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•  Green’s Function Monte Carlo 
   (Carlson, Gandolfi, Lovato, Lynn ...) 

• No core shell model 
    (Qualgioni, Navratil, Roth, Vary ...)  

• Symmetry adapted no core shell model 
   (Launey, Draayer, Dytrych…) 
   

• Coupled-cluster theory 
   (Hagen, Papenbrock, Hjorth-Jensen, ...)  

• In-medium SRG 
    (Bogner, Hergert, Holt, Schwenk, ...) 

•  ... 

Ab-initio many-body methods

Factorial growth in A

Polynomial growth in A
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Green’s function Monte Carlo 

Pieper & Wiringa, Ann. Rev. Nucl. Part. Sci. 51, 53 (2001)

Demonstration that light nuclei can be build from scratch
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Mass reach vs time

Ab-initio methods

Polynomial algorithms 
+  

Better/cheaper computers 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ORNL group and collaborators: PRL 108, 242501 (2012), PRL 109, 032502 (2012); 
PRL 110, 192502 (2013), PRL 113, 262504 (2014), PRL 113, 142502 (2014) … 
Also Darmstadt group and collaborators

CC future aims

CC theory now 

R. Roth et al.,  Phys. Rev. Lett. 109, 052501 (2012) 
S. Binder et al, Physics Letters B 736 (2014) 119-123… 

Coupled-cluster theory
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Coupled-cluster theory

• First we will introduce some elements of coupled-cluster theory 
    as a method to solve the A-body Schrödinger equation

• Second, we will see how to combine the LIT with coupled-cluster theory 
   as a way to compute break-up reactions in the medium-mass regime 
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History of  coupled-cluster

Hagen et al, Rep. Prog. Phys. 77, 096302 (2014)

History of coupled-cluster theory
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Creation and annihilation operators Recap

Operator that creates a particle in state 

Operator that annihilates a particle in state 

These operators obey anti-commutations rules 
to ensure antisymmetrization

Slater determinant: 
Second quantizationFirst quantization

Single particle basis {|�ii}
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Many-body operators Recap

Many-body operators can be written in second quantization

One-body operator: 

First quantization Second quantization

Two-body operator: 

Three-body operator: 

Hamiltonian
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Many-body operators Recap

Since we deal with fermions, we want to use antisymmetrized states. 
Then the expressions for many-body operators become a bit different

Example: Antisymmetrized 
two-body state

= |rsiA = A|rsi
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Many-body operators Recap

Many-body operators written in second quantization with antisymmetrized states

One-body operator: 

Two-body operator: 

Three-body operator: 

Hamiltonian

In coupled-cluster theory one writes the Hamiltonian in normal order 
using the Wick’s theorem.
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Normal Order

If you have a general string of creation and annihilations operators, using anti-commutation 
relations, you can reorganize them so that all creation operators on the left and all  
annihilations operators are on the right.

Advantage: the action of an annihilation operator on the vacuum is zero, so 
                   any normal ordered product acting on the vacuum contributes nothing.

Example: 

Three different products of operators which all contribute 0 when acting on the vacuum
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Wick Theorem

Definition: Contraction of two arbitrary annihilation/creation operators

If we have two annihilations and two creations operators, the contraction is 0 
Because they are already in normal order

already in normal order

Only non-vanishing
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Wick Theorem

Theorem:  Any general string of annihilation/creation operators can be written as

Consequence: all terms disappear because of the normal ordering. The only one that can 
contribute is that where all operators are fully contracted. 

This theorem allows one to write down a normal ordered Hamiltonian.

{
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Normal order with respect to SD
It is convenient to define a new vacuum state

Fermi vacuum

Destruction operators

Creation operatorscreates a hole
creates a particle 

destroys a hole

destroys a particle Right

Left 

normal order with respect to

Particle-hole excitations
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Normal order with respect to SD
Using the Wick’s theorem we normal order H with respect to 

One-body 

Two-body

Three-body

Hamiltonian

ni occupation number

Uncorrelated energy of 
the reference state
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Schödinger Equation

H = HN +H0

(HN +H0)| 0i = E0| 0i

HN | 0i = (E0 �H0)| 0i

�E0 = E0 �H0

Starting point

rename



Sonia Bacca 18

The exponential ansatz 

Exponential ansatz

correlation operator

Similarity-transformed Hamiltonian 
[not Hermitian]

 Schrödinger equation for similarity transformed Hamiltonian
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Cluster operator 

Exponential ansatz

Normal ordered operators

Exact theory

…
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Cluster operator 

Exponential ansatz

Approximate theory

…
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CCSD equations

Multiply with 0p0h, 1p1h, and 2p2h brakes and obtain coupled-cluster equations

First, one needs to solve the CCSD set of non linear equations. This yields the cluster 
amplitudes tia and tijab that define the similarity-transformed Hamiltonian.  Second, the ground-
state energy can be computed.

Start from the Schrödinger equation
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CC vs CI
Configuration Interaction (CI)Coupled-cluster (CC)

…
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CC vs CI

Example in atomic physics

 Bartlett and Musial, Review of Modern Physics  79, (2007) 

Scaling parameter of computational cost

With respect to HF
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Benchmarks
Example in nuclear physics

Hagen, et al., PRC 76, 034302 (2007) 

FY
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Lattice EFT
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obtained in large many-body spaces

AME 2012

Ann. Rev. Part. Nucl. Sci. 65 (2015) 457

Oxygen isotope chain

Benchmarks
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What about our perturbative reactions
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Example: dipole strength functions

Giant dipole resonance

!

Collectivity in nuclei

Pigmy dipole resonance in neutron-rich nuclei core
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Fewer data, pigmy dipole resonances

Unstable Nuclei

Leistenschneider et al.

From Coulomb excitation experiments

 Do we see the emergence of collective motions from first principle calculations?

Experimental status
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A

Electric dipole polarizability

Related observables
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↵D = 2↵

Z 1

!th

d!
R(!)

!

AE
⇤

D = ↵DE

D

Low-energy part of response dominates

Very interesting for neutron-rich nuclei:  

soft modes at low energy enhance the polarizability

Related observables

Electric dipole polarizability
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How to approach the problem?

LIT  Lorentz Integral Transform 

A method that allows to circumvent the continuum problem by 
reducing it to the solution of a bound-state-like equation

CC Coupled-cluster theory
Accurate many-body theory with mild polynomial scaling in mass number

+

An approach to many-body break-up induced reactions with a proper 
accounting of the continuum

LIT-CC 

=
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z = E0 + � + i�with

 S.B. et al., PRL 111, 122502 (2013) 

(H � z⇤)| ̃i = Jµ| 0i

⇥̄ = e�T⇥eT

H̄ = e�THeT

(H̄ � z⇤)| ̃R(z
⇤)i = ⇥̄|�0i

L(�,�) =
D
 ̃| ̃

E
L(�,�) =

D
 ̃L| ̃R

E
=

LIT with coupled cluster theory

| ̃R(z
⇤)i = R̂(z⇤)|�0i

1) Solve g.s. and find t-amplitudes 

2) Transform the operator, which is the source (rhs) of the LIT equation 

3) Solve LIT equation with the form

Formulation with no approximations so far!
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z = E0 + � + i�with

 S.B. et al., PRL 111, 122502 (2013) 

(H � z⇤)| ̃i = Jµ| 0i

⇥̄ = e�T⇥eT

H̄ = e�THeT

(H̄ � z⇤)| ̃R(z
⇤)i = ⇥̄|�0i

L(�,�) =
D
 ̃| ̃

E
L(�,�) =

D
 ̃L| ̃R

E
=

LIT with coupled cluster theory

Implementation in CCSD scheme T = T1 + T2
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LIT with coupled cluster theory

In analogy to what we did with few-body methods, also in this case 
we can use the Lanczos algorithm (non symmetric)

ra
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