# Electromagnetic properties of nuclei: from few- to many-body systems 

## Lecture 4

## Integral Transforms

Sonia Bacca

November 21st, 2017

Lecture series for SFB 1245
TU Darmstadt

## Inelastic processes

Because our most ambitious goal is to calculate em inelastic processes, we need to better understand what it entails and how one can approach the problem from a theoretical point of view

## Reactions to continuum

$$
\begin{aligned}
& \text { Non-perturbative (hadronic) } \\
& \qquad \mathrm{a}+\mathrm{b} \rightarrow \mathrm{c}+\mathrm{d}+\ldots
\end{aligned}
$$

perturbative (electro-weak)

$$
\gamma\left(^{*}\right)+\mathrm{b} \rightarrow \mathrm{c}+\mathrm{d}+\ldots
$$

Where a,b,c,d... are single nucleons or bound nuclear systems In total: A nucleons involved A-BODY PROBLEM!

Electro-weak processes (photons, electrons, neutrinos)

- First order perturbation theory (Fermi-Golden Rule)
- Linear Response theory

$$
\gamma\left(^{*}\right)+\mathrm{b} \rightarrow \mathrm{c}+\mathrm{d}+\ldots
$$

## Perturbative Reactions

Electro-weak processes (photons, electrons, neutrinos)

- First order perturbation theory (Fermi-Golden Rule)
- Linear Response theory

$$
\left.R(\omega) \sim\left|\left\langle\psi_{f}\right| \Theta\right| \psi_{0}\right\rangle\left.\right|^{2} \quad \delta\left(\omega-E_{f}-E_{0}\right)
$$

$$
H\left|\psi_{f}\right\rangle=E_{f}\left|\psi_{f}\right\rangle
$$

$$
\gamma\left(^{*}\right)+\mathrm{b} \rightarrow \mathrm{c}+\mathrm{d}+\ldots
$$

## Perturbative Reactions

Electro-weak processes (photons, electrons, neutrinos)

- First order perturbation theory (Fermi-Golden Rule)
- Linear Response theory

$$
\left.\left.R(\omega) \sim\left|\left\langle\psi_{f}\right| \Theta\right| \psi_{0}\right\rangle\left.\right|^{2} \delta \omega-E_{f}-E_{0}\right)
$$

Energy transferred by the perturbative probe

$$
\gamma\left(^{*}\right)+b \rightarrow c+d+\ldots
$$

Electro-weak processes (photons, electrons, neutrinos)

- First order perturbation theory (Fermi-Golden Rule)
- Linear Response theory


Electro-weak processes (photons, electrons, neutrinos)

- First order perturbation theory (Fermi-Golden Rule)
- Linear Response theory


Electro-weak processes (photons, electrons, neutrinos)

- First order perturbation theory (Fermi-Golden Rule)
- Linear Response theory



## Perturbative Reactions

Electro-weak processes (photons, electrons, neutrinos)

- First order perturbation theory (Fermi-Golden Rule)
- Linear Response theory

$$
\left.R(\omega)=\sum_{f}\left|\left\langle\psi_{f}\right| \Theta\right| \psi_{0}\right\rangle\left.\right|^{2} \quad \delta\left(\omega-E_{f}-E_{0}\right)
$$

Inclusive: summing on all possible final states

$$
\gamma\left(^{*}\right)+\mathrm{b} \rightarrow \mathrm{c}+\mathrm{d} \text { or } \mathrm{e}+\mathrm{f} \text { or } \ldots
$$

## Perturbative Inclusive Process

Inclusive response function

$$
\left.R(\omega)=\sum_{f}\left|\left\langle\psi_{f}\right| \Theta\right| \psi_{0}\right\rangle\left.\right|^{2} \quad \delta\left(\omega-E_{f}-E_{0}\right)
$$

$R(\omega)$ represents the crucial quantity Requires the solution of both the bound and continuum A-body problem

## We see next that in case of non perturbative reactions the crucial quantity for calculating the cross section has a very similar form

## Example



Non-perturbative (hadronic)

$$
a+b \rightarrow c+d+\ldots
$$

$$
\sigma \sim\left|T_{\beta \alpha}(E)\right|^{2}
$$

## Non-perturbative (hadronic)

$$
a+b \rightarrow c+d+\ldots
$$

$$
\sigma \sim\left|T_{\beta \alpha}(E)\right|^{2}
$$

General form of the T-matrix
(cfr eq. (108) in ch. 5 of Goldberger-Watson Collision Theory)
$\mathrm{T}_{\beta \alpha}(\mathrm{E})=<\chi_{\beta} \mathrm{V}_{\alpha} \chi_{\alpha}>+<\chi_{\beta} \mathrm{V}_{\beta} \quad(\mathrm{E}-\mathrm{H}+\mathrm{i} \eta)^{-1} \mathrm{~V}_{\alpha} \chi_{\alpha}>$
A-body continuum energy

## Non-perturbative (hadronic)

$$
\begin{gathered}
a+b \rightarrow c+d+\ldots \\
\sigma \sim\left|T_{\beta \alpha}(E)\right|^{2}
\end{gathered}
$$

## General form of the T-matrix

(cfr eq. (108) in ch. 5 of Goldberger-Watson Collision Theory)
$\mathrm{T}_{\beta \alpha}(\mathrm{E})=<\chi_{\beta} \mathrm{V}_{\alpha} \chi_{\alpha}>+<\chi_{\beta} \mathrm{V}_{\beta} \quad(\mathrm{E}-\mathrm{H}+\mathrm{i} \eta)^{-1} \mathrm{~V}_{\alpha} \quad \chi_{\alpha}>$
$\chi_{\beta}$ and $\chi_{\alpha}$ are the "channel functions" (with proper antisymmetrization),
namely products of the bound states of $a$ and $b$, times a relative Plane Wave

$$
\left|\chi_{\alpha}>=\mathcal{A}\right| a>|b>| P W>
$$

## Channels

$$
A=4
$$



As A increases, there will be more channels...

## Example

H is the Hamiltonian of the 8 -body system


$$
\mathrm{T}_{\beta \alpha}(\mathrm{E})=<\chi_{\beta} \mathrm{V}_{\alpha} \chi_{\alpha}>+<\chi_{\beta} \mathrm{V}_{\beta} \quad(\mathrm{E}-\mathrm{H}+\mathrm{i} \eta)^{-1} \mathrm{~V}_{\alpha} \chi_{\alpha}>
$$



If we denote $\quad V_{\alpha, \beta} \chi_{\alpha, \beta}=\Phi_{\alpha, \beta}$
$V_{\alpha, \beta}$ is the sum of the potentials between particles belonging to different fragments

Rearranging difficult part

$$
\left\langle\phi_{\beta}\right|(E-H+i \eta)^{-1}\left|\phi_{\alpha}\right\rangle
$$

Step 1) Insert completeness of eigenstates of $\mathrm{H}: \sum_{f}|\mathrm{f}><\mathrm{f}|=1$

$$
\begin{aligned}
& =\sum_{f}<\phi_{\beta}|f><f|(E-H+i \eta)^{-1} \phi_{\alpha}>= \\
& =\sum_{f}<\Phi_{\beta}|f><f|\left(E-E_{f}+i \eta\right)^{-1} \phi_{\alpha}>=
\end{aligned}
$$

Step 2) Insert delta function

$$
\begin{aligned}
& =\int d \omega \sum_{f} \delta\left(\omega-E_{f}\right)(E-\omega+i \eta)^{-1}<\phi \beta|f\rangle\left\langle f \mid \phi_{\alpha}\right\rangle= \\
& =\int d \omega(E-\omega+i \eta)^{-1} F_{\beta \alpha}(\omega)
\end{aligned}
$$

the problem reduces to calculate the function $F_{\alpha \beta}(\omega)$

$$
F_{\beta \alpha}(\omega)=\sum_{f} \delta\left(\omega-E_{f}\right)<\Phi \beta|f\rangle<f \mid \Phi_{\alpha}>
$$

## Non-perturbative (hadronic)

$$
\begin{gathered}
F_{\beta, \alpha}(\omega)=\sum_{f} \delta\left(\omega-E_{f}\right)\left\langle\phi_{\beta} \mid \psi_{f}\right\rangle\left\langle\psi_{f} \mid \phi_{\alpha}\right\rangle \\
R(\omega)=\sum_{f} \delta\left(\omega-E_{f}-E_{0}\right)\left\langle\psi_{0}\right| \Theta^{\dagger}\left|\psi_{f}\right\rangle\left\langle\psi_{f}\right| \Theta\left|\psi_{0}\right\rangle \\
\left|\psi_{0}\right\rangle,\left|\phi_{\alpha}\right\rangle,\left|\phi_{\beta}\right\rangle \quad \text { A-body bound-states } \\
\Phi_{\alpha}=\mathrm{V}_{\alpha} \chi_{\alpha}=\mathrm{V}_{\alpha} \mathcal{A} \mathrm{la}>\mathrm{I} \mathrm{~b}>\mid \mathrm{PW}>
\end{gathered}
$$

Non-perturbative (hadronic)

$$
\begin{gathered}
F_{\beta, \alpha}(\omega)=\sum_{f} \delta\left(\omega-E_{f}\right)\left\langle\phi_{\beta} \mid \psi_{f}\right\rangle\left\langle\psi_{f} \mid \phi_{\alpha}\right\rangle \\
\text { perturbative (electro-weak) } \\
R(\omega)=\sum_{f} \delta\left(\omega-E_{f}-E_{0}\right)\left\langle\psi_{0}\right| \Theta^{\dagger}\left|\psi_{f}\right\rangle\left\langle\psi_{f}\right| \Theta\left|\psi_{0}\right\rangle \\
\left|\psi_{f}\right\rangle \begin{array}{c}
\text { A-body bound-states } \\
\text { and continuum states }
\end{array}
\end{gathered}
$$

Most representative approaches

Few-body: $\mathrm{A} \leq 12$
Many-body: $12 \leqslant A \leq 40$ or more

- Diagonalization methods (on different basis)
- Green Function Monte Carlo
- Faddeev Yakubowski (FY)
- Coupled Cluster (CC)
- Other Monte Carlo methods
-IMSRG
- Self consistent Green's function


In the sector of the typical few-body nuclei (A up to 4) we have reached an incredible level of accuracy!

Same ingredients

$m_{p}, m_{n}, T, V$

Different numerical methods


Same output


PRC 64 (2001) $044001 \longrightarrow$ Important milestone $\sim 200$ citations

| Method | $\langle T\rangle$ | $\langle V\rangle$ | $E_{0}$ | $\sqrt{\left\langle r^{2}\right\rangle}$ |
| :--- | :--- | :--- | :--- | :--- |
| FY | $102.39(5)$ | $-128.33(10)$ | $-25.94(5)$ | $1.485(3)$ |
| CRCGV | 102.30 | -128.20 | -25.90 | 1.482 |
| SVM | 102.35 | -128.27 | -25.92 | 1.486 |
| HH | 102.44 | -128.34 | $-25.90(1)$ | 1.483 |
| GFMC | $102.3(1.0)$ | $-128.25(1.0)$ | $-25.93(2)$ | $1.490(5)$ |
| NCSM | 103.35 | -129.45 | $-25.80(20)$ | 1.485 |
| EIHH | $100.8(9)$ | $-126.7(9)$ | $-25.944(10)$ | 1.486 |

$\mathrm{E}_{0}$ of ${ }^{4} \mathrm{He}$ (exp. -28.296 MeV); Three-nucleon forces were not used in the benchmark

## $\mathrm{Jg} \mid \mathrm{U}$ <br> Some examples

No core shell model


FIG. 1 (color online). Dependence of ${ }^{6} \mathrm{He}$ excitation energies on the size of the HO basis $N_{\max } h \Omega$.
S. Baroni, P.Navratil and S. Quaglioni PRL 110, 022505 (2013)

## Some examples

## Quantum Monte Carlo Method



Courtesy R.B.Wiringa

Most representative approaches

Few-body: $\mathrm{A} \leq 12$
Many-body: $12 \leq A \leq 40$ or more

- Diagonalization methods (on different basis)
- Green Function Monte Carlo
- Coupled Cluster (CC)
- Other Monte Carlo methods
-IMSRG
- Self consistent Green's function
- Faddeev Yakubowski (FY) and variations
- HH Kohn-Variational P. (2 fragments)
- NCSMC (only at very low energy)


## Why are there so few methods for reactions? Why are they limited to low-energy?

In configuration space (Schrödinger equation)

Very difficult to match the asymptotic conditions in the solution of the coupled differential equations

In momentum space<br>(Lippmann-Schwinger equation)

Very difficult to cope with complicated poles in solving the coupled integral equations

## JG $\mid \mathrm{U}$

## Scattering many-body problem

Even before reaching the asymptotic condition all channels are coupled

## Channels:



$$
1+1+1+1
$$



- Faddeev: solved for scattering states for $\mathrm{A}=3(1+2,1+1+1)$
- Faddeev-Yakubovsky: solved for scattering states for A=4, however, only up to 3 -body break up (1+3, 2+2, 1+1+2, not yet $1+1+1+1$ )
- Also some first results on A=5 (Lazauskas)

Bochum-Cracow school: (Gloeckle, Witala, Golak, Elster, Nogga...) Bonn-Lisabon-school (Sandhas, Fonseca, Sauer, Deltuva....) Config. Space: (Carbonell, Lazauskas...)

- Alternative approach to 2+1, 3+1 scattering based on Kohn variational principle and correct asymptotic conditions

Pisa School: Kievsky, Viviani, Marcucci...

- Similar idea for (A-1) + 1 in NCSMC

TRIUMF/LLNL/Da: Navratil, Quaglioni, Roth...

## Ab-initio methods

## Benchmark

Phys. Rev. C 95, 034003 (2017)


Most representative approaches

Few-body: $A \leq 12$
Many-body: $12 \leqslant A \leq 40$ or more

- Diagonalization methods (on different basis)
- Green Function Monte Carlo
- Coupled Cluster (CC)
- Other Monte Carlo methods
-IMSRG
- Self consistent Green's function
- Faddeev Yakubowski (FY) and variations
- HH Kohn-Variational P. (2 fragments)
- NCSMC (only at very low. Integral Tran


## Integral Transforms

> $\Phi(\sigma)=\int d \omega K(\omega, \sigma) R(\omega)$

> One IS NOT able to calculate $R(\omega)$
> (the quantity of direct physical meaning) but IS able to calculate $\boldsymbol{\Phi}(\sigma)$

In order to obtain $R(\omega)$ one needs to invert the transform Problem:
Sometimes the "inversion" of may be $\Phi(\sigma)$ problematic

## Integral Transforms

## Suppose we want a response function $\mathrm{R}(\omega)$



## Integral Transforms

$$
\begin{aligned}
& \left.R(\omega)=\sum_{f}\left|\left\langle\psi_{f}\right| \Theta\right| \psi_{0}\right\rangle\left.\right|^{2} \delta\left(\omega-E_{f}-E_{0}\right) \\
& \Phi(\sigma)=\int R(\omega) K(\omega, \sigma) d \omega
\end{aligned}
$$

1) integrate in d $\omega$ using delta function

$$
\begin{aligned}
& =\sum_{f} K\left(E_{f}-E_{0}, \sigma\right)\left\langle\psi_{0}\right| \Theta^{\dagger}\left|\psi_{f}\right\rangle\left\langle\psi_{f}\right| \Theta\left|\psi_{0}\right\rangle \\
& =\sum_{f}\left\langle\psi_{0}\right| \Theta^{\dagger} K\left(H-E_{0}, \sigma\right)\left|\psi_{f}\right\rangle\left\langle\psi_{f}\right| \Theta\left|\psi_{0}\right\rangle
\end{aligned}
$$

$$
\text { 2) Use } \sum_{f}\left|\psi_{f}\right\rangle\left\langle\psi_{f}\right|=1
$$

$$
\phi(\sigma)=\left\langle\psi_{0}\right| \Theta^{\dagger} K\left(H-E_{0}, \sigma\right) \Theta\left|\psi_{0}\right\rangle
$$

## Example: sum rules

$$
\Phi_{\mathrm{n}}=\int \mathrm{d} \omega \omega^{\mathrm{n}} R(\omega)
$$

Sum rules are a kind of "Moment transform"

$$
K(\omega, \sigma)=\omega^{n} \text { with } n \text { integer }
$$

To obtain $R(\omega)$ the inversion of the transform is equivalent to the reconstruction of $R(\omega)$ by its moments (theory of moments)

However, $\Phi(\sigma)$ may be infinite for some n

## Example: Laplace Transform

$$
\phi(\sigma)=\int e^{-\omega \sigma} R(\omega) d \omega=\left\langle\psi_{0}\right| \Theta^{\dagger} e^{-\left(H-E_{0}\right) \sigma} \Theta\left|\psi_{0}\right\rangle
$$

In condensed matter physics, QCD and nuclear physics

## Example: Laplace Transform

$$
\phi(\sigma)=\int e^{-\omega \sigma} R(\omega) d \omega=\left\langle\psi_{0}\right| \Theta^{\dagger} e^{-\left(H-E_{0}\right) \sigma} \Theta\left|\psi_{0}\right\rangle
$$

In condensed matter physics, QCD and nuclear physics

$$
\sigma=\tau=\text { imaginary time! }
$$

$\boldsymbol{\Phi}(\tau)$ is calculated with Monte Carlo Methods
and then inverted with Bayesian methods

## Integral Transform

$$
\Phi(\sigma)=\int R(\omega) K(\omega, \sigma) d \omega=\left\langle\psi_{0}\right| \Theta^{\dagger} K\left(H-E_{0}, \sigma\right) \Theta\left|\psi_{0}\right\rangle
$$

## Matrix element on the ground state

The calculation of ANY transform seems to require, in principle, only the knowledge of the ground state! However,
$K\left(H-E_{0}, \sigma\right)$ can be quite a complicate operator.

So, which kernel is suitable for the calculation?

$$
\phi(\sigma)=\int e^{-\omega \sigma} R(\omega) d \omega
$$

It is well known that the numerical inversion of the Laplace Transform can be problematic!

Illustration of the problem:


## Inversion

Illustration of the problem:

In fact:

$$
\Phi(\sigma)=\int d \omega K(\omega, \sigma) R(\omega)
$$

If there is a numerical noise
$[R(\omega)+A \sin (v \omega)]$

## Inversion

Illustration of the problem:

$$
\begin{aligned}
& \text { In fact: } \quad \Phi(\sigma)=\int d \omega K(\omega, \sigma) R(\omega) \\
& \text { If there is a numerical noise } \\
& \Phi(\sigma)+\Delta \Phi(v)=\int d \omega R(\omega, \sigma)[R(\omega)+A \text { sin }(v \omega)] \\
& \text { for very large } v
\end{aligned}
$$

## Best kernel

A "good" Kernel has to satisfy two requirements

1) one must be able to calculate the integral transform
2) one must be able to invert the transform minimizing uncertainties

## Which is the best kernel?

## The $\delta$-function?

$\Phi(\sigma)=\int \delta(\omega-\sigma) R(\omega)=R(\sigma)$

Back to square zero....


## Best kernel

... but what about a representation of the
$\delta$-function?

## Lorentzian kernel



$$
\mathrm{K}(\omega, \sigma, \Gamma)=\Gamma / \pi\left[(\omega-\sigma)^{2}+\Gamma^{2}\right]^{-1}
$$

It is a representation of the $\delta$-function

$$
L(\sigma, \Gamma)=\frac{\Gamma}{\pi} \int d \omega \frac{R(\omega)}{(\omega-\sigma)^{2}+\Gamma^{2}}
$$

Lorentz Integral Transform (LIT) Efros, etal., JPG.: Nucl.Par.P.Phys. 34 (2007) R459

## Lorentzian kernel

See inversion procedures in Mirko's talk

In the next lecture we will make further theoretical considerations on the LIT

