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Inelastic processes

Because our most ambitious goal is to calculate em inelastic 
processes, we need to better understand what it entails and 

how one can approach the problem from a theoretical point of view  

Reactions to continuum



Sonia Bacca

a + b → c + d +...

Reactions to continuum

Non-perturbative (hadronic)

𝜸(*) + b → c + d +...

perturbative (electro-weak)

Where a,b,c,d... are single nucleons or bound nuclear systems 
In total: A nucleons involved 

A-BODY PROBLEM!
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•  First order perturbation theory  
    (Fermi-Golden Rule) 

•  Linear Response theory  

𝜸(*) + b → c + d +...

Perturbative Reactions
Electro-weak processes (photons, electrons, neutrinos)
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Electro-weak processes (photons, electrons, neutrinos)

•  First order perturbation theory  
    (Fermi-Golden Rule) 

•  Linear Response theory  

Perturbative Reactions

𝜸(*) + b → c + d +...

H| f i = Ef | f i

R(!) ⇠ |h f |⇥| 0i|2 �(! � Ef � E0)
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Electro-weak processes (photons, electrons, neutrinos)

•  First order perturbation theory  
    (Fermi-Golden Rule) 

•  Linear Response theory  

Perturbative Reactions

𝜸(*) + b → c + d +...

R(!) ⇠ |h f |⇥| 0i|2 �(! � Ef � E0)

Energy transferred by 
the perturbative probe
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Electro-weak processes (photons, electrons, neutrinos)

•  First order perturbation theory  
    (Fermi-Golden Rule) 

•  Linear Response theory  

Perturbative Reactions

𝜸(*) + b → c + d +...

R(!) ⇠ |h f |⇥| 0i|2 �(! � Ef � E0)

Ground state of the target 
    A-body bound state!
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Electro-weak processes (photons, electrons, neutrinos)

•  First order perturbation theory  
    (Fermi-Golden Rule) 

•  Linear Response theory  

Perturbative Reactions

𝜸(*) + b → c + d +...

R(!) ⇠ |h f |⇥| 0i|2 �(! � Ef � E0)

     Fragmented target 
A-body continuum state!
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Electro-weak processes (photons, electrons, neutrinos)

•  First order perturbation theory  
    (Fermi-Golden Rule) 

•  Linear Response theory  

Perturbative Reactions

𝜸(*) + b → c + d +...

R(!) ⇠ |h f |⇥| 0i|2 �(! � Ef � E0)

Operator responsible of the interaction of the 
target with the perturbative probe 

NB: now we call Θ more in general,
Could be the charge, current, dipole operator
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Electro-weak processes (photons, electrons, neutrinos)

•  First order perturbation theory  
    (Fermi-Golden Rule) 

•  Linear Response theory  

Perturbative Reactions

𝜸(*) + b → c + d or  e+f or  …

R(!) ⇠ |h f |⇥| 0i|2 �(! � Ef � E0)
X

f

Inclusive: summing on all possible final states 
X

f

| f ih f | = 1

H| f i = Ef | f i

=
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Perturbative Inclusive Process

R(!) ⇠ |h f |⇥| 0i|2 �(! � Ef � E0)
X

f

Reactions to continuum

 represents the crucial quantity 
Requires the solution of both 
the bound and continuum A-body problem 

Inclusive response function

R(!)

=
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We see next that in case of non perturbative reactions 
the crucial quantity for calculating the cross section has a  

very similar form  
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Example
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a + b → c + d +...

Reactions to continuum

Non-perturbative (hadronic)

𝝈~|Tβα(E)|2
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a + b → c + d +...

Reactions to continuum

Non-perturbative (hadronic)

General form of the T-matrix  
 (cfr eq. (108) in ch. 5 of Goldberger-Watson Collision Theory)

A-body continuum energy 

𝝈~|Tβα(E)|2

Tβα(Ε) = <𝝌β V α  𝝌α  >     +  <  𝝌β  Vβ    (Ε − Η + i η) −1Vα   𝝌α  > 
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a + b → c + d +...

Reactions to continuum

Non-perturbative (hadronic)

General form of the T-matrix  
 (cfr eq. (108) in ch. 5 of Goldberger-Watson Collision Theory)

Tβα(Ε) = <𝝌β V α  𝝌α  >     +  <  𝝌β  Vβ    (Ε − Η + i η) −1Vα   𝝌α  > 

 𝝌β and  𝝌α are the “channel functions” (with proper antisymmetrization),  

namely products of the bound states of a and b, times a relative Plane Wave 

| 𝝌α  > =  A |a > | b > | PW >  

𝝈~|Tβα(E)|2
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As A increases, there will be more channels…

Channels

+1

A=4
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+1

Vα

Vβ

 Η is the Hamiltonian of the 8-body system

Example
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T-matrix

“easier” part Very difficult part

Vα,β 𝝌α,β= φα,β
If we denote 

 Vα,β    is the sum of the potentials between  
particles belonging to different fragments

  < φβ | (Ε − Η + i η) −1 | φα
 > 

Tβα(Ε) = <𝝌β V α  𝝌α  >     +  <  𝝌β  Vβ    (Ε − Η + i η) −1Vα   𝝌α  > 
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Rearranging difficult part

Step 1) Insert completeness of eigenstates  of H:  Σf |f><f| =1

 = Σf < φβ | f > < f |  (Ε − Εf + i η) −1  φα  > =

 = Σf< φβ | f > < f |  (Ε − Η + i η) −1  φα  > = 

the problem reduces to calculate the function Fαβ( ω)

Fβα(  ω) = Σf 𝛿(ω- Εf ) < φβ | f > < f | φα >

Step 2) Insert delta function  
 = ∫d ω  Σf 𝛿 ( ω - Εf ) ( Ε − ω  + i η ) −1< φβ  | f > < f | φα > =  

 = ∫ d ω   ( Ε − ω   + i η ) −1  Fβα(ω)  

  < φβ | (Ε − Η + i η) −1 | φα
 > 
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Reactions to continuum

Non-perturbative (hadronic)

perturbative (electro-weak)

F�,↵(!) =
X

f

�(! � Ef )h�� | f ih f |�↵i

R(!) =
X

f

�(! � Ef � E0)h 0|⇥†| f ih f |⇥| 0i

| 0i, |�↵i, |��i A-body bound-states

φα  =Vα 𝝌α=Vα A |a > | b > | PW >
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Reactions to continuum

Non-perturbative (hadronic)

perturbative (electro-weak)

F�,↵(!) =
X

f

�(! � Ef )h�� | f ih f |�↵i

R(!) =
X

f

�(! � Ef � E0)h 0|⇥†| f ih f |⇥| 0i

and continuum states
| f i A-body bound-states
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Few-body: A≲12 Many-body: 12≲A≲40 or more 

• Faddeev Yakubowski (FY) • Coupled Cluster (CC)  

• Other Monte Carlo methods  

• IMSRG 

• Self consistent Green’s function 

• Diagonalization methods 
  (on different basis)

Ab-initio methods

Most representative approaches

• Green Function Monte Carlo
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In the sector of the typical few-body nuclei (A up to 4) we have reached an incredible level of accuracy!

Same ingredients

mp,mn , T, V

Same outputDifferent numerical methods

PRC 64 (2001) 044001

E0

A=4

Important milestone ~ 200 citations

 E0 of 4He  (exp. -28.296 MeV); Three-nucleon forces were not used in the benchmark
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No core shell model

Some examples

S. Baroni, P.Navratil and S. Quaglioni PRL 110, 022505 (2013)
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Quantum Monte Carlo Method

Some examples

Courtesy R.B.Wiringa 
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Few-body: A≲12 Many-body: 12≲A≲40 or more 

• Faddeev Yakubowski (FY) • Coupled Cluster (CC)  

• Other Monte Carlo methods  

• IMSRG 

• Self consistent Green’s function 

• Diagonalization methods 
  (on different basis)

Ab-initio methods

Most representative approaches

• Green Function Monte Carlo

• Faddeev Yakubowski (FY) and variations 

• HH Kohn-Variational P. (2 fragments)

• NCSMC (only at very low energy)
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Why are there so few methods for reactions?
Why are they limited to low-energy? 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Scattering many-body problem

In configuration space 
(Schrödinger equation)

Very difficult to match  the asymptotic conditions in 
the solution of the coupled differential equations 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Scattering many-body problem

In momentum space 
(Lippmann-Schwinger equation)

Very difficult to cope with complicated poles in 
solving the coupled  integral equations 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Scattering many-body problem

Even before reaching the asymptotic condition all channels are coupled 
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Today

■ Faddeev: solved for scattering states for A=3 (1+2, 1+1+1) 
■ Faddeev-Yakubovsky: solved for scattering states for A=4, 

however, only up to 3-body break up (1+3, 2+2, 1+1+2,  not 
yet 1+1+1+1) 

■ Also some first results on A=5 (Lazauskas)
Bochum-Cracow school: (Gloeckle, Witala, Golak, Elster, Nogga...) 
Bonn-Lisabon-school (Sandhas, Fonseca, Sauer, Deltuva....) 
Config. Space: (Carbonell, Lazauskas...)

■ Alternative approach to 2+1, 3+1 scattering based on 
Kohn variational principle and correct asymptotic conditions

Pisa School: Kievsky, Viviani, Marcucci...

■ Similar idea for (A-1) + 1 in NCSMC

TRIUMF/LLNL/Da: Navratil, Quaglioni, Roth…
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Ab-initio methods
Benchmark

Phys. Rev. C 95, 034003 (2017) 

n-3He at 1 MeV

Θ[deg]
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Few-body: A≲12 Many-body: 12≲A≲40 or more 

• Faddeev Yakubowski (FY) • Coupled Cluster (CC)  

• Other Monte Carlo methods  

• IMSRG 

• Self consistent Green’s function 

• Diagonalization methods 
  (on different basis)

Ab-initio methods

Most representative approaches

• Green Function Monte Carlo

• Faddeev Yakubowski (FY) and variations 

• HH Kohn-Variational P. (2 fragments)

• NCSMC (only at very low energy)

Integral Transforms Methods



Sonia Bacca 35

Φ ( σ ) = ∫ dω  K(ω,σ) R(ω)

One IS NOT able to calculate  R(ω)  
(the quantity of direct  physical meaning)  

but  IS able to calculate  Φ (σ)  

In order to obtain R(ω) one needs to invert the transform  
Problem:
Sometimes the “inversion” of  may be   Φ (σ)  problematic  

Integral Transforms
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Suppose we want a response function R(ω) 

R(!) =
X

f

|h f |⇥| 0i|2 �(! � Ef � E0)

Energies in the continum

Scattering states

Integral Transforms
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R(!) =
X

f

|h f |⇥| 0i|2 �(! � Ef � E0)

�(�) =

Z
R(!)K(!,�) d!

1) integrate in dω using delta function 

=
X

f

K(Ef � E0,�)h 0|⇥†| f ih f |⇥| 0i

=
X

f

h 0|⇥†K(H � E0,�)| f ih f |⇥| 0i

2) Use
X

f

| f ih f | = 1

�(�) = h 0|⇥†K(H � E0,�)⇥| 0i

Integral Transforms
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Sum rules are a kind of “Moment transform”   

 Κ(ω,σ) = ωn  with n integer  

   

Example: sum rules

To obtain R(ω)  the  inversion of the transform  
is equivalent to the reconstruction of R(ω)  

by its moments (theory of moments)

However, Φ ( σ )  may be infinite for some n

Φn = ∫ dω  ωn R(ω)
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Example: Laplace Transform

In condensed matter physics, QCD and nuclear physics

�(�) =

Z
e�!�R(!)d! = h 0|⇥†e�(H�E0)�⇥| 0i
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Example: Laplace Transform

In condensed matter physics, QCD and nuclear physics

 σ = τ = imaginary time!  
Φ (τ) is calculated with Monte Carlo Methods  

and then inverted with Bayesian methods  

�(�) =

Z
e�!�R(!)d! = h 0|⇥†e�(H�E0)�⇥| 0i
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Integral Transform

�(�) =

Z
R(!)K(!,�) d! = h 0|⇥†K(H � E0,�)⇥| 0i

Matrix element on the ground state

The calculation of ANY transform seems to require, in principle,  
only the knowledge of the ground state! 

However, 
  can be quite a complicate operator. K(H � E0,�)

So, which kernel is suitable for the calculation?
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Inversion 

�(�) =

Z
e�!�R(!)d!

It is well known that the numerical inversion of the  
Laplace Transform can be problematic!
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R
Laplace transform

Φ

Inversion 

Illustration of the problem:

Numerical errors

???
σ⍵
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Φ ( σ ) = ∫ dω  K(ω,σ)R(ω )

 [R(ω )+A sin (νω)] 

If there is a numerical noise

In fact:

Inversion 

Illustration of the problem:
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Φ ( σ ) + Δ Φ(ν) = ∫ dω  K(ω,σ) [R(ω )+A sin (νω)] 

0

for very large  ν

independently on the  
amplitude A of the error!

Inversion 

Illustration of the problem:

Φ ( σ ) = ∫ dω  K(ω,σ)R(ω )

If there is a numerical noise

In fact:
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Best kernel
A “good” Kernel has to satisfy two requirements 

1) one must be able to calculate the integral transform 

2) one must be able to invert the transform minimizing uncertainties 
   

Which is the best kernel?

The δ-function?

Back to square zero….

Φ ( σ ) = ∫ δ( ω − σ ) R(ω) = R(σ) ω
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Best kernel

… but what about a representation of  
the  

δ-function?
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Lorentzian kernel

�

�

K( ω, σ, 𝚪) = 𝚪/π  [ (ω − σ)2+ 𝚪2 ]−1   

It is a representation of the  δ-function 

L(�,�) =
�

⇡

Z
d!

R(!)

(! � �)2 + �2

Efros, et al., JPG.: Nucl.Part.Phys.  34 (2007) R459 Lorentz Integral Transform (LIT) 
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Lorentzian kernel

See inversion procedures in Mirko’s talk 

In the next lecture we will make further 
theoretical considerations on the LIT


