

Electromagnetic properties of nuclei: from few- to many-body systems

Lecture 5

Integral Transforms - Continued -

Sonia Bacca

November 22nd, 2017

Lecture series for SFB 1245 TU Darmstadt A "good" Kernel has to satisfy two requirements

1) one must be able to calculate the integral transform

2) one must be able to invert the transform minimizing uncertainties

Which is the best kernel?

\dots a representation of the δ -function

Lorentzian kernel

K(ω, σ, Γ) = Γ/π [(ω – σ)²+ Γ^2]⁻¹

It is a representation of the δ -function

$$L(\boldsymbol{\sigma}, \boldsymbol{\Gamma}) = \frac{\boldsymbol{\Gamma}}{\pi} \int d\omega \frac{R(\omega)}{(\omega - \boldsymbol{\sigma})^2 + \boldsymbol{\Gamma}^2}$$

Lorentz Integral Transform (LIT) Efros, et al., JPG.: Nucl.Part.Phys. 34 (2007) R459

Illustration of requirement N.1: One can calculate the integral transform

Lorentz Integral Transform

JGU

$$L(\sigma, \Gamma) = \langle \psi_0 | \Theta^{\dagger} K(H - E_0, \sigma, \Gamma) \Theta | \psi_0 \rangle$$

$$K(\omega, \sigma, \Gamma) = \frac{\Gamma}{\pi} \frac{1}{(\omega - \sigma)^2 + \Gamma^2}$$
$$K(\omega, \sigma, \Gamma) = \frac{\Gamma}{\pi} \frac{1}{(\omega - \sigma - i\Gamma)(\omega - \sigma + i\Gamma)}$$

$$\begin{split} L(\sigma,\Gamma) &= \left\langle \psi_0 | \Theta^{\dagger} \frac{1}{H - E_0 - \sigma - i\Gamma} \frac{1}{H - E_0 - \sigma + i\Gamma} \Theta | \psi_0 \right\rangle \frac{\Gamma}{\pi} \\ &= \left\langle \tilde{\psi} | \tilde{\psi} \right\rangle \frac{\Gamma}{\pi} \end{split}$$

main point of the LIT :

Schrödinger-like equation with a source

$$(H - E_0 - \sigma + i\Gamma) |\tilde{\Psi}\rangle = \Theta |\Psi_0\rangle$$

- Due to imaginary part Γ the solution $| ilde{\psi}
 angle$ is unique
- Since rhs is finite, $| \tilde{\psi}
 angle$ has bound state asymptotic behaviour

Can solve it with bound state methods

Efros, et al., JPG.: Nucl.Part.Phys. 34 (2007) R459

Illustration of requirement N.2: One can invert the integral transform minimizing uncertainties

Inversion

How can one easily understand why the inversion is **much less** problematic?

Inversion: e.g. "regularization method" at fixed width

Regularization method

JGU

(from A.I N. Tikhonov, "Solutions of ill posed problems", Scripta series in mathematics (Winston, 1977).

$$R(\omega) = \sum_{i}^{I_{\max}} c_i \chi_i(\omega, \alpha) \longrightarrow L(\sigma, \Gamma) = \sum_{i}^{I_{\max}} c_i \mathcal{L}[\chi_i(\omega, \alpha)]$$
$$\chi_i(\omega, \alpha) = \omega^{3/2} \exp\left(\alpha_{em} Z_1 Z_2 \sqrt{\frac{2\mu}{\omega}}\right) \cdot e^{-\frac{\omega}{\alpha i}} \qquad \text{Least square fit of the coefficients } c_i \text{ to reconstruct the response function}$$

Other methods, see Mirko Miorelli's talk

Benchmarks

The LIT method has been benchmarked with other few-body methods where $|\psi_f\rangle$ is calculated directly using same dynamical ingredients

With Fadeev approach

Nucl.Phys. A707 365 (2002)

Benchmarks

The LIT method has been benchmarked with other few-body methods where $|\psi_f\rangle$ is calculated directly using same dynamical ingredients

With variational approach

Other remarks on the LIT

Rewriting the response function

$$R(\omega) = \sum_{f} |\langle f | \Theta | 0 \rangle|^2 \, \delta(\omega - E_f - E_0)$$

NB: often interchange Notation for g.s. and final states

Sokhotski formula

$$\frac{1}{x+i\epsilon} = \mathcal{P} \int dx \frac{1}{x} - i\delta(x)\pi \qquad \quad \epsilon \to 0$$

Taking the imaginary part only

$$\operatorname{Im} \frac{1}{x + i\epsilon} = -\delta(x)\pi \quad \Rightarrow \quad \delta(x) = -\frac{1}{\pi} \operatorname{Im} \frac{1}{x + i\epsilon}$$
$$R(\omega) = -\frac{1}{\pi} \operatorname{Im} \left[\sum_{f} |\langle f|\Theta|0\rangle|^{2} \frac{1}{\omega - E_{f} - E_{0} + i\epsilon} \right]$$

=-1/π Im [< 0 | Θ⁺ (H – E₀–
$$\sigma_R$$
+ i Γ)⁻¹ Θ | 0>]

$$-\text{Im} [(H - E_0^+ \sigma_R^- + i \Gamma_0^-)^{-1}] = -\text{Im}[(H - E_0^- \sigma_R^- + i \Gamma_0^-)^{-1}(H - E_0^- \sigma_R^- - i \Gamma_0^-)] = -\Gamma[(H - E_0^- \sigma_R^-)^{2+} \Gamma_0^-]^{-1}$$
Finite, not infinitesimal

$$= \Gamma / \pi < 0 | \Theta^{+} [(H - E_{0} - \sigma_{R})^{2} + \Gamma^{2}]^{-1} \Theta | 0 >$$

$$= \Gamma/\pi \sum_{f} < 0 | \Theta^{+} [(H - E_{0} - \sigma_{R})^{2} + \Gamma^{2}]^{-1} |f > < f|\Theta | 0 >$$

Integrate delta and use $H|f>=E_{f}|f>$

JG U

L (
$$\sigma$$
, Γ) = $\Gamma/\pi \int [(\omega - \sigma_R)^2 + \Gamma^2]^{-1} R(\omega) d\omega$

Summarizing

$$R(\omega) = -1/\pi \operatorname{Im} \left[<0 \right| \Theta^{+}(H - \omega - E_{0}^{+} \iota \epsilon)^{-1} \Theta \left| 0 > \right]$$

 $L(\sigma, \Gamma) = -1/\pi \operatorname{Im} [< 0 | \Theta^{+} (H - E_{0} - \sigma_{R} + i \Gamma)^{-1} \Theta | 0 >]$

 Γ finite, not infinitesimal

Of course, when $\varepsilon = \Gamma$ then R(ω)= L (σ , Γ)

That is indeed the case where the Kernel is the delta function

However, due to the fact that Γ is finite and L ($\sigma,\,\Gamma$) is finite, one is allowed to use bound -state techniques to calculate it

Lanczos Algorithm

Algorithm used to tri-diagonalize matrices $H \longrightarrow H_{tr}$

- 1) Choose first Lanczos vector $\ket{\phi_0}$
- 2) Use recursive definition to find the other Lanczos vectors

$$\begin{split} b_{n+1} & |\phi_{n+1}\rangle = H |\phi_n\rangle - a_n |\phi_n\rangle - b_n |\phi_{n-1}\rangle \\ \text{With} \ a_n &= \langle \phi_n | \, H \, |\phi_n\rangle \\ & b_n &= \|b_n \, |\phi_n\rangle \| \end{split}$$

3) Matrix represented on the Lanczos vectors is tridiagonal

$$H_{tr} = \begin{pmatrix} a_0 & b_1 & 0 & 0 & \dots \\ b_1 & a_1 & b_2 & 0 & \dots \\ 0 & b_2 & a_2 & b_3 & \dots \\ 0 & \dots & \dots & \dots & \dots \end{pmatrix}$$

Can diagonalize it using Numerical Recipes routine, e.g. TQLI

Lanczos Algorithm

For large scale eigenvalue problems

Generally, diagonalizing a matrix is a N³ operation

With the Lanczos algorithm you can reduce it to nN^2 with n = max(iter) < N

The algorithm can be also used calculate the LIT

Efros, et al., JPG.: Nucl.Part.Phys. 34 (2007) R459

Advantages

The Lanczos algorithm involves just a matrix-vector multiplication (N²)

Continues fractions converge fast

Again, with the Lanczos algorithm the computational load is becoming nN^2 with n = max(iter) < N

Strength building up from Lanczos vectors

Movie from M.Miorelli

Parallel algorithm

50 to 90% of the CPU times is spent in the Lanczos algorithm + matrices become too large to be loaded in the memory of a single core It is wise to distribute the load (memory and computation) on different cores

Parallel algorithm

50 to 90% of the CPU times is spent in the Lanczos algorithm + matrices become too large to be loaded in the memory of a single core It is wise to distribute the load (memory and computation) on different cores

More balanced distribution

Parallel algorithm

50 to 90% of the CPU times is spent in the Lanczos algorithm + matrices become too large to be loaded in the memory of a single core It is wise to distribute the load (memory and computation) on different cores

Possible Improvement: Can save a factor of 2 using hermiticity of **H**

Parallel algorithm "Scaling" of the problem

Scaling means that at a constant problem size the parallel speedup increases linearly with the number of used cores

Speedup $S_c = \frac{T_1}{T_c}$ Time needed for a sequential algorithm Time needed for a parallel algorithm with c cores

deal situation
$$T_c = \frac{T_1}{c}$$
 $S_c = c$

linear speedup

limited by algorithm and by communications among threads

