Electromagnetic properties of nuclei: from few- to many-body systems

Lecture 5

Integral Transforms

- Continued -

Sonia Bacca
November 22nd, 2017
Lecture series for SFB 1245
TU Darmstadt

Best kernel

A "good" Kernel has to satisfy two requirements

1) one must be able to calculate the integral transform
2) one must be able to invert the transform minimizing uncertainties

Which is the best kernel?

... a representation of the δ-function

Lorentzian kernel

$$
\mathrm{K}(\omega, \sigma, \Gamma)=\Gamma / \pi\left[(\omega-\sigma)^{2}+\Gamma^{2}\right]^{-1}
$$

It is a representation of the δ-function

$$
L(\sigma, \Gamma)=\frac{\Gamma}{\pi} \int d \omega \frac{R(\omega)}{(\omega-\sigma)^{2}+\Gamma^{2}}
$$

Lorentz Integral Transform (LIT) Efros, etal., JPG.: Nucl.Par.P.Phys. 34 (2007) R459

Illustration of requirement N.1:
 One can calculate the integral transform

Lorentz Integral Transform

$$
L(\sigma, \Gamma)=\left\langle\psi_{0}\right| \Theta^{\dagger} K\left(H-E_{0}, \sigma, \Gamma\right) \Theta\left|\psi_{0}\right\rangle
$$

$$
\begin{aligned}
& K(\omega, \sigma, \Gamma)=\frac{\Gamma}{\pi} \frac{1}{(\omega-\sigma)^{2}+\Gamma^{2}} \\
& K(\omega, \sigma, \Gamma)=\frac{\Gamma}{\pi} \frac{1}{(\omega-\sigma-i \Gamma)(\omega-\sigma+i \Gamma)}
\end{aligned}
$$

$$
\begin{aligned}
L(\sigma, \Gamma) & =\left\langle\psi_{0}\right| \Theta \frac{1}{H-E_{0}-\sigma-i \Gamma} \frac{1}{H-E_{0}-\sigma+i \Gamma} \Theta\left|\psi_{0}\right\rangle \\
& =\frac{\Gamma}{\pi} \\
& =\langle\tilde{\psi} \mid \tilde{\psi}\rangle \frac{\Gamma}{\pi}
\end{aligned}
$$

Lorentz Integral Transform

main point of the LIT :

Schrödinger-like equation with a source

$$
\left(H-E_{0}-\sigma+i \Gamma\right)|\tilde{\Psi}\rangle=\Theta\left|\Psi_{0}\right\rangle
$$

- Due to imaginary part Γ the solution $|\tilde{\psi}\rangle$ is unique
- Since rhs is finite, $|\tilde{\psi}\rangle$ has bound state asymptotic behaviour

Can solve it with bound state methods

Efros, et al., JPG.: Nucl.Part.Phys. 34 (2007) R459

Illustration of requirement N.2: One can invert the integral transform minimizing uncertainties

How can one easily understand why the inversion is much less problematic?

Inversion: e.g. "regularization method" at fixed width

Regularization method

(from A.I N.Tikhonov, "Solutions of ill posed problems", Scripta series in mathematics (Winston, 1977).

$$
\begin{aligned}
& R(\omega)=\sum_{i}^{I_{\text {max }}} c_{i} \chi_{i}(\omega, \alpha) \Longrightarrow L(\sigma, \Gamma)=\sum_{i}^{I_{\text {max }}} c_{i} \mathcal{L}\left[\chi_{i}(\omega, \alpha)\right] \\
& \chi_{i}(\omega, \alpha)=\omega^{3 / 2} \exp \left(\alpha_{e m} Z_{1} Z_{2} \sqrt{\frac{2 \mu}{\omega}}\right) \cdot e^{-\frac{\omega}{\alpha i}} \begin{array}{c}
\text { Least square fit of the coefficients } c_{i} \text { to } \\
\text { reconstruct the response function }
\end{array}
\end{aligned}
$$

Other methods, see Mirko Miorelli's talk

Benchmarks

The LIT method has been benchmarked with other few-body methods where $\left|\psi_{f}\right\rangle$ is calculated directly using same dynamical ingredients

With Fadeev approach

Nucl.Phys. A707 365 (2002)

Benchmarks

The LIT method has been benchmarked with other few-body methods where $\left|\psi_{f}\right\rangle$ is calculated directly using same dynamical ingredients

With variational approach

Other remarks on the LIT

$$
\left.R(\omega)=\sum_{f}|\langle f| \Theta| 0\right\rangle\left.\right|^{2} \delta\left(\omega-E_{f}-E_{0}\right)
$$

NB: often interchange
Notation for g.s. and final states

Sokhotski formula

$$
\frac{1}{x+i \epsilon}=\mathcal{P} \int d x \frac{1}{x}-i \delta(x) \pi \quad \epsilon \rightarrow 0
$$

Taking the imaginary part only

$$
\begin{aligned}
& \operatorname{Im} \frac{1}{x+i \epsilon}=-\delta(x) \pi \quad \Rightarrow \quad \delta(x)=-\frac{1}{\pi} \operatorname{Im} \frac{1}{x+i \epsilon} \\
& R(\omega)=-\left.\frac{1}{\pi} \operatorname{Im}\left[\sum_{f}|\langle f| \Theta| 0\right\rangle\right|^{2} \frac{1}{\omega-E_{f}-E_{0}+i \epsilon}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.R(\omega)=-1 / \pi \operatorname{lm}\left[\sum_{f}<0\left|\Theta^{+}\right| f\right\rangle\langle f| \Theta|0\rangle\right]\left(\omega-E_{f}+E_{0}+\mid \varepsilon\right)^{-1}\right] \\
& \left.=-1 / \pi \operatorname{lm}\left[\Sigma_{\mathrm{f}}<0\left|\Theta^{+}\left(\omega-\mathrm{E}_{\mathrm{f}}+\mathrm{E}_{0}+\mathrm{i} \varepsilon\right)^{-1}\right| \mathrm{f}\right\rangle\langle\mathrm{f}| \Theta|0\rangle\right] \\
& \text { HIT>EEIT> } \\
& \left.=-1 / \pi \operatorname{lm}\left[\Sigma_{f}<0\left|\Theta^{+}\left(\omega-H+E_{0}+i \varepsilon\right)^{-1}\right| f\right\rangle\langle f| \Theta|0\rangle\right] \\
& \text { change sign } \\
& \left.=1 / \pi \operatorname{lm}\left[\Sigma_{f}<0\left|\Theta^{+}\left(H-\omega-E_{0}-\mid \varepsilon\right)^{-1}\right| f\right\rangle<f|\Theta| 0>\right] \\
& \Sigma_{\mathrm{f}}|\mathrm{f}><\mathrm{f}|=1 \text { and change sign } \\
& =-1 / \pi \operatorname{Im}\left[<0\left|\Theta^{+}\left(\mathrm{H}-\omega-\mathrm{E}_{0}+\mid \varepsilon\right)^{-1} \Theta\right| 0>\right] \\
& \text { Like a Green's function with poles on the real axis }
\end{aligned}
$$

$\mathrm{Jg} \mid \mathrm{U}$

Rewriting the LIT

$L(\sigma, \boldsymbol{\Gamma})=\boldsymbol{\Gamma} / \pi \int\left[\left(\omega-\sigma_{R}\right)^{2+} \boldsymbol{\Gamma}^{2}\right]^{-1} R(\omega) d \omega$
$=\Gamma / \pi \int d \omega\left[\left(\omega-\sigma_{R}\right)^{2}+\Gamma^{2}\right]^{-1} \sum_{f}|<f| \Theta|0>|^{2} \delta\left(\omega-E_{f}+E_{0}\right)$ Integrate delta and use $\mathrm{H\mid f}>=\mathrm{E}_{\mathrm{f}} \mid \mathrm{f}>$

Completness

$$
\begin{aligned}
& =\Gamma / \pi \sum_{f}<0\left|\Theta^{+}\left[\left(H-E_{0}-\sigma_{R}\right)^{2+} \Gamma^{2}\right]^{-1}\right| f><f|\Theta| 0> \\
& =\Gamma / \pi<0\left|\Theta^{+}\left[\left(H-E_{0}-\sigma_{R}\right)^{2+} \Gamma^{2}\right]^{-1} \Theta\right| 0>
\end{aligned}
$$

$$
-\operatorname{lm}\left[\left(H-E_{0}+\sigma_{R}+i \Gamma\right)^{-1}\right]=
$$

$$
-\operatorname{lm}\left[\left(H-E_{0}-\sigma_{R}+i \Gamma\right)^{-1}\left(H-E_{0}-\sigma_{R}-i \Gamma\right)^{-1}\left(H-E_{0}-\sigma_{R 0}-i \Gamma\right)\right]=
$$

$$
=\Gamma\left[\left(H-E_{0}-\sigma_{R}\right)^{2+}+\Gamma^{2}\right]^{-1}
$$

$$
=-1 / \pi \operatorname{lm}\left[<0\left|\Theta^{+}\left(H-E_{0}-\sigma_{R}+i \Gamma\right)^{-1} \Theta\right| 0>\right]
$$

$$
R(\omega)=-1 / \pi \operatorname{lm}\left[<0\left|\Theta^{+}\left(H-\omega-\mathrm{E}_{0}+\underset{\uparrow}{\varepsilon}\right)^{-1} \Theta\right| 0>\right]
$$

$$
L(\sigma, \Gamma)=-1 / \pi \operatorname{lm}\left[<0\left|\Theta^{+}\left(H-E_{0}-\sigma_{R}+i \Gamma\right)^{-1} \Theta\right| 0>\right]
$$

Γ finite, not infinitesimal
Of course, when $\varepsilon=\boldsymbol{\Gamma}$ then $\mathrm{R}(\omega)=\mathrm{L}(\sigma, \boldsymbol{\Gamma})$
That is indeed the case where the Kernel is the delta function

However, due to the fact that Γ is finite and $L(\sigma, \Gamma)$ is finite, one is allowed to use bound -state techniques to calculate it

1) Choose first Lanczos vector $\left|\phi_{0}\right\rangle$
2) Use recursive definition to find the other Lanczos vectors

$$
\begin{aligned}
& b_{n+1}\left|\phi_{n+1}\right\rangle=H\left|\phi_{n}\right\rangle-a_{n}\left|\phi_{n}\right\rangle-b_{n}\left|\phi_{n-1}\right\rangle \\
& \text { With } a_{n}=\left\langle\phi_{n}\right| H\left|\phi_{n}\right\rangle \\
& b_{n}=\| b_{n}\left|\phi_{n}\right\rangle \|
\end{aligned}
$$

3) Matrix represented on the Lanczos vectors is tridiagonal

$$
H_{t r}=\left(\begin{array}{ccccc}
a_{0} & b_{1} & 0 & 0 & \ldots \\
b_{1} & a_{1} & b_{2} & 0 & \ldots \\
0 & b_{2} & a_{2} & b_{3} & \ldots \\
0 & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right)
$$

Can diagonalize it using Numerical Recipes routine, e.g. TQLI

Lanczos Algorithm

For large scale eigenvalue problems

Generally, diagonalizing a matrix is a N^{3} operation
With the Lanczos algorithm you can reduce it to nN^{2} with $\mathrm{n}=\max$ (iter)< N

The algorithm can be also used calculate the LIT
$L(\sigma, \Gamma)=-1 / \pi \operatorname{lm}\left[<0\left|\Theta^{+}\left(H-\frac{\mathrm{E}_{0}-\sigma_{\mathrm{R}}+\mathrm{i} \Gamma}{\mu}\right)^{-1} \Theta\right| 0>\right]$
Using the Lanczos algorithm one can represent ($\left.\mathrm{H}-\mathrm{E}_{0}-\sigma_{\mathrm{R}}+\mathrm{i} \sigma_{\mathrm{I}}\right)^{-1}$ as a continuum fraction of the Lanczos coefficients

1) Choose first Lanczos vector

$$
\left|\phi_{0}\right\rangle=\frac{\theta|0\rangle}{\sqrt{|0| \Theta^{\dagger} \Theta|0\rangle}}
$$

2) After applying the recursive definition yøu obtain

$$
L(\sigma)=-\frac{1}{\pi}\langle 0| \Theta^{\dagger} \Theta|0\rangle \operatorname{Im}\left\{\frac{1}{\left(z-a_{0}\right)-\frac{b_{1}^{2}}{\left(z-a_{1}\right)-\frac{b_{2}^{2}}{\left(z-a_{2}\right)-b_{3}^{2} \ldots}}}\right\}
$$

Advantages

The Lanczos algorithm involves just a matrix-vector multiplication (N^{2})
Continues fractions converge fast
Again, with the Lanczos algorithm the computational load is becoming nN^{2} with $\mathrm{n}=\max ($ iter $)<\mathrm{N}$

Lanczos Algorithm

Strength building up from Lanczos vectors

Movie from M.Miorelli

Other computational aspects

50 to 90% of the CPU times is spent in the Lanczos algorithm + matrices become too large to be loaded in the memory of a single core It is wise to distribute the load (memory and computation) on different cores Example

PE
PE2
PE
PE4

This can lead to unbalance among the threads

Other computational aspects

50 to 90% of the CPU times is spent in the Lanczos algorithm + matrices become too large to be loaded in the memory of a single core It is wise to distribute the load (memory and computation) on different cores Example

More balanced distribution

Other computational aspects

50 to 90% of the CPU times is spent in the Lanczos algorithm + matrices become too large to be loaded in the memory of a single core It is wise to distribute the load (memory and computation) on different cores Example

PEI
PE2
PE3
PE4

Possible Improvement: Can save a factor of 2 using hermiticity of \mathbf{H}

Other computational aspects

Parallel algorithm
 "Scaling" of the problem

Scaling means that at a constant problem size the parallel speedup increases linearly with the number of used cores

Speedup $S_{c}=\frac{T_{1}}{T_{c}} \longrightarrow$ Time needed for a sequential algorithm
Ideal situation $\quad T_{c}=\frac{T_{1}}{c} \quad S_{c}=c \quad$ linear speedup
limited by algorithm and by communications among threads

Matrix dimension ~40000

