

Electromagnetic properties of nuclei: from few- to many-body systems

Lecture 11

Many-body methods -Applications

Sonia Bacca

November 23rd, 2017

Lecture series for SFB 1245 TU Darmstadt

S.B. et al., PRL 111, 122502 (2013)

We have developed a new many-body technique that allows to study break up observables from first principles and is built on the ground of a true manybody method, hence has the potential to surpass previous limits

$$(\bar{H} - z^*) |\tilde{\Psi}_R(z^*)\rangle = \bar{\Theta} |\Phi_0\rangle$$

The first implementation we provided is based on the CCSD approximation scheme

$$T = T_1 + T_2$$

$$R = R_1 + R_2$$

Benchmarking

S.B. et al., Phys. Rev. Lett. 111, 122502 (2013)

Lorentz Integral Transform with NN forces at N³LO

Validation ⁴He

 $\Gamma = 10 \, [\text{MeV}]$ υ Exact HH $L(\sigma, \Gamma) \ {
m fm}^2 {
m MeV}^{-2} 10^{-3}$ 6 CCSD 4 2 0 ⊑ -20 0 20 60 80 100 40 120 $\sigma \,[{\rm MeV}]$

Benchmarking

S.B. et al., Phys. Rev. Lett. 111, 122502 (2013)

Dipole Response Functions with NN forces at N³LO

Validation ⁴He

Pushing the mass limits

New theoretical method aimed at extending ab-initio calculations towards medium mass

Extension to Dipole Response Function in ¹⁶O with NN forces derived from χ EFT (N³LO)

Convergence in the model space expansion

Good convergence!

Small HO dependence: use it as error bar

Pushing the mass limits

New theoretical method aimed at extending ab-initio calculations towards medium mass

Extension to Dipole Response Function in ¹⁶O with NN forces derived from χ EFT (N³LO)

This proves that the total strength is correctly reproduced

Photonuclear reactions

S.B. *et al.*, PRL **111**, 122502 (2013)

Photoabsorption cross section with NN forces at N³LO

Photoexcitation of neutron-rich nuclei

Pigmy Dipole Resonance (PDR)

Nicely described by a first principle calculation

Theory provides a deeper understanding: microscopic interpretation of collective phenomena

Other preliminary work

JGU

Photonuclear reactions

Dipole resonance at too high energy related to too small electric Polarizability and too small radii

$$\alpha_D \to \int_0^{E_x} d\omega \ \frac{\sigma_\gamma(\omega)}{\omega^2}$$

$$\alpha_D(\text{Th}) = 1.47 \text{ fm}^3$$
$$\alpha_D(\text{Exp}) = 2.23(3) \text{ fm}^3$$

 $R_{\rm ch}({\rm Th}) = 3.05 {\rm fm}$ $R_{\rm ch}({\rm Exp}) = 3.48 {\rm fm}$

E(Th) = 362 MeVE(Exp) = 342 MeV Radii and binding energies are off the experimental values, as well as dipole polarizability

Electric dipole polarizability

Medium-mass nuclei with NN(N³LO)

JGU

The present Hamiltonian underestimates both radii and electric dipole polarizabilities

Sonia Bacca

JGU

What shall we do to solve it?

Add three-nucleon forces

That does not always work

JGU

Include radii in the fit of LEC for the three-body force ⁴⁰Ca is a pure prediction

Charge density of ¹⁶O

Electric Dipole Polarizabilty

Medium-mass nuclei with NN + 3NF interactions M. Miorelli *et al.*, PRC **94** 034317 (2016)

Much better agreement with experimental data Variation of Hamiltonian can be used to assess the theoretical error bar

Sonia Bacca

What about heavier systems?

⁴⁸Ca as meeting point

for theory

Sonia Bacca

⁴⁸Ca as meeting point

While neutron-rich, for all practical purposes it can be considered a stable nucleus

+ (p,p') scattering to extract the electric dipole polarizability at RCNP, Japan

 $\alpha_D\,$ is related to the symmetry energy in the EOS of nuclear matter

Parity violation electron scattering Calcium Radius Experiment (CREX) at JLab and the Mainz Radius Experiment (MREX) at MAMI/MESA to measure R_{skin}

$$A_{pv} = \frac{d\sigma/d\Omega_R - d\sigma/d\Omega_L}{d\sigma/d\Omega_R + d\sigma/d\Omega_L} \approx -\frac{G_F q^2}{4\pi\alpha\sqrt{2}} \frac{Q_W F_W(q^2)}{ZF_{ch}(q^2)}$$

The weak force probes the neutron distribution

$$Q_W^n \approx -1$$
$$Q_W^p = 1 - 4\sin^2\theta_W \approx 0$$

for exp

Can we give a first principle predictions for these future experiments?

Charge density of ⁴⁸Ca

⁴⁸Ca from first principles

International collaboration (USA/Canada/Europe/Israel) using coupled-cluster theory Hagen *et al.*, Nature Physics **12**, 186 (2016)

Ab initio with three nucleon forces from chiral EFT

JGI

Strong correlations with Rp allow to put narrow constraints to Rskin and α_D

Ab-initio predictions: $0.12 \le R_{\rm skin} \le 0.15 \ {\rm fm}$ $2.19 \le \alpha_D \le 2.60 \ {\rm fm}^3$

R_{skin} will be measured with Parity violating electron scattering CREX

⁴⁸Ca electric dipole polarizability

New measurements from the Osaka-Darmstadt collaboration using inelastic proton scattering

JG U

Sonia Bacca

S.B. et al., PRL 111, 122502 (2013)

We have developed a new many-body technique that allows to study break up observables from first principles and is built on the ground of a true manybody method, hence has the potential to surpass previous limits

$$(\bar{H} - z^*) |\tilde{\Psi}_R(z^*)\rangle = \bar{\Theta} |\Phi_0\rangle$$

The first implementation we provided is based on the CCSD approximation scheme

Look at triples corrections

JGU

How to improve our tools

M. Miorelli et al., in preparation (2017)

CCSD scheme $e^T = e^{T_1 + T_2}$ $R = R_0 + R_1 + R_2$ CCSDT1 scheme $e^T = e^{T_1 + T_2} + T_3$ (linearized triples)

 $R = R_0 + R_1 + R_2 + R_3$

Exact \Rightarrow hyperspherical harmonics, all correlations included (up to quadruples)

JGU How to improve our calculations

M. Miorelli et al., in preparation (2017)

 $R = R_0 + R_1 + R_2$

CCSDT1 scheme (linearized triples)

 $e^{T} = e^{T_{1}+T_{2}} + T_{3}$ $R = R_{0} + R_{1} + R_{2} + R_{3}$

More on experimental techniques from Christopher Lehr and Philipp Ries

More on theoretical techniques from Johannes Simonis