
Lecture series for SFB 1245 
TU Darmstadt

Electromagnetic properties of nuclei: 
from few- to many-body systems

 Lecture 2

Electromagnetic Processes
 

 Sonia Bacca 
 

   November 21st, 2017                                                                                



Sonia Bacca 2

Electromagnetic probes
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The real photon case can be seen as a special case of the virtual photon
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Electron scattering
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Electron scattering
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….

Relatively simple kind of experiment

Inclusive electron scattering
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Inclusive electron scattering

σ  ∼  | < F f |  Jµ  Aµ   | I i >|2  δ (ω – EF+ EI)

experiment External field: electron 
Known!

Hadronic properties. Unknown. 
HERE IS THE INTERESTING  PHYSICS!!!

Inclusive cross section A(e,e’)X 

Work out: the lepton and nuclear information can be separated in the cross section
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with                                   and    scattering angle 
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Photoabsorption
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Response Functions
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Change of notation for hadronic states
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Electron scattering
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Electron scattering

Longitudinal part  ⇒ information on the charge density 

Transverse part  ⇒  information on the current density
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Rosenbluth separation
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Elastic scattering

! = 0

f = 0

No energy transfer, only momentum

Nucleus stays in ground-state

Form factors

Charge distribution: 
sensitive to protons

Current distribution: 
sensitive also to neutrons 
because of magnetic 
moment and spin 
currents

T
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Nuclear charge radius

How do you measure the nuclear charge radius? 

From elastic electron scattering off a nucleus  

⇒ Rosenbluth separation to obtain the longitudinal or charge form factor
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Nuclear charge radius

Fourier transform of the charge distribution 

To be intended as the expectation 
value of the the charge operator in coordinate 
space, not an operator here
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Nuclear charge radius

Fourier transform of the charge distribution 

Assuming spherical symmetry, only 
interesting part is the radial dependence

sphere

nucleus
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Nuclear charge radius

Now consider low-q limit 

x
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Nuclear charge radius

Now consider low-q limit 

If you measure the form factor at low q and then take the derivative with respect to q2 

you obtain the charge radius.   

Typically F is then normalized to 1, i.e. divided by Z

x
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Nuclear charge radius

How small does q have to be?

Formula is valid only if q is small

For low q, we do not expect the 
electron to penetrate the nucleus. 
Therefore, all spherically 
symmetric charge distribution are 
going to appear similar from the 
outside. As a result, the scattering 
will be similar as well.  

Fourier transform of various spherical shapes
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Nuclear charge radius

Better to do an ansatz of the radial shape (parameters), do the Fourier 
transform and then fit the parameters to the experimental form factor 
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Nuclear charge radius

R

A1/3

R � r0A
1/3

r0 = 1� 1.25fm

stable nuclei

From electron scattering you obtain the charge radius and the charge distributions

Behaviour that is disobeyed by 
exotic nuclei, such as halo nuclei 
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Elastic scattering

Physics studies:

how does the charge distribution change because of the presence of the NEUTRONS? 

how does the current distribution change as a function of the number of NEUTRONS? 

how does the current distribution change because of two-body currents? 

which two-body currents are relevant in one case and in the other? 

              Compare between N=Z and Neutron-rich isotopes 
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Inelastic scattering

Energy and momentum transferred

Nucleus does not stay in ground-statef 6= 0

! 6= 0

             

Much richer!  

Information is  about both ground state and excited states 

Not only “static” properties but also  
“dynamical” properties e.g. collective motions

More complicated, though.  
Need to be able to calculate final states also in the continuum
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Excitation Energy

ground 
state

“

“

bound  
excited state

continuum

2-body break-up 3-body break-up ... A-body break-up

Exact knowledge limited in energy and mass number

R(!) / |h f |O| 0i|2

Inelastic scattering

We will discuss this important issue later


