

Electromagnetic properties of nuclei: from few- to many-body systems

Lecture 4

Integral Transforms

Sonia Bacca

November 21st, 2017

Lecture series for SFB 1245 TU Darmstadt Because our most ambitious goal is to calculate em inelastic processes, we need to better understand what it entails and how one can approach the problem from a theoretical point of view

Reactions to continuum

Reactions to continuum

Non-perturbative (hadronic)

$$a + b \rightarrow c + d + ...$$

perturbative (electro-weak)

 $\gamma(*) + b \rightarrow c + d + \dots$

Where a,b,c,d... are single nucleons or bound nuclear systems In total: A nucleons involved A-BODY PROBLEM!

- First order perturbation theory (Fermi-Golden Rule)
- Linear Response theory

 $\gamma(*) + b \rightarrow c + d + \dots$

- First order perturbation theory (Fermi-Golden Rule)
- Linear Response theory

$$R(\omega) \sim |\langle \psi_f |\Theta |\psi_0 \rangle|^2 \delta(\omega - E_f - E_0)$$

$$H|\psi_f\rangle = E_f|\psi_f\rangle$$

$$\gamma(*) + p \rightarrow c + d + \dots$$

- First order perturbation theory (Fermi-Golden Rule)
- Linear Response theory

- First order perturbation theory (Fermi-Golden Rule)
- Linear Response theory

- First order perturbation theory (Fermi-Golden Rule)
- Linear Response theory

- First order perturbation theory (Fermi-Golden Rule)
- Linear Response theory

- First order perturbation theory (Fermi-Golden Rule)
- Linear Response theory

Reactions to continuum

Perturbative Inclusive Process

Inclusive response function

$$R(\omega) = \sum_{f} |\langle \psi_f | \Theta | \psi_0 \rangle|^2 \ \delta(\omega - E_f - E_0)$$

 $R(\omega)$ represents the crucial quantity Requires the solution of both the bound and continuum A-body problem

We see next that in case of non perturbative reactions the crucial quantity for calculating the cross section has a very similar form

Example

Lithium-6 – Deuterium Reaction

Reactions to continuum

Non-perturbative (hadronic)

a + b \rightarrow c + d +... $\sigma \sim |T_{\beta\alpha}(E)|^2$ JGU

Non-perturbative (hadronic)

$$\begin{aligned} \mathbf{a} + \mathbf{b} &\rightarrow \mathbf{c} + \mathbf{d} + \dots \\ & \mathbf{\sigma} \sim |\mathbf{T}_{\beta\alpha}(\mathbf{E})|^2 \\ & \mathbf{General \ form \ of \ the \ T-matrix} \\ (cfr \ eq. \ (108) \ in \ ch. \ 5 \ of \ Goldberger-Watson \ Collision \ Theory) \\ & \mathbf{T}_{\beta\alpha}(\mathbf{E}) = <\chi_{\beta} \ \mathsf{V}_{\alpha} \quad \chi_{\alpha} > \ + \ < \ \chi_{\beta} \ \mathsf{V}_{\beta} \quad (\mathbf{E} - \mathbf{H} + \mathbf{i} \ \eta)^{-1} \mathsf{V}_{\alpha} \quad \chi_{\alpha} > \\ & \mathbf{A}\text{-body \ continuum \ energy} \end{aligned}$$

Non-perturbative (hadronic)

$$a + b \rightarrow c + d + ...$$

 $\sigma \sim |T_{\beta\alpha}(E)|^2$

General form of the T-matrix (cfr eq. (108) in ch. 5 of Goldberger-Watson Collision Theory)

$$\mathsf{T}_{\beta\alpha}(\mathsf{E}) = \langle \chi_{\beta} \mathsf{V}_{\alpha} | \chi_{\alpha} \rangle + \langle \chi_{\beta} \mathsf{V}_{\beta} | (\mathsf{E} - \mathsf{H} + \mathsf{i} \eta)^{-1} \mathsf{V}_{\alpha} | \chi_{\alpha} \rangle$$

 χ_{β} and χ_{α} are the "channel functions" (with proper antisymmetrization), namely products of the **bound states** of a and b, times a relative Plane Wave

$$\chi_{\alpha} > = \mathcal{A} |a > |b > |PW >$$

JGU

Channels

A=4

As A increases, there will be more channels...

Example

\boldsymbol{H} is the Hamiltonian of the 8-body system

Lithium-6 – Deuterium Reaction

T-matrix

If we denote
$$V_{\alpha,\beta} \chi_{\alpha,\beta} = \Phi_{\alpha,\beta}$$

 $V_{\alpha,\beta}$ is the sum of the potentials between particles belonging to different fragments

$$< \varphi_{\beta} | (E - H + i \eta)^{-1} | \varphi_{\alpha} >$$

Step 1) Insert completeness of eigenstates of H: $\sum_{f} |f| < f| = 1$

$$= \sum_{\mathbf{f}} \langle \phi_{\beta} | \mathbf{f} \rangle \langle \mathbf{f} | (E - H + i \eta)^{-1} \phi_{\alpha} \rangle =$$

$$= \sum_{\mathbf{f}} < \varphi_{\beta} | \mathbf{f} > < \mathbf{f} | (E - E_{\mathbf{f}} + i \eta)^{-1} \varphi_{\alpha} > =$$

Step 2) Insert delta function

$$= \int d\omega \sum_{f} \delta(\omega - E_{f}) (E - \omega + i\eta)^{-1} \langle \varphi_{\beta} | f \rangle \langle f | \varphi_{\alpha} \rangle =$$

$$= \int d\omega (E - \omega + i\eta)^{-1} F_{\beta\alpha}(\omega)$$

the problem reduces to calculate the function $F_{\alpha\beta}(\omega)$

$$\mathsf{F}_{\boldsymbol{\beta}\boldsymbol{\alpha}}(\boldsymbol{\omega}) = \boldsymbol{\Sigma}_{f} \delta(\boldsymbol{\omega} - \mathsf{E}_{f}) < \boldsymbol{\varphi}_{\boldsymbol{\beta}} \mid f > < f \mid \boldsymbol{\varphi}_{\boldsymbol{\alpha}} >$$

JGU

Non-perturbative (hadronic)

$$F_{\beta,\alpha}(\omega) = \sum_{f} \delta(\omega - E_f) \langle \phi_{\beta} | \psi_f \rangle \langle \psi_f | \phi_{\alpha} \rangle$$

perturbative (electro-weak)

$$R(\omega) = \sum_{f} \delta(\omega - E_f - E_0) \langle \psi_0 | \Theta^{\dagger} | \psi_f \rangle \langle \psi_f | \Theta | \psi_0 \rangle$$

 $|\psi_0\rangle, |\phi_{\alpha}\rangle, |\phi_{\beta}\rangle$ A-body bound-states

 $\varphi_{\alpha} = V_{\alpha} \ \chi_{\alpha} = V_{\alpha} \ \mathcal{A} \ |a > | \ b > | \ \mathsf{PW} >$

JGU

Non-perturbative (hadronic)

$$F_{\beta,\alpha}(\omega) = \sum_{f} \delta(\omega - E_f) \langle \phi_{\beta} | \psi_f \rangle \langle \psi_f | \phi_{\alpha} \rangle$$

perturbative (electro-weak)

$$R(\omega) = \sum_{f} \delta(\omega - E_f - E_0) \langle \psi_0 | \Theta^{\dagger} | \psi_f \rangle \langle \psi_f | \Theta | \psi_0 \rangle$$

 $|\psi_f\rangle~$ A-body bound-states and continuum states

Ab-initio methods

Most representative approaches

	Few-body: A≲12	Many-body: 12≲A≲40 or more
Structure Bound states	 Faddeev Yakubowski (FY) Diagonalization methods (on different basis) Green Function Monte Carlo 	 Coupled Cluster (CC) Other Monte Carlo methods IMSRG Self consistent Green's function
Reactions cattering states		

In the sector of the typical few-body nuclei (A up to 4) we have reached an incredible level of accuracy!

PRC 64 (2001) 044001

Important milestone ~ 200 citations

Method	$\langle T \rangle$	$\langle V \rangle$	E_0	$\sqrt{\langle r^2 angle}$
FY	102.39(5)	-128.33(10)	-25.94(5)	1.485(3)
CRCGV	102.30	-128.20	-25.90	1.482
SVM	102.35	-128.27	-25.92	1.486
HH	102.44	-128.34	-25.90(1)	1.483
GFMC	102.3(1.0)	-128.25(1.0)	-25.93(2)	1.490(5)
NCSM	103.35	-129.45	-25.80(20)	1.485
EIHH	100.8(9)	-126.7(9)	-25.944(10)	1.486

E₀ of ⁴He (exp. -28.296 MeV); Three-nucleon forces were not used in the benchmark

Some examples

No core shell model

FIG. 1 (color online). Dependence of ⁶He excitation energies on the size of the HO basis $N_{max}\hbar\Omega$.

S. Baroni, P.Navratil and S. Quaglioni PRL 110, 022505 (2013)

Some examples

Quantum Monte Carlo Method

Courtesy R.B.Wiringa

Ab-initio methods

Most representative approaches

	Few-body: A≲12	Many-body: 12≲A≲40 or more	
Structure Bound states	 Faddeev Yakubowski (FY) Diagonalization methods (on different basis) Green Function Monte Carlo 	 Coupled Cluster (CC) Other Monte Carlo methods IMSRG Self consistent Green's function 	
Reactions scattering states	 Faddeev Yakubowski (FY) and variations HH Kohn-Variational P. (2 fragments) NCSMC (only at very low energy) 		

Why are there so few methods for reactions? Why are they limited to low-energy?

In configuration space (Schrödinger equation)

Very difficult to match the asymptotic conditions in the solution of the coupled differential equations In momentum space (Lippmann-Schwinger equation)

Very difficult to cope with complicated poles in solving the coupled integral equations

JG U Scattering many-body problem

Even before reaching the asymptotic condition all channels are coupled

Today

- Faddeev: solved for scattering states for A=3 (1+2, 1+1+1)
- Faddeev-Yakubovsky: solved for scattering states for A=4, however, only up to 3-body break up (1+3, 2+2, 1+1+2, not yet 1+1+1+1)
- Also some first results on A=5 (Lazauskas)

Bochum-Cracow school: (Gloeckle, Witala, Golak, Elster, Nogga...) Bonn-Lisabon-school (Sandhas, Fonseca, Sauer, Deltuva....) Config. Space: (Carbonell, Lazauskas...)

 Alternative approach to 2+1, 3+1 scattering based on Kohn variational principle and correct asymptotic conditions

Pisa School: Kievsky, Viviani, Marcucci...

Similar idea for (A-1) + 1 in NCSMC

TRIUMF/LLNL/Da: Navratil, Quaglioni, Roth...

Ab-initio methods

Benchmark

Phys. Rev. C 95, 034003 (2017)

Ab-initio methods

Most representative approaches

	Few-body: A≲12	Many-body: 12≲A≲40 or more
Structure Bound states	 Faddeev Yakubowski (FY) Diagonalization methods (on different basis) Green Function Monte Carlo 	 Coupled Cluster (CC) Other Monte Carlo methods IMSRG Self consistent Green's function
Reactions scattering states	 Faddeev Yakubowski (FY) and variations HH Kohn-Variational P. (2 fragments) NCSMC (only at very low Integral Transforms Methods 	

Integral Transforms

Φ (σ) = $\int d\omega K(\omega, \sigma) R(\omega)$

One **IS NOT** able to calculate $R(\omega)$ (the quantity of direct physical meaning) but **IS** able to calculate $\Phi(\sigma)$

In order to obtain $R(\omega)$ one needs to invert the transform Problem: Sometimes the "inversion" of may be $\Phi(\sigma)$ problematic

Integral Transforms

Suppose we want a response function R(w)

$$R(\omega) = \sum_{f} |\langle \psi_{f} | \Theta | \psi_{0} \rangle|^{2} \ \delta(\omega - E_{f} - E_{0})$$

$$\Phi(\sigma) = \int R(\omega) K(\omega, \sigma) \ d\omega$$
1) integrate in d\omega using delta function
$$= \sum_{f} K(E_{f} - E_{0}, \sigma) \langle \psi_{0} | \Theta^{\dagger} | \psi_{f} \rangle \langle \psi_{f} | \Theta | \psi_{0} \rangle$$

$$= \sum_{f} \langle \psi_{0} | \Theta^{\dagger} K(H - E_{0}, \sigma) | \psi_{f} \rangle \langle \psi_{f} | \Theta | \psi_{0} \rangle$$
2) Use
$$\sum_{f} |\psi_{f} \rangle \langle \psi_{f}| = 1$$

$$\phi(\sigma) = \langle \psi_{0} | \Theta^{\dagger} K(H - E_{0}, \sigma) \Theta | \psi_{0} \rangle$$

 $Φ_n = ∫ dω ω^n R(ω)$

Sum rules are a kind of "Moment transform" $K(\omega,\sigma) = \omega^n$ with n integer

To obtain $R(\omega)$ the inversion of the transform is equivalent to the reconstruction of $R(\omega)$ by its moments (theory of moments)

However, $\Phi\left(\; \sigma \; \right)\;$ may be infinite for some n

Example: Laplace Transform

$$\phi(\sigma) = \int e^{-\omega\sigma} R(\omega) d\omega = \langle \psi_0 | \Theta^{\dagger} e^{-(H - E_0)\sigma} \Theta | \psi_0 \rangle$$

In condensed matter physics, QCD and nuclear physics

$$\phi(\sigma) = \int e^{-\omega\sigma} R(\omega) d\omega = \langle \psi_0 | \Theta^{\dagger} e^{-(H - E_0)\sigma} \Theta | \psi_0 \rangle$$

In condensed matter physics, QCD and nuclear physics

 $\sigma = \tau = \text{imaginary time!}$ $\Phi(\tau)$ is calculated with Monte Carlo Methods

and then inverted with **Bayesian methods**

Integral Transform

$$\Phi(\sigma) = \int R(\omega) K(\omega, \sigma) \, d\omega = \langle \psi_0 | \Theta^{\dagger} K(H - E_0, \sigma) \Theta | \psi_0 \rangle$$

Matrix element on the ground state

The calculation of **ANY** transform seems to require, **in principle**, only the knowledge of the ground state! **However**,

 $K(H - E_0, \sigma)$ can be quite a complicate operator.

So, which kernel is suitable for the calculation?

JGU

It is well known that the numerical inversion of the **Laplace** Transform can be problematic!

Illustration of the problem:

Illustration of the problem:

In fact:
$$\Phi(\sigma) = \int d\omega K(\omega,\sigma)R(\omega)$$

If there is a numerical noise

Illustration of the problem:

In fact:
$$\Phi(\sigma) = \int d\omega K(\omega,\sigma)R(\omega)$$

If there is a numerical noise

$$\Phi(\sigma) + \Delta \Phi(v) = \int d\omega \ K(\omega,\sigma) \left[R(\omega) + A \sin(v\omega) \right]$$

for very large v
0 independently on the amplitude A of the error!

Best kernel

A "good" Kernel has to satisfy two requirements

- 1) one must be able to calculate the integral transform
- 2) one must be able to invert the transform minimizing uncertainties

Which is the best kernel? The δ-function?

 $\Phi(\sigma) = \int \delta(\omega - \sigma) \mathbf{R}(\omega) = \mathbf{R}(\sigma)$

Back to square zero....

... but what about a representation of the δ-function?

Lorentzian kernel

K(ω, σ, Γ) = Γ/π [(ω – σ)²+ Γ^2]⁻¹

It is a representation of the δ -function

$$L(\boldsymbol{\sigma}, \boldsymbol{\Gamma}) = \frac{\boldsymbol{\Gamma}}{\pi} \int d\omega \frac{R(\omega)}{(\omega - \boldsymbol{\sigma})^2 + \boldsymbol{\Gamma}^2}$$

Lorentz Integral Transform (LIT) Efros, et al., JPG.: Nucl.Part.Phys. 34 (2007) R459

See inversion procedures in Mirko's talk

In the next lecture we will make further theoretical considerations on the LIT