

Electromagnetic properties of nuclei: from few- to many-body systems

Lecture 10

Many-body methods

Sonia Bacca

November 23rd, 2017

Lecture series for SFB 1245 TU Darmstadt

Ab-initio many-body methods

- Green's Function Monte Carlo (Carlson, Gandolfi, Lovato, Lynn ...)
- No core shell model (Qualgioni, Navratil, Roth, Vary ...)
- Symmetry adapted no core shell model (Launey, Draayer, Dytrych...)
- Coupled-cluster theory (Hagen, Papenbrock, Hjorth-Jensen, ...)
- In-medium SRG (Bogner, Hergert, Holt, Schwenk, ...)

Factorial growth in A

Polynomial growth in A

JG U

Demonstration that light nuclei can be build from scratch

Pieper & Wiringa, Ann. Rev. Nucl. Part. Sci. 51, 53 (2001)

JG U

Coupled-cluster theory

ORNL group and collaborators: PRL **108**, 242501 (2012), PRL **109**, 032502 (2012); PRL **110**, 192502 (2013), PRL **113**, 262504 (2014), PRL **113**, 142502 (2014) ...

Also Darmstadt group and collaborators

JGU

R. Roth *et al.*, Phys. Rev. Lett. **109**, 052501 (2012) S. Binder et al, Physics Letters B 736 (2014) 119-123...

 First we will introduce some elements of coupled-cluster theory as a method to solve the A-body Schrödinger equation

$$H|\Psi_0\rangle = E_0|\Psi_0\rangle$$

 Second, we will see how to combine the LIT with coupled-cluster theory as a way to compute break-up reactions in the medium-mass regime Formal introduction: 1958: Coester, Nucl. Phys. 7, 421 1960: Coester and Kummel, Nucl. Phys. 17, 477 Introduction into Chemistry (late 60's): 1966: Cizek, J. Chem. Phys. 45, 4256 (1966); Adv. Chem. Phys. 14, 35 (1969) 1971: Cizek and Paldus, Int. J. Quantum Chem. 5, 359 Numerical implementations 1978: Pople et al., Int. J. Quantum Chem Symp, 14, 545 1978: Bartlett and Purvis, Int. J. Quantum Chem 14, 561 Initial nuclear calculations (1970's): 1978: Kummel, Luhrmann, Zabolitzky, Phys. Rep. 36, 1 and refs. therein 1980-90s: Bishop's group. Coordinate space. Few applications in nuclei, explodes in chemistry and molecular sciences. Hard-core interactions; computer power; unclear interactions Nuclear physics reintroduction: (1/E_{ph} expansion) 1999: Heisenberg and Mihiala, Phys. Rev. C59, 1440; PRL84, 1403 (2000) Three nuclei; JJ coupled scheme; bare interactions, approximate V_{3N} Useful References Crawford and Schaefer, Reviews in Computational Chemistry, 14, 336 (2000) Bartlett, Ann. Rev. Phys. Chem. 32, 359 (1981)

Hagen et al, Rep. Prog. Phys. 77, 096302 (2014)

JG U Creation and annihilation operators Recap

Single particle basis $\{|\phi_1\rangle, |\phi_2\rangle, ..., |\phi_m\rangle\} \longrightarrow \{|\phi_i\rangle\}$

$$a_i^\dagger$$
 - Operator that creates a particle in state $\ket{\phi_i}$

 a_i Operator that annihilates a particle in state $|\phi_i
angle$

These operators obey anti-commutations rules to ensure antisymmetrization

$$\{a_i^{\dagger}, a_j^{\dagger}\} = \{a_i, a_j\} = 0, \{a_i^{\dagger}, a_j\} = \{a_j, a_i^{\dagger}\} = \delta_{ij}.$$

Slater determinant:

First quantization

$$|\Phi\rangle = \mathcal{A}[|\phi_i\rangle|\phi_j\rangle\cdots|\phi_k\rangle]$$

Second quantization

$$\begin{split} |\Phi\rangle &= |ij....k\rangle = a_i^{\dagger} a_j^{\dagger} \cdots a_k^{\dagger} |0\rangle \\ |ji....k\rangle &= a_j^{\dagger} a_i^{\dagger} \cdots a_k^{\dagger} |0\rangle \\ &= -a_i^{\dagger} a_j^{\dagger} \cdots a_k^{\dagger} |0\rangle \end{split}$$

Many-body operators can be written in second quantization

First quantization

Second quantization

One-body operator:
$$F = \sum_{i}^{A} f_{i} \longrightarrow F = \sum_{pq} \langle p|f|q \rangle a_{p}^{\dagger}a_{q}$$

Two-body operator: $V = \sum_{ij}^{A} V_{ij} \longrightarrow V = \frac{1}{2} \sum_{pqrs} \langle pq|v|rs \rangle a_{p}^{\dagger}a_{q}^{\dagger}a_{s}a_{r}$
Three-body operator: $W = \sum_{ijk}^{A} W_{ijk} \longrightarrow W = \frac{1}{6} \sum_{pqrstu} \langle pqr|w|stu \rangle a_{p}^{\dagger}a_{q}^{\dagger}a_{r}^{\dagger}a_{u}a_{t}a_{s}$

Hamiltonian H = F + V + W

Recap

Many-body operators

Since we deal with fermions, we want to use antisymmetrized states. Then the expressions for many-body operators become a bit different

Example:
$$|rs\} = \frac{1}{\sqrt{2!}}(|rs\rangle - |sr\rangle) = |rs\rangle_A = \mathcal{A}|rs\rangle$$
 Antisymmetrized
two-body state
 $\langle pq|v|rs\rangle a_p^{\dagger}a_q^{\dagger}a_s a_r = \frac{1}{2}\langle pq|v|rs\rangle a_p^{\dagger}a_q^{\dagger}a_s a_r + \frac{1}{2}\langle pq|v|rs\rangle a_p^{\dagger}a_q^{\dagger}a_s a_r$
 $= \frac{1}{2}\langle pq|v|rs\rangle a_p^{\dagger}a_q^{\dagger}a_s a_r + \frac{1}{2}\langle pq|v|sr\rangle a_p^{\dagger}a_q^{\dagger}a_r a_s$
 $= \frac{1}{2}\langle pq|v|rs\rangle a_p^{\dagger}a_q^{\dagger}a_s a_r - \frac{1}{2}\langle pq|v|sr\rangle a_p^{\dagger}a_q^{\dagger}a_s a_r$
 $= \frac{1}{2\sqrt{2}}\sum_{pqrs}\langle pq|v|rs\rangle a_p^{\dagger}a_q^{\dagger}a_s a_r = \frac{1}{4}\sum_{pqrs}\{pq|v|rs\} a_p^{\dagger}a_q^{\dagger}a_s a_r$
 $V = \frac{1}{2}\sum_{pqrs}\langle pq|v|rs\rangle a_p^{\dagger}a_q^{\dagger}a_s a_r = \frac{1}{4}\sum_{pqrs}\{pq|v|rs\} a_p^{\dagger}a_q^{\dagger}a_s a_r$

Recap

Many-body operators

Many-body operators written in second quantization with antisymmetrized states

One-body operator:

$$F = \sum_{pq} \langle p|f|q \rangle a_p^{\dagger} a_q$$

Two-body operator:

$$V = \frac{1}{4} \sum_{pqrs} \{ pq | v | rs \} a_p^{\dagger} a_q^{\dagger} a_s a_r$$

Three-body operator:

$$W = \frac{1}{36} \sum_{pqrstu} \{pqr|w|stu\} a_p^{\dagger} a_q^{\dagger} a_r^{\dagger} a_u a_t a_s$$

$$H = F + V + W$$

In coupled-cluster theory one writes the Hamiltonian in normal order using the Wick's theorem.

Recap

Normal Order

If you have a general string of creation and annihilations operators, using anti-commutation relations, you can reorganize them so that all creation operators on the left and all annihilations operators are on the right.

Advantage: the action of an annihilation operator on the vacuum is zero, so any normal ordered product acting on the vacuum contributes nothing.

Example:

$$\{a_i a_j^{\dagger} a_k a_l^{\dagger}\} = -a_l^{\dagger} a_j^{\dagger} a_k a_i$$
$$= a_j^{\dagger} a_l^{\dagger} a_k a_i$$
$$= -a_j^{\dagger} a_l^{\dagger} a_i a_k$$

Three different products of operators which all contribute 0 when acting on the vacuum

Definition: Contraction of two arbitrary annihilation/creation operators

$$\overrightarrow{AB} = AB - \{AB\}$$

If we have two annihilations and two creations operators, the contraction is 0 Because they are already in normal order

$$\begin{aligned} a_i a_j &= a_i a_j - a_i a_j = 0 \\ a_i^{\dagger} a_j^{\dagger} &= a_i^{\dagger} a_j^{\dagger} - a_i^{\dagger} a_j^{\dagger} = 0 \\ a_i^{\dagger} a_j &= a_i^{\dagger} a_j - a_i^{\dagger} a_j = 0 \\ a_i a_j^{\dagger} &= a_i a_j^{\dagger} - a_j^{\dagger} a_i = a_i a_j^{\dagger} + a_i a_j^{\dagger} = \delta_{ij} \end{aligned}$$
 Only non-vanishing

Wick Theorem

Theorem: Any general string of annihilation/creation operators can be written as

$$ABC... = \{ABC...\} + \sum_{\substack{\text{all} \\ \text{single} \\ \text{contractions}}} \{ABC...\}$$
$$+ \sum_{\substack{\text{all} \\ \text{double} \\ \text{contractions}}} \{ABC...\}$$
$$+ \cdots + \sum_{\substack{\text{all} \\ \text{fully} \\ \text{contracted} \\ \text{prdts}}} \{ABC...\}$$

Consequence: all terms disappear because of the normal ordering. The only one that can contribute is that where all operators are fully contracted.

This theorem allows one to write down a normal ordered Hamiltonian.

Normal order with respect to SD

It is convenient to define a new vacuum state

GU

 $|0
angle\equiv|\Phi_{0}
angle=|ijk...
angle$ Fermi vacuum

Normal order with respect to SD

JGU

 $|\Phi_0\rangle$ Using the Wick's theorem we normal order H with respect to One-body $F = \sum_{pq} \langle p | f | q \rangle \{ a_p^{\dagger} a_q \} + \sum_i \langle i | f | i \rangle n_i$ *n_i* occupation number $\mathsf{Two-body} \quad V = \frac{1}{4} \sum_{pqrs} \{ pq | v | rs \} \{ a_p^{\dagger} a_q^{\dagger} a_s a_r \} + \sum_{ipq} \{ pi | v | qi \} \{ a_p^{\dagger} a_q \} n_i + \frac{1}{2} \sum_{ij} \{ ij | v | ij \} n_i n_j \} = \frac{1}{4} \sum_{pqrs} \{ pi | v | ij \} n_i n_j \} = \frac{1}{4} \sum_{pqrs} \{ pi | v | ij \} n_i n_j \} = \frac{1}{4} \sum_{pqrs} \{ pi | v | ij \} n_i n_j \} = \frac{1}{4} \sum_{pqrs} \{ pi | v | ij \} n_i n_j \} = \frac{1}{4} \sum_{pqrs} \{ pi | v | ij \} n_i n_j \} = \frac{1}{4} \sum_{pqrs} \{ pi | v | ij \} n_i n_j \} = \frac{1}{4} \sum_{pqrs} \{ pi | v | ij \} n_i n_j \} = \frac{1}{4} \sum_{pqrs} \{ pi | v | ij \} n_i n_j \}$ $\text{Three-body} \quad W = \frac{1}{36} \sum_{marstar} \{pqr|w|stu\} \{a_p^{\dagger} a_q^{\dagger} a_r^{\dagger} a_u a_t a_s\} + \frac{1}{4} \sum_{inars} \{ipq|w|irs\} \{a_p^{\dagger} a_q^{\dagger} a_r a_s\} n_i$ $\frac{1}{2} \sum_{i,j=q} \{ijp|w|ijq\} \{a_p^{\dagger}a_q\} n_i n_j + \frac{1}{6} \sum_{i,j=k} \{ijk|w|ijk\} n_i n_j n_k$ $H_0 = \langle \Phi_0 | H | \Phi_0 \rangle$ Hamiltonian H = F + V + WUncorrelated energy of $H = H_N + H_0$ the reference state

Schödinger Equation

Starting point

Exponential ansatz

$$|\Psi
angle=e^T|\Phi_0
angle$$
 correlation operator

$$H_N e^T |\Phi_0\rangle = E e^T |\Phi_0\rangle$$
$$e^{-T} H_N e^T |\Phi_0\rangle = e^{-T} E e^T |\Phi_0\rangle$$
$$e^{-T} H_N e^T |\Phi_0\rangle = E |\Phi_0\rangle$$

Similarity-transformed Hamiltonian [not Hermitian]

$$\bar{H} \equiv e^{-T} H_N e^T$$

Schrödinger equation for similarity transformed Hamiltonian $~~ar{H}|\Phi_0
angle=E|\Phi_0
angle$

Cluster operator

Exponential ansatz $|\Psi\rangle = e^T |\Phi_0\rangle$ $T = T_1 + T_2 + \dots + T_A = \sum_{n=1}^{m_A} T_n$ $T_n = \frac{1}{(n!)^2} \sum_{ij...ab...} t_{ij...}^{ab...} \left\{ a_a^{\dagger} a_b^{\dagger} \cdots a_j a_i \right\}$ Normal ordered operators

 $m_A = A$ Exact theory

Cluster operator

Exponential ansatz $|\Psi\rangle = e^T |\Phi_0\rangle$ $T = T_1 + T_2 + \ldots + T_A = \sum_{n=1}^{m_A} T_n$

 $m_A < A$ Approximate theory

$m_A = 2$	$T = T_1 + T_2$	CCSD	$n_{o}^{2}n_{u}^{4}$
$m_A = 3$	$T = T_1 + T_2 + T_3$	CCSDT	$n_o^3 n_u^5$
$m_A = 4$	$T = T_1 + T_2 + T_3 + T_4$	CCSDTQ	$n_{o}^{4}n_{u}^{6}$
$m_A = 5$	$T = T_1 + T_2 + T_3 + T_4 + T_5$	CCSDTQP	$n_o^5 n_u^7$

|.T.\

CCSD equations

$$T = T_1 + T_2$$

$$|\Psi\rangle = e^{\mathbf{I}} |\Phi_0\rangle$$
$$T_1 = \sum_{ia} t_i^a \{a_a^{\dagger} a_i\}$$
$$T_2 = \frac{1}{4} \sum_{ijab}^{ia} t_{ij}^{ab} \{a_a^{\dagger} a_b^{\dagger} a_j a_i\}$$

 $T + \mathbf{x} \rightarrow$

$$a,b,\ldots$$
 \bullet
 \bullet

Start from the Schrödinger equation $~~ar{H}|\Phi_0
angle=E|\Phi_0
angle$

Multiply with 0p0h, 1p1h, and 2p2h brakes and obtain coupled-cluster equations

$$\langle \Phi_0 | \overline{H} | \Phi_0 \rangle = E$$

$$\langle \Phi_i^a | \overline{H} | \Phi_0 \rangle = 0$$

$$\langle \Phi_{ij}^{ab} | \overline{H} | \Phi_0 \rangle = 0$$

First, one needs to solve the CCSD set of non linear equations. This yields the cluster amplitudes t_i^a and t_{ij}^{ab} that define the similarity-transformed Hamiltonian. Second, the ground-state energy can be computed.

CC vs Cl

Coupled-cluster (CC) $|\Psi\rangle = e^T |\Phi_0\rangle$ $T = T_1 + T_2 \dots$ Configuration Interaction (CI) $|\Psi\rangle = (1+C)|\Phi_0\rangle$

$$C = C_1 + C_2 + \dots$$

Bartlett and Musial, Review of Modern Physics 79, (2007)

Example in atomic physics

Benchmarks

Example in nuclear physics

FIG. 6. (Color online) (Data points) CCSD results (taken at the $\hbar\omega$ minima) for the binding energy of ⁴He with 3NFs as a function of the number of oscillator shells. (Dashed lines) Exponential fit to the data and asymptote of the fit. (Full line) Exact result.

Benchmarks

Oxygen isotope chain

What about our perturbative reactions

Collectivity in nuclei

Example: dipole strength functions

Experimental status

Stable Nuclei

Giant dipole resonances

From photoabsorption experiments

JGU

Experimental status

Unstable Nuclei

Do we see the emergence of collective motions from first principle calculations?

Sonia Bacca

Electric dipole polarizability

Α

Electric dipole polarizability

Very interesting for neutron-rich nuclei:

soft modes at low energy enhance the polarizability

LIT Lorentz Integral Transform

A method that allows to circumvent the continuum problem by reducing it to the solution of a bound-state-like equation

+

CC Coupled-cluster theory

Accurate many-body theory with mild polynomial scaling in mass number

LIT-CC

An approach to many-body break-up induced reactions with a proper accounting of the continuum

LIT with coupled cluster theory

S.B. et al., PRL 111, 122502 (2013)

1) Solve g.s. and find t-amplitudes

2) Transform the operator, which is the source (rhs) of the LIT equation 3) Solve LIT equation with the form $|\tilde{\Psi}_R(z^*)\rangle = \hat{R}(z^*)|\Phi_0\rangle$

$$R = R_1 + R_2 + \dots R_A$$

Formulation with no approximations so far!

LIT with coupled cluster theory

S.B. et al., PRL 111, 122502 (2013)

Implementation in CCSD scheme $T = T_1 + T_2$

 $R = R_1 + R_2$

LIT with coupled cluster theory

In analogy to what we did with few-body methods, also in this case we can use the Lanczos algorithm (non symmetric)

$$L(\sigma, \Gamma) \to Im \left\{ \frac{1}{(z - a_0) - \frac{b_1^2}{(z - a_1) - \frac{b_2^2}{(z - a_2) - b_3^2 \dots}}} \right\}$$

