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Proton-radius puzzle
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The Proton Charge Radius

 

r

e

CODATA2010: 
rp= 0.8775(51)fm

Mohr, et al. Rev. Mod Phys. (2012) 

Pic from Pohl et al., Ann.Rev.Nucl.Part.Sci. 63 (2013)

r2p = �6
dG

dQ2

����
Q2=0
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In 2010, proton charge radius was determined 
in muonic Hydrogen at PSI from spectroscopy 
measurements of the Lamb-shift: 
 
Pohl et al. (2010):          rp= 0.84184(67) fm  
Antognini et al. (2013): rp= 0.84087(39) fm 

How Small is the Proton?

 
r

𝜇

Proton Radius Puzzle!
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Origin of the discrepancy?

• Experimental results may be wrong:

�2 ⇡ 2.2

  Electron scattering experiments are done at finite Q2 , maybe not small enough

 Dispersion analysis:  
 global fit of n and p give rp= 0.84(1) with

Lorenz, Hammer,  Meissner, 
EPJA (2012)

• Exotic hadronic structures?
Birse, McGovern EPJA (2012) vs Miller PLB (2013)

 New force carrier, e.g. dark photon, that couples differently with e and µ 
• New physics beyond standard model?

Yavin, Pospelov, Carlson etc...

“Multiple independent electron-proton experiments agree, and the muonic hydrogen experiment 
looks more convincing than any of the electron-proton experiments”
Pohl, Gilman, Miller, Pachucki, Ann.Rev.Nucl.Part.Sci. 63 (2013)
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New Experiments to Shed Light on the Puzzle

• Higher precision electron scattering experiments

Q2 from 10-4 GeV2 to 10-2 GeV2 

• MUSE collaboration 
    measure          and           to reduce systematic errorse±p µ±p

• CREMA collaboration currently analyzing Lamb shift data in light muonic  
   atoms: Deuterium, Helions 

µ-

µ-

Efforts also in Mainz

See talk by Randolf Pohl
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Charge Radius From the Lamb-Shift

Extracting the radius from measurements requires theoretical input

in a         expansion up to 5th orderZ↵

�E2S�2P = �QED +AOPEhr2c i+ �TPE
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• QED corrections 

   vacuum polarizations 
   lepton self energy 
   relativistic recoil

Extracting the radius from measurements requires theoretical input

Charge Radius From the Lamb-Shift

�E2S�2P = �QED +AOPEhr2c i+ �TPE
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Extracting the radius from measurements requires theoretical input

• Nuclear structure corrections 

                                     
 

 Elastic corrections: Finite size 

Charge Radius From the Lamb-Shift

�E2S�2P = �QED +AOPEhr2c i+ �TPE
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Extracting the radius from measurements requires theoretical input

• Nuclear structure corrections 

                                   
 

Zemach momentContains elastic terms, such as the  
and inelastic terms such as the nuclear polarization

Charge Radius From the Lamb-Shift

�E2S�2P = �QED +AOPEhr2c i+ �TPE

CM

µ-

r Stronger Coulomb - reduced energy

Dipole excitation
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Extracting the radius from measurements requires theoretical input

• Nuclear structure corrections 

                                   
 

Zemach momentContains elastic terms, such as the  
and inelastic terms such as the nuclear polarization

Charge Radius From the Lamb-Shift

�E2S�2P = �QED +AOPEhr2c i+ �TPE

Dipole excitation

Stronger Coulomb - reduced energy

µ-

r

CM The distorted charge distribution follows the 
orbiting 𝜇 like a “tide”
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The Muonic Atom System

Hµ =
p2

2mr
� Z↵

r

µ-

CM

r

Ra

 Perturbative potential: correction to the bulk Coulomb

Using perturbation theory at second order 
one obtains the expression for 
up to order 

Elaborate on it a bit more

HN stands for nuclear hamiltonian, not  
normal ordered hamiltonian

NB:
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The Muonic Atom System

Second order perturbation theory provides 
the correction to the energy of the lepton as 

Green’s function in the non-relativistic limit 

Focus e.g. on inelastic part:

Position of nucleon 
inside the nucleus

Used 
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The Muonic Atom System
Now we would like to rewrite this energy correction in a different way

’’

’

’ ’

’ ’ ’

Introducing the transition proton density distribution

so that the Coulomb matrix element becomes

Finally: 

Muonic matrix element
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Muonic matrix element

Where the lepton wave function  is 

with energy
Lepton wave function at the 
centre of the nucleus 

Only in S-state

Nuclear structure corrections will take place only 
where the nucleus and lepton wave functions overlap
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Muonic matrix element

Where the lepton wave function  is 

with energy
Lepton wave function at the 
centre of the nucleus 

Appears twice:

Total

Coulomb also appars twice:
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Lepton propagator

Neglect Coulomb 
in the intermediate state: 

Add it later as Coulomb correction

!N >> ✏µ0



Sonia Bacca 18

… putting all together

with

Muonic matrix element
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We first integrate in the angular part

The           part of the integrand can be written as

Muonic matrix element
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Looking at these terms more carefully, we realize that some of them go to zero when 
taking matrix element between N and N0, due to orthogonality between them

Only term that survives is

To subtract the constant divergent term in the limit R-R’  ͢    0

Muonic matrix element

See pg 14

000
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Muonic matrix element

This is the formula which we first integrate over q (Mathematica)

P ' m3
r(Z↵)5

12

r
2mr

!


|R�R0|2 �

p
2mr!

4
|R�R0|3 + mr!

10
|R�R0|4

�

To obtain a tractable formula

Then we expand the exponent in multipoles for  small
p
2mr!|R�R0|
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Contributions to

Non relativistic terms - summarizing

• Take non-relativistic kinetic energy in muon propagator 
•  Neglect Coulomb force in the intermediate state  
•  Expand the muon matrix elements in

P ' m3
r(Z↵)5

12

r
2mr

!


|R�R0|2 �

p
2mr!

4
|R�R0|3 + mr!

10
|R�R0|4

�

p
2mr!|R�R0|

★                “virtual” distance traveled by the proton between the two-photon exchange  

★  Uncertainty principle 

★                                                            e.g. for µ-4He

|R�R0|

|R�R0| ⇠ 1p
2mN!

p
2mr!|R�R0| ⇠

r
mr

mN
= 0.17

�(0) �(1) �(2)

�TPE

NB:
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Non relativistic terms

★  
 
 dominant term, related to the energy-weighted integral of the 
 dipole response function 

�(0) / |R�R0|2

�(0)D1 = �2⇡m3
r

9
(Z↵)5

Z 1

!th

d!

r
2mr

!
SD1(!)

★  
 
leads to energy-weighted integrals of three different response functions

�(2) / |R�R0|4

SR2(!), SQ(!), SD1D3(!)

★  
 
contains a part that cancels the Zemach moment elastic contribution

�(1) / |R�R0|3

cf. Pachucki (2011) 
     Friar (2013)

Contributions to �TPE

NB:
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Relativistic terms

•Take the relativistic kinetic energy in muon propagator 
• Separate in longitudinal and transverse term 
• Related to the dipole response function

�(0)L(T ) =
2m3

r

9
(Z↵)5

Z 1

!th

d!KL(T )

✓
!

mr

◆
SD1(!)

Coulomb term

• Consider the Coulomb force in the intermediate states 

• Naively it is a                          corrections, but actually logarithmically enhanced 

• Related to the dipole response function

�(0)C ⇠ (Z↵)6

�(0)C ⇠ (Z↵)5 log(Z↵)

Friar (1977), Pachucki (2011)

�TPEContributions to
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Finite Nucleon Size Corrections

• In point nucleon limit �V = �↵
ZX

i

1

|r �Ri|

• When you do the Fourier transform, you get             ,   
  
    Low-q approximation of the nucleon form factors

GE
p (q) ' 1�

hr2pi
6

q2

GE
n (q) ' �hr2ni

6
q2

np(q
2) =

np(q
2) nn(q

2)

nn(q
2) =

• Consider finite nucleon size by including charge distributions 

�V = �↵
ZX

i

Z
dR0 np(R

0 �Ri)

|r �R0|
� ↵

NX

j

Z
dR0 nn(R

0 �Rj)

|r �R0|

CM

µ-

r
Ri

Contributions to �TPE
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�E2S�2P = �QED +AOPEhr2c i+ �TPE

Charge Radius From the Lamb-Shift

The accuracy of the extracted radius depends on the accuracy of �TPE

• Extract it from data 
• Theoretically calculate it

 To estimate the nuclear TPE  information on the excitations of the nucleus are needed 
             nuclear response function

Roughly:         95%                 4%              1%

The Lamb-shift is measured with an accuracy of 1-10  µeV 
QED corrections are very well known  
Even if TPE is the smallest term, it needs to be know quite accurately to be able to exploit the 
experimental precision
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Extracting TPE from data 

 Typically 20% of error on �TPE

4He
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Extracting TPE from data 

 Using ab initio theory we can be much more precise on response functions

4He
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• Simple potential models 

µ-12C (Square-well) Rosenfelder ’83 

µ-D  (Yamaguchi) Lu & Rosenfelder ’93 

• State-of-the-art potentials

µ-D  (AV14) Leidemann & Rosenfelder ’95 
        (AV18) Pachucki 2011 
 
    Accuracy < 2% or less

• From experimental photo-absorption cross section 

µ-4He  Bernabeu & Karlskog ’74; Rinker’76; Friar ‘77 
µ-D   Carlson, Gorchtein, Vanderhagen 2014  7% Uncertainty  

20% Uncertainty  

• Zero-range expansion (pion-less EFT)
µ-D   Friar 2013   Accuracy roughly estimated ~ 2%

Calculate TPE: previous work 
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Ab-initio Theory Tools

• Use few-body techniques: HH  
  

• Realistic potentials from phenomenology (traditional) or from chiral 
    effective field theory  
 

• LIT to deal with the continuum problem
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Curtesy of C.Ji

What can nuclear theory tell you? 
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�E2S�2P = �QED +AOPEhr2c i+ �TPE

CREMA collaboration experimental program at PSI (Switzerland) ⇒ see talk by R. Pohl  

 𝜇D (Science 2016) 
 𝜇4He+ (analyzing data)              
  𝜇3He+ (analyzing data) 

 𝜇3H (impossible/possible?) 
 𝜇6Li2+, 𝜇7Li2+ (future)

-9.58(38) meV     ⇒   PRL 111, 143402 (2013) 
-1.727(20) meV   ⇒   PLB 736, 334 (2014) 

-15.46(39) meV     ⇒   PLB 755, 380 (2016) 
-0.767(25) meV   ⇒   PLB 755, 380 (2016) 

Provide the so far most accurate 

• No matter what the nature of the puzzles is, in order to extract radii from 
 muonic atom measurements, nuclear structure calculations will always be needed 

�TPE

1%

3%

6%

Uncertainty
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TPE Corrections in µ4He+

★  CD=1 and CE=-0.029

• Systematic convergence from  
           to �(0) �(2)

•  The difference between the two  
     potentials  is 5.5%

• Uncertainty from nuclear physics

±5.5%p
2

! ±4%

Ji et al., PRL 111, 143402 (2013)

TPE
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 The work is not yet finished ...
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Numerical accuracy

16 17 18 19 20 21 22
K

max

-2.55

-2.5

-2.45

-2.4

δ
p

o
l AV18 + UIX

2N(N
3
LO) + 3N(N

2
LO)

HH expansion

0.4%

0.2%

TPE corrections in µ4He+
TP

E

Ji et al., PRL 111, 143402 (2013)
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Atomic Physics Uncertainty

Combined they give an additional 3-4 %

 effects (beyond second order perturbation theory)(Z↵)6

 Relativistic and Coulomb effects to multipoles other than dipole

Higher order nuclear size effects

TPE corrections in µ4He+

Ji et al., PRL 111, 143402 (2013)
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Error Budget

Nuclear Physics 4%

Numerical Accuracy 0.4%

Atomic Physics 4%

Total 6%

TPE corrections in µ4He+

Ji et al., PRL 111, 143402 (2013)

• Dramatic improvement from pervious work based on experimental data 

 Bernabeu & Karlskog ’74; Rinker’76; Friar ‘77  20% Uncertainty  
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TPE Corrections in  A=3

Drop Times 
(Seconds)

OBJECT A OBJECT B

-6.48 -6.63

0.23 0.24

-0.10 -0.11

1.00 1.02

0.08 0.05

-8.54 -8.71

8.10 8.33

0.63 0.65

1.02 1.04

-0.84 -0.86

-1.29 -1.31

2.26 2.29

-0.18 -0.19

-4.11 -4.20

-10.36 -10.62

-14.47 -14.82

-15.0 -12.0 -9.0 -6.0 -3.0 0 3.0 6.0 9.0

meV

Table 6

OBJECT C OBJECT D

-0.77 -0.78

0.03 0.03

-0.01 -0.01

0.07 0.07

0.00 0.01

0.00 0.00

0.18 0.18

0.02 0.02

0.03 0.04

-0.08 0.08

0.03 0.03

0.05 0.05

-0.03 -0.03

-0.47 -0.48

-0.22 -0.23

-0.69 -0.71

�(0)T

�(0)C

�(0)M

�(1)R3

�(1)Z3

�(2)R2

�(2)Q

�(2)D1D3

�(1)R1

�(1)Z1

�(2)NS

�A
pol

�AZem
�ATPE

�(0)D1

�(0)L

AV18/UIX
�EFT

3He 3H

-0.8 -0.7 -0.5 -0.4 -0.3 -0.1 0 0.1 0.3
meV

Nevo Dinur et al., PLB 755, 380 (2016)
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Possible  Refinements

To further understand the uncertainty in nuclear physics

• Use chiral EFT at different orders to track the convergence   

• At a fixed order vary the cutoff to assess the theoretical error 

• Use regression analysis to pin down statistical errors

We will first apply this analysis to 𝜇D see talk by O.J.Hernandez


