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Best kernel

A “good” Kernel has to satisfy two requirements 

1) one must be able to calculate the integral transform 

2) one must be able to invert the transform minimizing uncertainties 
   

Which is the best kernel?

 … a representation of  the  
δ-function
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Lorentzian kernel

�

�

K( ω, σ, 𝚪) = 𝚪/π  [ (ω − σ)2+ 𝚪2 ]−1   

It is a representation of the  δ-function 

L(�,�) =
�

⇡

Z
d!

R(!)

(! � �)2 + �2

Efros, et al., JPG.: Nucl.Part.Phys.  34 (2007) R459 Lorentz Integral Transform (LIT) 



Illustration of requirement N.1:  
One can calculate the integral transform
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Lorentz Integral Transform

L(�,�) = h 0|⇥†K(H � E0,�,�)⇥| 0i

K(!,�,�) =
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H � E0 � � + i�
Ô| 0

�
=L(�,�) ⇥† ⇥
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Lorentz Integral Transform

main point of the LIT :

(H � E0 � � + i�)|⇥̃⇥ = Ô|⇥0⇥⇥

Schrödinger-like equation with a source

•  Due to imaginary part     the solution        is unique 

•  Since rhs is finite,        has bound state asymptotic behaviour

� |�̃�
|�̃�

Efros, et al., JPG.: Nucl.Part.Phys.  34 (2007) R459 

Can solve it with bound state methods



Illustration of requirement N.2:   
One can invert  the integral transform 
minimizing uncertainties
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R
Lorentz transform

Φ

σ

How can one easily understand why the inversion is    
much less problematic?

Inversion: e.g. “regularization method” at fixed width

!!!

⍵ blurred, but still distinguishable 

Numerical errors

also with errors!

Inversion 
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Least square fit of the coefficients ci  to 
reconstruct the response function

R(!) =
I
maxX

i

ci�i(!,↵) L(�,�) =
I
maxX

i

ciL[�i(!,↵)]

�i(!,↵) = !3/2
exp
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Regularization method
(from A.I N.Tikhonov, “Solutions of ill posed problems”, Scripta series in mathematics  (Winston,1977).

Other methods, see Mirko Miorelli’s talk

.
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Nucl.Phys. A707  365 (2002)     

Benchmarks

The LIT method has been benchmarked with other few-body methods where          is 
calculated directly using same dynamical ingredients

| f i

With Fadeev approach 
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The LIT method has been benchmarked with other few-body methods where          is 
calculated directly using same dynamical ingredients

| f i

With variational approach 

Phys.Rev.C 69 (2004)     

Benchmarks
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Other remarks on the LIT
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Rewriting the response function

Sokhotski formula

Taking the imaginary part only 

⇒

NB: often interchange 
Notation for g.s. and final states
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Rewriting the response function

R(ω)=−1/π Ιm [Σf＜0|Θ+|f＞＜f| Θ |0＞] (ω−Εf+ Ε0+ ιε )-1]

Like a Green’s function with poles on the real axis

       =-1/π Ιm [Σf＜0| Θ+ (ω−Εf+ Ε0+ ιε )-1 |f＞＜f|Θ |0＞]

       =-1/π Ιm [Σf＜0| Θ+ (ω−H+ Ε0+ ιε )-1 |f＞＜f|Θ |0＞] 
H|f＞=Εf|f＞

    = 1/π Ιm [Σf＜0| Θ+(Η – ω − Ε0- ιε )-1|f＞＜f|Θ |0＞]
change sign

    = -1/π Ιm [＜0| Θ+(Η – ω− Ε0+ιε )-1 Θ |0＞] 
Σf|f＞＜f|=1 and change sign



Sonia Bacca 15

L (σ, 𝚪 )  = 𝚪/π ∫ [(ω − σR)2+ 𝚪 2 ]−1 R(ω) dω  

Rewriting the LIT

 = 𝚪/π Σ 
f＜ 0 | Θ+  [(Η − Ε0 − σR)2+ 𝚪 2 ]−1 |f＞＜f|Θ | 0＞

= 𝚪/π ∫ dω  [(ω − σR)2+ 𝚪 2 ]−1  Σ f |＜f| Θ |0＞|2 δ (ω−Εf+Ε0)

= 𝚪 /π ＜ 0 | Θ+  [(Η − Ε0 − σR)2+ 𝚪 2 ]−1  Θ | 0＞

Completness

-Im [(Η − Ε
0
+ σR + i 𝚪 

  )−1] =  

-Im[(Η − Ε
0
− σR + i 𝚪 

  )−1 (Η − Ε
0
− σR -i 𝚪)−1(Η − Ε

0
− σRo-i 𝚪)] = 

=𝚪 [(Η − Ε
0
 − σR)2+ 𝚪 2 ]−1

  =-1/π Im [＜ 0 | Θ+  (Η − Ε0− σR+ i 𝚪 
  )−1 Θ  | 0＞]

Finite, not infinitesimal

Integrate delta and use H|f＞=Εf|f＞
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ε infinitesimal

Summarizing

   R(ω) = - 1/π Ιm [＜0| Θ+(Η – ω− Ε0+ ιε )-1 Θ |0＞] 

 L (σ, 𝚪 ) =-1/π Im [＜ 0 | Θ+  (Η − Ε0− σR+ i 𝚪 
  )−1 Θ  | 0＞]

 𝚪 finite, not infinitesimal

Of course, when ε= 𝚪 then R(ω)= L (σ, 𝚪 ) 
That is indeed the case where the Kernel is the delta function 

However, due to the fact that 𝚪 is finite and L (σ, 𝚪 ) 
is finite, one is allowed to use bound -state techniques to calculate it
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Lanczos Algorithm

Algorithm used to tri-diagonalize matrices

1) Choose first Lanczos vector 

2)  Use recursive definition to find the other Lanczos vectors 

With

3)  Matrix represented on the Lanczos vectors is tridiagonal

Can diagonalize it using  
Numerical Recipes routine, 
e.g. TQLI
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Lanczos Algorithm

For large scale eigenvalue problems

Generally, diagonalizing a matrix is a N3 operation    

With the Lanczos algorithm you can reduce it to nN2 with n = max(iter)< N
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Using the Lanczos algorithm one can
represent (Η − Ε

0
− σR+ iσΙ   )−1 as a continuum fraction of the Lanczos coefficients

  

Lanczos Algorithm

 L (σ, 𝚪 ) =-1/π Im [＜ 0 | Θ+  (Η − Ε0− σR+ i 𝚪 
  )−1 Θ  | 0＞]

The algorithm can be also used calculate the LIT

1) Choose first Lanczos vector 

2)  After applying the recursive definition you obtain

Efros, et al., JPG.: Nucl.Part.Phys.  34 (2007) R459 
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Lanczos Algorithm

The Lanczos algorithm involves just a matrix-vector multiplication (N2)

Continues fractions converge fast 

Advantages

Again, with the Lanczos algorithm the computational load is 
becoming nN2 with n = max(iter)< N
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Lanczos Algorithm

Strength building up from Lanczos vectors
Movie from M.Miorelli
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Parallel algorithm 50 to 90% of the CPU times is spent in the Lanczos algorithm +  
matrices become too large to be loaded in the memory of a single core
It is wise to distribute the load (memory and computation) on different cores

This can lead to unbalance 
among the threads

 Example PE1
PE2
PE3
PE4

H =

Other computational aspects
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50 to 90% of the CPU times is spent in the Lanczos algorithm +  
matrices become too large to be loaded in the memory of a single core

 Example PE1
PE2
PE3
PE4

It is wise to distribute the load (memory and computation) on different cores

More balanced distribution
H =

Parallel algorithm

Other computational aspects
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50 to 90% of the CPU times is spent in the Lanczos algorithm +  
matrices become too large to be loaded in the memory of a single core

 Example PE1
PE2
PE3
PE4

It is wise to distribute the load (memory and computation) on different cores

Possible Improvement:
Can save a factor of 2 
using hermiticity of H

H =

Parallel algorithm

Other computational aspects
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“Scaling” of the problem

Scaling means that at a constant problem size the parallel speedup 
increases linearly with the number of used cores          

Parallel algorithm

 Matrix dimension 
 ~40000 
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 Speedup
 Time needed for a sequential algorithm

 Time needed for a parallel algorithm with c cores

 Ideal situation  linear speedupTc =
T1

c limited by algorithm and by 
communications among threads

Other computational aspects


