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JG|u

Since the intrinsic states of the nucleus can be classified according to the total
angular momentum, it is very useful to perform a multipole decomposition of the
charge and of the current operators, where each multipole transfers a definite
angular momentum J.

The advantage of this approach is that for example if you are representing a wave
function on a spherical basis, then you can only construct those states that have
the quantum number J as connected by your multipole operator.

Reduces complexity of each nuclear matrix element
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Charge operator

Spatial part, single coordinate omitting i-index
6z'q-r

— scalar function, that depends on (T,9,¢)

Any function that depends on angles can be expanded in
spherical harmonics, as they are a complete set of basis states

£6,0) =) asY;]6,0)
Jp
with

wsu= [0 [ d6 1(6.)Y ©6.0)
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Charge operator

Spatial part, single coordinate omitting i-index

1q-r
€q — scalar function, that depends on (7”,9,¢)

Any function that depends on angles can be expanded in
spherical harmonics, as they are a complete set of basis states

F(r,0,8) =3 asu(r)Y. (6, 0)

. J See Varshalovich book
with

o) = [d6 [ 46 16,00V ©6.0)
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Charge operator

Spatial part, single coordinate omitting i-index

1q-r
6q — scalar function, that depends on (7”,9,¢)

Any function that depends on angles can be expanded in
spherical harmonics, as they are a complete set of basis states

Plane wave expansion in spherical harmonics

eiar Lax N i, (gr)lV T (@Y (7) oot
et 1
Radial part Angular part  Operator that carries
angular momentum J
: T/ A
mp> ]J(qr) YH (7”)
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Charge operator

Spatial part, single coordinate omitting i-index

1q-r
eq — scalar function, that depends on (7”,(9,¢)

Any function that depends on angles can be expanded in
spherical harmonics, as they are a complete set of basis states

Plane wave expansion in spherical harmonics
e =4m Y i’ (qr)Y]T (@)Y, (7)
T ?

Radial part Angular part  Operator that carries
angular momentum J

: J /A .
— > CJ,U X E JJ(qu') Y,u, (’I“z) Coulomb multipole
) For A-nucleons
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Practical Example

Recursive sum of Coulomb multipoles
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S.B. et al., PRC 76, 014003 (2007)

At low g the Coulomb dipole of oder 1
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Since the current operator is a vector, the expansion is done in terms of the vector
spherical harmonics

Y(Q) =) (11Jimép) Y (G)ee

mg
Unit vector in the spherical basis A
1 , 0 4
e1 —ﬁ(ew + iey) a ]
€y — €. 1 0 )

The vector spherical harmonics form a complete set on the unit sphere

/d YJ’l’l(A) YJll(A) — 5JJ’5ll’5u,u’
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Multipole expansion of the current operator

J(q)=4r» Jh(a)Y'1(d)
[J

with J'7,(q) = 417T/dQ,J( ) Y547

According to angular momentum rules /=J-1,J,J+1 = separate according to parity

J(a) =Y (I%.(a) + I72(a))

Jp

e * A * A Electric multipoles
JJl,u(q) — 47T(J5J—1(Q)Y5J—ll(q) + ‘]:l;J—l—l(q)YljJ—l—ll(Q)) parity (_l)J

Jm;g (q) = 47TJfTLJ(Q)Yle]1 () Magnetic multipoles parity (—1)7+?
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The expression for the electric multipole can be rewritten as

Thu(a) =4y @ [ i’ @ -3 @)Y@)+(@x Y55@) [di' @ x Y5563 @)

t t

Longitudinal part of the current Transverse part of the current

Introducing longitudinal and transverse electric multipoles and magnetic multipoles
(transverse only due to q-Y"%,,(¢) =0)

L9, = o [ i’ @3 @) Y@

1

T3(0) = 4 [ 4’ (@ x Y4, -3 @)

ma 1 A A
TJug(Q) 47T/dq'-]( )°YI}J1(Q’)

NB: for every piece of em current (convection, spin, MEC) one can calculate these multipoles
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Choosing the z-axis as the direction of propagation of the photon momentum

q = ge, = geg then

A

[
VA Cn

Y'Y, = (11J|0up)

Substitute all of these in the expression of the current in terms of longitudinal, electric
and magnetic multipoles

J(q) = L\/47TJ LY (@)eo + p (JLT|Opp) TS (@)el] + > VanJ (J1J|0pp) TT* (q)e,
J

As in the nuclear matrix elements what we needis ey - J (q) then we rewrite as
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JG|U Practical Example

ex I (@) = (- V2r(1+630) 3 J [Lh (@0
J

Recursive sum of transverse multipoles

S.B. et al., PRC 76, 014003 (2007)
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Let us look again at the form of the transverse electric multipoles

(

T3(0) = 5 [ 4’ @' x Y5,@) -3 (@)

. I+, o J
i : Y/, = qY; —Y/ ]
using the property_ q X Jl(?) J (Q) ﬁ JJ+11(q)

| Slegert operator | - @

Can be related to a Coulomb multipole Correction to the Siegert operator
via the use of the continuity equation

- J = W
Siegerttheorem 1 (q) p(q)

Negligible at low q
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JG|U Practical Example J=1

Siegert operator - via continuity equation, relate to Clu
Convection current q - Je(d)
MEC e 4 - Iuec(d)
MEC+convection ----- q - (Je(d) + Inec(q'))
S.B. et al., PRC 76, 014003 (2007)
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Photoabsorption

Recap:

Transverse part: w=q
Photon polarization
transverse to momentum axis
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JG|U Photoabsorption

Recap:

Rr(w=a) = (Y| Jr(@)[o)[* = Y [(¥s[Jx(q)|¥o)|’
A==1

Now we can use the multipole decomposition of the current
that we just derived
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General multipole decomposition of the current

ex-J(q) = (5)*2r(1+ 6x0) > J [LF\(@)6r0 + (T55(q) + AT (q)) 6jap1 |
J

Real photons: no longitudinal polarization possible  , _ 4
only transverse polarization

ex-J(q) — (=)*2r ) J[(T5h(a) + AT7(q)) 6]
J

t t

See when explicitly calculating  j ;(qr) jr+1(gqr)
multipole of a current operator

Low momentum transfer:
Only lowest multipoles prevail J=1 and electric multipole dominates over magnetic

e Siegert N low g
ING) — T —— Cyaq = Y (P)j(qr) = Y'(#) ar — wr
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Thus, photoabsorption at low energy can be calculated simply from a dipole
response function

Oo\WwW) =
2J() —|— 1

wR(w)

Z\ V| D, |Wo)|* 6(Ey — Eo — w)

A <
D% (14;@-)

1

We will see several few- and many-body applications after we have introduced
such techniques to calculate wave functions and reactions
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Comparing calculations in which one uses the dipole operator (Siegert theorem)

‘<\ij‘Dz‘\IIO>‘2

with calculations where one explicitly insert the transverse current (1-body +
2-body, ect.)

You see that using the one-body current only it is not enough, whereas
using the Siegert theorem it is correct.
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From S. Bacca and S. Pastore, J. Phys. G: Nucl. Part. Phys. 41 123002 (2014).

Practical Example

Work by Pisa and Trento groups

| ' I

— Siegert / AV18
.N3LO

-- i/ AV1S8

i/ NN(N2LO) -
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