Muonic deuterium results: Nuclear Structure Corrections from TPE

In collaboration with: Andreas Ekström Nir Nevo Dinur Chen Ji Sonia Bacca Nir Barnea

THE UNIVERSITY OF BRITISH COLUMBIA

There is a discrepancy between eD and μ D data CODATA-2010 μd D spectroscopy e-d scatt. 2.125 2.13 2.12 2.135 2.14 2.145 Deuteron charge radius r_{d} [fm]

There is a discrepancy between eD and μ D data μd 7σ CODATA-2010 3.5σ D spectroscopy

The total Lamb shift error budget

$$\Delta E_{LS} = \delta_{QED} + \delta_{TPE} + \delta_{FS}(R_c).$$

TPE decomposition

$$\Delta E_{LS} = \delta_{QED} + \delta_{TPE} + \delta_{FS}(R_c).$$

TPE decomposition

$$\Delta E_{LS} = \delta_{QED} + \delta_{TPE} + \delta_{FS}(R_c).$$

$$\delta_{TPE} = \delta^A_{TPE} + \delta^N_{TPE}$$
Nuclear Nucleonic

TPE decomposition

Deuteron Calculations

• Expand the Schrödinger equation in the harmonic oscillator basis and diagonalize

 $\{N_{max},\hbar\Omega\}$

Deuteron Calculations

• Benchmark with available literature

		$E_0 \; [\mathrm{MeV}]$	$\langle r_{str}^2 \rangle_d^{1/2} \mathrm{[fm]}$	$Q_d \; [\mathrm{fm}^2]$	P_D [%]	
N3LO	This Work	2.2246	1.978	0.285	4.51	
	Entem et al [1]	2.2246	1.978	0.285	4.51	
AV18	This Work	2.2246	1.967	0.270	5.76	
	Wiringa <i>et al</i> [2]	2.2246	1.967	0.270	5.76	

 $\delta_{TPE}(Our \ Work) = -1.718(22) \ meV$

7

$$\begin{split} \delta_{TPE}(Our \; Work) &= -1.718(22) \; meV \\ \delta_{TPE}(Pachucki) &= -1.717(20) \; meV \end{split}$$

$$\begin{split} &\delta_{TPE}(Our \; Work) = -1.718(22) \; meV \\ &\delta_{TPE}(Pachucki) = -1.717(20) \; meV \\ &\delta_{TPE}(Krauth \; et \; al.) = -1.710(20) \; meV \end{split}$$

$$\begin{split} &\delta_{TPE}(Our \; Work) = -1.718(22) \; meV \\ &\delta_{TPE}(Pachucki) = -1.717(20) \; meV \\ &\delta_{TPE}(Krauth \; et \; al.) = -1.710(20) \; meV \end{split}$$

$$\begin{split} \delta_{TPE}(Our \; Work) &= -1.718(22) \; meV \\ \delta_{TPE}(Pachucki) &= -1.717(20) \; meV \\ \delta_{TPE}(Krauth \; et \; al.) &= -1.710(20) \; meV \end{split}$$

 $\delta_{TPE} = \delta_{QED} + \delta_{FS}(R_c) - \Delta E_{LS} \longrightarrow \delta_{TPE}(Exp.) = -1.7638(68) \ meV$

[Pohl et. al. Science, Vol 353, 6300, 2016]

$$\begin{split} \delta_{TPE}(Our \; Work) &= -1.718(22) \; meV \\ \delta_{TPE}(Pachucki) &= -1.717(20) \; meV \\ \delta_{TPE}(Krauth \; et \; al.) &= -1.710(20) \; meV \end{split}$$

 $\delta_{TPE} = \delta_{QED} + \delta_{FS}(R_c) - \Delta E_{LS} \longrightarrow \delta_{TPE}(Exp.) = -1.7638(68) \ meV$ [Pohl *et. al.* Science, Vol 353, 6300, 2016]

• Theoretical TPE is 6 times larger than experimental uncertainty

$$\begin{split} \delta_{TPE}(Our \; Work) &= -1.718(22) \; meV \\ \delta_{TPE}(Pachucki) &= -1.717(20) \; meV \\ \delta_{TPE}(Krauth \; et \; al.) &= -1.710(20) \; meV \end{split}$$

 $\delta_{TPE} = \delta_{QED} + \delta_{FS}(R_c) - \Delta E_{LS} \longrightarrow \delta_{TPE}(Exp.) = -1.7638(68) \ meV$ [Pohl *et. al.* Science, Vol 353, 6300, 2016]

- Theoretical TPE is 6 times larger than experimental uncertainty
- A thorough analysis may change our ~1% uncertainty and shed light on disagreement in δ_{TPE}

Ekström et al., PRL (2013), JPG (2015), Carlsson et al., PRX (2016)

 $Obs(c_{\mu}, \Lambda, T_{Lab}^{Max}, k)$

Ekström et al., PRL (2013), JPG (2015), Carlsson et al., PRX (2016)

$$Obs(c_{\mu}, \Lambda, T_{Lab}^{Max}, k)$$

• Use N2LO potentials fit simulatenously to NN and πN data

Statistical uncertainties: c_{μ}

Ekström et al., PRL (2013), JPG (2015), Carlsson et al., PRX (2016)

$$Obs(c_{\mu}, \Lambda, T_{Lab}^{Max}, k)$$

Use N2LO potentials fit simulatenously to NN and πN data

 c_{μ} Statistical uncertainties: Systematic uncertainties: Λ , T_{Lab}^{Max} , k

Ekström et al., PRL (2013), JPG (2015), Carlsson et al., PRX (2016)

$$Obs(c_{\mu}, \Lambda, T_{Lab}^{Max}, k)$$

Use N2LO potentials fit simulatenously to NN and πN data

Statistical uncertainties: c_{μ}

Systematic uncertainties:

$$egin{array}{ll} \Lambda, T_{Lab}^{Max}, k \ \eta,
ho, ec{j} \end{array}$$

 $Obs(c_{\mu}, \Lambda, T_{Lab}^{Max}, k)$

• Use N2LO potentials fit simulatenously to NN and πN data

Statistical uncertainties: c_{μ}

Systematic uncertainties:

$$egin{array}{ll} \Lambda, T_{Lab}^{Max}, k \ \eta,
ho, ec{j} \end{array}$$

Single Nucleon:

 δ^N_{TPE}

Ekström et al., PRL (2013), JPG (2015), Carlsson et al., PRX (2016)

 $Obs(c_{\mu}, \Lambda, T_{Lab}^{Max}, k)$

• Use N2LO potentials fit simulatenously to NN and πN data

Statistical uncertainties: c_{μ} Systematic uncertainties: Λ

$$\Lambda, T_{Lab}^{Max}, k$$
7, $ho, ec{j}$

Single Nucleon:

 δ^N_{TPE}

Higher Order Corrections: $O(lpha^6)$

Ekström et al., PRL (2013), JPG (2015), Carlsson et al., PRX (2016)

Statistical uncertainties

• Propagate uncertainty using standard techniques

Statistical uncertainties

• Propagate uncertainty using standard techniques

 $J_{A,i} = \frac{\partial A}{\partial c_{\mu,i}}$

Statistical uncertainties

Correlation analysis

• Serves as a check of the error propagation formalism

$$\rho(A,B) = \frac{Cov(A,B)}{\sigma_A \sigma_B}$$

Correlation analysis

• Serves as a check of the error propagation formalism

$$\rho(A,B) = \frac{Cov(A,B)}{\sigma_A \sigma_B}$$

- We observe strong correlations between
 - $\{P_d, \mu_d\}$
 - { $R(^{2}H), \alpha_{E}$ }
 - { $R(^{2}H), \delta_{TPE}$ }

Statistical uncertainties

Statistical uncertainties

Sytematic Tlab Uncertainties

• Expand observable in the same Chiral EFT pattern,

$$A^{N^{k}LO}(p) = A_{0} \sum_{\nu=0}^{k+1} \beta_{\nu}(p) Q^{\nu} \qquad \qquad Q = max \left\{ \frac{p}{\Lambda_{b}}, \frac{m_{\pi}}{\Lambda_{b}} \right\}$$

• Expand observable in the same Chiral EFT pattern,

$$A^{N^{k}LO}(p) = A_0 \sum_{\nu=0}^{k+1} \beta_{\nu}(p) Q^{\nu} \qquad \qquad Q = max \left\{ \frac{p}{\Lambda_b}, \frac{m_{\pi}}{\Lambda_b} \right\}$$

• Truncation uncertainty can then be calculated according to

$$\sigma^{N^kLO}_{A,sys}(p)pprox Q\cdot |A_0Q^{k+1}eta_{k+1}|$$

• Expand observable in the same Chiral EFT pattern,

$$A^{N^{k}LO}(p) = A_{0} \sum_{\nu=0}^{k+1} \beta_{\nu}(p) Q^{\nu} \qquad \qquad Q = max \left\{ \frac{p}{\Lambda_{b}}, \frac{m_{\pi}}{\Lambda_{b}} \right\}$$

• Truncation uncertainty can then be calculated according to

$$\sigma_{A,sys}^{N^{k}LO}(p) \approx Q \cdot |A_{0}Q^{k+1}\beta_{k+1}|$$

$$\sigma_{A,sys}^{N^{k}LO}(p) = A_{0}Q^{k+2} \max\{|\beta_{0}|, ..., |\beta_{k+1}|\}$$

• Tlab variation

- Tlab variation
- Chiral truncation estimate

$$\sigma_{A,sys}^{N^{k}LO}(p) = A_{0}Q^{k+2} max\{|\beta_{0}|, ..., |\beta_{k+1}|\}$$

- Tlab variation
- Chiral truncation estimate

$$\sigma_{A,sys}^{N^{k}LO}(p) = A_{0}Q^{k+2} max\{|\beta_{0}|, ..., |\beta_{k+1}|\}$$

• Estimate momentum scale of TPE

$$\langle\omega
angle_{D1}=rac{\int d\omega\,\omega\sqrt{rac{2m_r}{\omega_N}}\,S_{D1}(\omega)}{\int d\omega\,\sqrt{rac{2m_r}{\omega_N}}\,S_{D1}(\omega)}.$$

- Tlab variation
- Chiral truncation estimate

$$\sigma_{A,sys}^{N^{k}LO}(p) = A_{0}Q^{k+2} max\{|\beta_{0}|, ..., |\beta_{k+1}|\}$$

• Estimate momentum scale of TPE

$$\langle \omega
angle_{D1} = rac{\int d\omega \, \omega \sqrt{rac{2m_r}{\omega_N}} \, S_{D1}(\omega)}{\int d\omega \, \sqrt{rac{2m_r}{\omega_N}} \, S_{D1}(\omega)}$$

Correction	% Uncert.	
Chiral Trunc.	0.4	

Two body currents + relativistic corr.

Two body currents + relativistic corr.

Correction	% Uncert.	
NLO MEC	0.05	
Rel. Corr.	0.05	

Two body currents + relativistic corr.

Eta Expansion	η
$\delta^A_{TPE} = \delta^{(0)} +$	$\delta^{(1)} + \delta^{(2)} + O(\eta^3)$

Correction	% Uncert.
NLO MEC	0.05
Rel. Corr.	0.05
Eta Exp.	0.3

Two body currents + relativistic corr.

Eta Expansion	η
$\delta^A_{TPE} = \delta^{(0)} +$	$\delta^{(1)} + \delta^{(2)} + O(\eta^3)$

Single Nucleon Physics

Correction	% Uncert.
NLO MEC	0.05
Rel. Corr.	0.05
Eta Exp.	0.3
Nucleon	0.6

Two body currents + relativistic corr.

Eta Expansion	η
$\delta^A_{TPE} = \delta^{(0)} +$	$-\delta^{(1)} + \delta^{(2)} + O(\eta^3)$

Single Nucleon Physics δ^N_{TPE}

Atomic Physics uncert.

Correction	% Uncert.
NLO MEC	0.05
Rel. Corr.	0.05
Eta Exp.	0.3
Nucleon	0.6
Atomic Phys.	1.0

Contribution	Uncertainty in meV
Nuclear physics (syst)	+0.008
	-0.011
Nuclear physics (stat)	±0.001
η -expansion	±0.005
Single-nucleon	±0.0102
Atomic physics	± 0.0172
Total	+0.022
	-0.024

 $\delta_{TPE} = -1.715 \ meV$

Krauth et. al. [2016] $\delta_{TPE}(Krauth \ et \ al.) = -1.710(20) \ meV$

Krauth et. al. [2016] $\delta_{TPE}(Krauth \ et \ al.) = -1.710(20) \ meV$

Previous Value [2014,2016] $\delta_{TPE}(Prev \ Work) = -1.718(22) \ meV$

Krauth et. al. [2016] $\delta_{TPE}(Krauth \ et \ al.) = -1.710(20) \ meV$

Previous Value [2014,2016] $\delta_{TPE}(Prev \ Work) = -1.718(22) \ meV$

New value [2017] $\delta_{TPE} = -1.715^{+22}_{-24} \ meV$

Krauth et. al. [2016] $\delta_{TPE}(Krauth \ et \ al.) = -1.710(20) \ meV$

Previous Value [2014,2016] $\delta_{TPE}(Prev \ Work) = -1.718(22) \ meV$

New value [2017] $\delta_{TPE} = -1.715^{+22}_{-24} meV$

Experimental

$$\delta_{TPE}(Exp) = -1.7638(68) \ meV$$

Krauth et. al. [2016] $\delta_{TPE}(Krauth \ et \ al.) = -1.710(20) \ meV$

Previous Value [2014,2016] $\delta_{TPE}(Prev \ Work) = -1.718(22) \ meV$

New value [2017] $\delta_{TPE} = -1.715^{+22}_{-24} \ meV$

Experimental

$$\delta_{TPE}(Exp) = -1.7638(68) \ meV$$

Limitations of $\boldsymbol{\eta}$ expansion

• In the eta-expansion, higher order terms are very difficult $~O(\eta^3)$

Limitations of $\boldsymbol{\eta}$ expansion

• In the eta-expansion, higher order terms are very difficult $O(\eta^3)$

• Eta expansion uncertainty dominates in A=3 systems

	2H	3H	3He
Percent Uncert.	$\overline{O(\eta^3)}$ 0.4	2.0	2.0
	$O(lpha^6)$ 1	1.5	1.5

Limitations of $\boldsymbol{\eta}$ expansion

• In the eta-expansion, higher order terms are very difficult $O(\eta^3)$

• Eta expansion uncertainty dominates in A=3 systems

	2H	3H	3He
Percent Uncert.	$\overline{O(\eta^3)}$ 0.4	2.0	2.0
	$O(lpha^6)$ 1	1.5	1.5

• Can we avoid the eta-expansion?

$$\begin{split} P_{NR} &= -2m_r \phi^2(0) Z^2 \int \frac{d^3q}{(2\pi)^3} \left(\frac{4\pi\alpha}{q^2}\right)^2 \frac{1}{q^2 + 2m_r \omega_N} (1 - e^{i\boldsymbol{q}\cdot\boldsymbol{R}})(1 - e^{-i\boldsymbol{q}\cdot\boldsymbol{R}'}) \\ \bullet \text{ Insert intermediate states} \\ & \sum_{N \neq N_0} |N\rangle \langle N| \end{split}$$

$$P_{NR} = -2m_r \phi^2(0) Z^2 \int \frac{d^3q}{(2\pi)^3} \left(\frac{4\pi\alpha}{q^2}\right)^2 \frac{1}{q^2 + 2m_r \omega_N} (1 - e^{i\boldsymbol{q}\cdot\boldsymbol{R}})(1 - e^{-i\boldsymbol{q}\cdot\boldsymbol{R}'})$$

• Insert intermediate states

$$\sum_{N \neq N_0} |N\rangle \langle N|$$

$$\delta^A_{NR} = -8(Z\alpha)^2 |\phi(0)|^2 \int dq \int d\omega \ K_{NR}(q,\omega) S_L(q,\omega)$$

$$\begin{split} P_{NR} &= -2m_r \phi^2(0) Z^2 \int \frac{d^3q}{(2\pi)^3} \left(\frac{4\pi\alpha}{q^2}\right)^2 \frac{1}{q^2 + 2m_r \omega_N} (1 - e^{i\boldsymbol{q}\cdot\boldsymbol{R}})(1 - e^{-i\boldsymbol{q}\cdot\boldsymbol{R}'}) \\ \bullet \text{ Insert intermediate states} \\ & \sum_{N \neq N_0} |N\rangle \langle N| \end{split}$$

$$\delta_{NR}^{A} = -8(Z\alpha)^{2}|\phi(0)|^{2} \int dq \int d\omega \ K_{NR}(q,\omega)S_{L}(q,\omega)$$

• Full treatment

$$\delta^A_{TPE} = -8(Z\alpha)^2 |\phi(0)|^2 \int dq \int d\omega \left[K_L(q,\omega) S_L(q,\omega) + K_T(q,\omega) S_T(q,\omega) + K_S(q,\omega) S_T(0,\omega) \right]$$

η -less expansion

O. J. Hernandez, C. Ji, S. Bacca, N. Barnea in preparation.

l	$\delta_\ell [{ m meV}]$
0	-6.856010106985817E-002
1	-1.43618685244822
2	-6.442225521652188E-002
3	-1.186645711405751E-002
4	-3.741888013064462E-003
5	-1.552676561183561E-003
6	-7.602058875707891E-004
7	$-4.151874435608740 ext{E-004}$
8	-2.454274817754850E-004
9	-1.537989305734875E-004
10	-1.010484483922072E-004
11	-6.881334910974345E-005
12	-4.837697294962907E-005
13	-3.480144716570742E-005
14	-2.561972635803522E-005
15	-1.913783414930239E-005
16	-1.455885571724146E-005
17	-1.117441231993074E-005
18	-8.713757524696711E-006
19	-6.827246811968316E-006
20	-5.428475472307609E-006
Sum	-1.5882493506924E+00

l	$\delta_{\ell}[{ m meV}]$
0	-6.856010106985817E-002
1	-1.43618685244822
2	-6.442225521652188E-002
3	-1.186645711405751E-002
4	-3.741888013064462E-003
5	-1.552676561183561E-003
6	-7.602058875707891E-004
7	-4.151874435608740E-004
8	-2.454274817754850E-004
9	-1.537989305734875E-004
10	-1.010484483922072E-004
11	-6.881334910974345E-005
12	-4.837697294962907E-005
13	-3.480144716570742E-005
14	-2.561972635803522E-005
15	-1.913783414930239E-005
16	-1.455885571724146E-005
17	-1.117441231993074E-005
18	-8.713757524696711E-006
19	-6.827246811968316E-006
20	-5.428475472307609E-006
Sum	-1.5882493506924E+00

Outlook

Uncertainty Analysis:

• Reduce atomic physics uncert. $O(\alpha^6)$

Outlook

Uncertainty Analysis:

• Reduce atomic physics uncert. $O(\alpha^6)$

Etaless Expansion

- Implement transverse corrections in A=2
- Apply formalism to A=3 systems
- Extend formalism for HFS