-Regelung, der thermionischen Kanone und weiterer Instrumente

- Open-Source-Software zur Entwicklung von Kontrollsystemen f
 ür Beschleuniger
- Ermöglicht Informationsabruf von angeschlossenen Systemen
- Steuerung der HF-Regelung, der thermionischen Kanone und weiterer Instrumente
- Abruf der QM07-Daten nun ebenfalls möglich

Anzeige im Kontrollraum

Christoph Burandt und Martin Konrad

26. Juni 2012 | TU Darmstadt | Institut für Kernphysik | Sergej Bassauer | 22

Neu Befehle im HDTV-Programm

26. Juni 2012 | TU Darmstadt | Institut für Kernphysik | Sergej Bassauer | 23

- Neu Befehle im HDTV-Programm
- QM07 erfolgreich in den Ausleseprozess integriert

- Neu Befehle im HDTV-Programm
- QM07 erfolgreich in den Ausleseprozess integriert
- QM07-Daten können vom Kontrollraum aus abgerufen werden

- Neu Befehle im HDTV-Programm
- QM07 erfolgreich in den Ausleseprozess integriert
- QM07-Daten können vom Kontrollraum aus abgerufen werden
- Ausblick

- Neu Befehle im HDTV-Programm
- QM07 erfolgreich in den Ausleseprozess integriert
- QM07-Daten können vom Kontrollraum aus abgerufen werden
- Ausblick
 - Unsicherheiten ausgeben

- Neu Befehle im HDTV-Programm
- QM07 erfolgreich in den Ausleseprozess integriert
- QM07-Daten können vom Kontrollraum aus abgerufen werden
- Ausblick
 - Unsicherheiten ausgeben
 - Direkter Vergleich von Fläche/Ladung-Verhältnissen

- Neu Befehle im HDTV-Programm
- QM07 erfolgreich in den Ausleseprozess integriert
- QM07-Daten können vom Kontrollraum aus abgerufen werden
- Ausblick
 - Unsicherheiten ausgeben
 - Direkter Vergleich von Fläche/Ladung-Verhältnissen
 - Modernisierung der Stromauslese beim QCLAM

Quellen

A. W. Lenhardt, Dissertation, 2004.

O. Burda, Dissertation, 2007

O. Burda und A. Krugmann, Manual, 2009.

U. Tietze und C. Schenk, Halbleiter-Schaltungstechnik, 2002.

https://www.ikp.uni-koeln.de/projects/hdtv/trac

http://ikpweb.ikp.physik.tu-darmstadt.de/mediawiki/index.php/QM07-ELEKTRONIK

http://ikpweb.ikp.physik.tu-darmstadt.de/mediawiki/index.php/EPICS

http://gridconnect.com/pcan/pcan-adapters/can-pci.html

Vielen Dank für Ihre Aufmerksamkeit!

 Ablenkung der Elektronen, je nach Impuls, auf verschiedenen Bahnen

- Ablenkung der Elektronen, je nach Impuls, auf verschiedenen Bahnen
- Umwandlung der Impulsinformation in eine Ortsinformation

- Ablenkung der Elektronen, je nach Impuls, auf verschiedenen Bahnen
- Umwandlung der Impulsinformation in eine Ortsinformation
- Projektion von Elektronen mit gleichem Impuls und unterschiedlichen Eintrittswinkeln auf den selben Punkt

TECHNISCHE UNIVERSITÄT DARMSTADT

- Ablenkung der Elektronen, je nach Impuls, auf verschiedenen Bahnen
- Umwandlung der Impulsinformation in eine Ortsinformation
- Projektion von Elektronen mit gleichem Impuls und unterschiedlichen Eintrittswinkeln auf den selben Punkt
- Spektrometer wirkt radial fokussierend

Energieverlustmodus

26. Juni 2012 | TU Darmstadt | Institut für Kernphysik | Sergej Bassauer | 26

Energieverlustmodus

TECHNISCHE UNIVERSITÄT DARMSTADT

 Abbildung des Elektronenstrahls als schmalen Streifen auf dem Target

Energieverlustmodus

TECHNISCHE UNIVERSITÄT DARMSTADT

- Abbildung des Elektronenstrahls als schmalen Streifen auf dem Target
- Projektion der Elektronen mit einem speziellen Energieverlust mit einem entsprechenden Versatz auf die Fokalebene

Energieverlustmodus

TECHNISCHE UNIVERSITÄT DARMSTADT

- Abbildung des Elektronenstrahls als schmalen Streifen auf dem Target
- Projektion der Elektronen mit einem speziellen Energieverlust mit einem entsprechenden Versatz auf die Fokalebene
- Messungen sind von der Energieunschärfe des Elektronenstrahls unabhängig

Energieverlustmodus

TECHNISCHE UNIVERSITÄT DARMSTADT

- Abbildung des Elektronenstrahls als schmalen Streifen auf dem Target
- Projektion der Elektronen mit einem speziellen Energieverlust mit einem entsprechenden Versatz auf die Fokalebene
- Messungen sind von der Energieunschärfe des Elektronenstrahls unabhängig
- Gute Energieauflösung

Technische Parameter

Elektronenenergiebereich	(20-120) MeV
Streuwinkelbereich	33°-165° (12° Schritte)
Radius der zentralen Trajektorie	1 m
Neigung der Fokalebene	35°
Dispersion	3,76 cm/1%
Impulsakzeptanz	±2,1%
Raumwinkelakzeptanz	6 msr
Auflösung (FWHM)	0,015%
Magnetfeldstärke	(0,6-4,0) kG