
Lecture series for SFB 1245 
TU Darmstadt

Electromagnetic properties of nuclei: 
from few- to many-body systems

 Lecture 6

Few-body methods

 Sonia Bacca 
 

   November 22nd, 2017                                                                                



Sonia Bacca

 We will worm up with the deuteron, 
 Which is also the first nuclear few-body system 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Recap for most of you
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• The deuteron 2H (or just d), is the simplest nucleus. It consists of one proton and one neutron.  
   It should be for nuclear physics what the hydrogen atom is to atomic physics.
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Hydrogen atom
1~r

Just as the study of the Balmer series in the electromagnetic transition between the excited stats 
of the hydrogen has lead to an understanding of its structure, one would like to do the same for 
nuclear physics and the nuclear force, by studying the deuteron.
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The two-body nucleus
1

2
~r

However, the deuteron is the only two nucleon bound state, and it 
has no bound excited state!
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For for most nuclei, the typical case is that BE/A ~ 8 MeV. 
The deuteron is a very weakly bound nucleus since for it we have BE/A=1.1 MeV. 
The deuteron also has a magnetic moment, and a nonzero quadruple moment:  

µ = 0.8574 µN

Q = 0.28570 fm2 As we shall see, this means the deuteron is not a 
pure S-wave state 

The deuteron
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In the following, we would like to describe the deuteron theoretically. 
Let us recall how we want to represent its wave function.

| i = | i|{z}
space

⌦ |�Si|{z}
spin

⌦ |�T i|{z}
isospin

Spin wave function

the total wave function must be 
antisymmetric with respect to the 
exchange of two p-n

Triplet :

8
><

>:

| ""i
1p
2
(| "#i+ | #"i)

| ##i
=

8
><

>:

|S = 1, Sz = +1i
|S = 1, Sz = 0i
|S = 1, Sz = �1i

Singlet :
1p
2
(| "#i � | #"i) = |S = 0, Sz = 0i

where
Sz = Sz1 + Sz2

~S = ~S1 + ~S2

symmetric

anti-symmetric

If we start from two particles with spin 1/2 and want to construct two body states that have 
good symmetry properties with respect to the permutation group. As you know from quantum 
mechanics, these are states you can construct
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The same is true for the isospin where the notation is similar, but with a different meaning:

| "iiso = p, | #iiso = n

So we will have singlet and triplet w.f. in isospin as well.

The isospin of the deuteron is T=0, so its isospin wave function must be the isospin singlet  
which is anti-symmetric 

|�T i = 1p
2

�
| "#iiso + | #"iiso

�
= |T = 0, T

z

= 0i
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Can we tell anything more about the spin wave function? 
In principle the spin wave function can be either singlet or triplet. 

What we know from experiment is that the total angular momentum of the deuteron is J  =1+, 
where the total angular momentum is

~S =
~1

2
+

~1

2
=

(
0

1

~J = ~̀+ ~S

From the above coupling and knowing that J=1, we can get some restrictions on the orbital 
angular momentum `

If S = 0 =) J = ` = 1

All together we have three different possibilities for the orbital angular momentum: 0,1,2  

=) ~̀= ~J � ~S

If S = 1 =) 0 = |J � 1|  `  J + 1 = 2 =) ` 2 {0, 1, 2}
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However, we also know that the parity is positive. The parity of the wave function goes like 

⇡ = ⇡1⇡2(�1)` = 1 where                are the parities of p and n, which are taken to be 
positive by convention

⇡1,⇡2

` = 1 cannot happen for the deuteron

So we have that

S = 1 and ` 2 {0, 2}

S = 0

This implies there is an S-wave component             (dominant) and  a D-wave component             
            in the deuteron  w.f.

` = 0

` = 2

 = a (`=0) + b (`=2) with |a|2 + |b|2 = 1
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Now we want to theoretically solve the deuteron as a two-body problem of particles 
interacting with a translationally invariant potential in a non relativistic formalism

H =
p21
2m1

+
p22
2m2

+ V (~r1 � ~r2)

One obtains H =
P

2

CM

2M
+

p
2

2µ
+ V (~r) = TCM +Hrel

where M = 2m, µ =
m

2 Hamiltonian depending only 
on the relative coordinates

int

If one transforms from particle coordinates  to relative and centre of mass coordinates one 
can simplify the problem to a one-body problem 
(we now take the masses                               )m1 = m2 = m
(
~r = ~r1 � ~r2
~RCM = ~r1+~r2

2

also

(
~p = ~p1 � ~p2
~PCM = ~p1 + ~p2

(             )/2
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We are interested only in the intrinsic dynamics and we do not care if the deuteron moves 
as a whole with kinetic energy 
The Schrödinger equation we want to solve is then:

TCM


p2

2µ
+ V (~r)

�
 (~r) = E  (~r)

Which is clearly a one-body problem in a three-dimensional space.

Go to spherical coordinates and write the laplacian (p2) in these coordinates


� ~2
2µ

✓
1

r2
d

dr
r2

d

dr
� L2

r2

◆
+ V (~r)

�
 (r, ✓') = E  (r, ✓')  (    )

This is the Schrödinger equation we have to solve in order to obtain a theoretical description 
of the deuteron.   

ˆ̀2
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analytical

We first would like to find a simplified solution to the deuteron.


� ~2
2µ

✓
1

r2
d

dr
r2

d

dr
� L2

r2

◆
+ V (~r)

�
 (r, ✓') = E  (r, ✓')  (    )

To solve this equation we have to make an ansatz for the potential. 
We can find an analytical solution to this equation only if we assume the potential to be very 
simple: like a spherical square well

E/MeV

r

R

-V0

Deuteron binding 
energy

V (r) =

(
�V0 for r  R

0 for r > R

ˆ̀2

In this way the potential depends only on                     so it is purely central, orbital angular 
momentum is a good q.n. (We can use                          as good q.n.) 

r = |~r |
`,m, s,ms
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Consequently

The problem looks now like the a one dimensional spherical potential well that you must have 
solved analytically in a Quantum Mechanics course. Remember that E is negative for bound 
states.

u(r) = A sin(k1r) +B cos(k1r)The solution is sinusoidal w.f.

 (r, ✓,') =
X

`

c` R`(r) Y`,m(✓,')

The g.s. will have  (r, ✓,') / R`=0(r) = R(r)

Now if you introduce the modified wave function 
then the laplacian in the Schrödinger equation  becomes easier in terms of u(r) 

� ~2
2µ

d2u(r)

dr2
+ V (r)u(r) = Eu(r)  (    )

R(r) = u(r)/r

radial equation

` = 0

If we want              to be finite in r=0 then B=0R(r)

For r < R 

k1 =
p
(2µ(E + V0)/~2)with

V = �V0 � ~2
2µ

du2

dr2
� V0u = Eu

du2

dr2
= �2µ(E + V0)

~2 u = �k21u

 (    )  becomes

2
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For r > R V = 0

du2

dr2
= �2µE

~2 u = k22u

 (    )  becomes

 with k2 =

r
�2µE

~2
Remember that E is negative, 
so this is real

the free Schrödinger Eq.

 The solution is

u(r) = Ce�k2r +De+k2r

 To keep this finite at infinite distance we have to require that D=0

2

 Now applying the continuity condition for u and its derivative in r=R we get 

k1A cos(k1R) = �k2Ce�k2R

k1 cot(k1R) = �k2

this gives a relation between V0 , E and R

A sin(k1R) = �Ce�k2Rw.f.

derivative
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k1 cot(k1R) = �k2

From electron scattering we know R~2.1 fm. 
Experimentally we also know that E=-2.2 MeV 
So we solve for V0  

It turns out that     V0 = 35 MeV

The deuteron is 
barely bound!

If the NN force were slightly less attractive there 
would be no bound state, so no deuteron. 
Luckily the NN force is attractive enough, 
because the formation of the deuteron is the first 
step in the proton-proton fusion cycle in our Sun  
and the first step in the formation of stable matter 
in the Universe.

E/MeV
r

R

-V0

Deuteron binding 
energy
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The weak binding of the deuteron translates into the wave function just barely able to turn 
over to match the exponential free solution outside the well. 
(If the potential were more attractive, the w.f. would turn over earlier).

The deuteron ground state is so close to the top of the well that its wave function leaks  
way out (extended nucleus). 
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The truth is that the nuclear potential is not central because 

• There is a spin-orbit component. 

• There is a tensor force. 

This means one has to couple orbital angular momentum with spin to introduce the total 
angular momentum J. 
A set of operators that commute with H and have common eigenvalues are J,Jz, S2 and L2 . 
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However …

 = a (`=0) + b (`=2) with |a|2 + |b|2 = 1 a � band

Main point: Non central forces mix different orbital angular momentum components. 
Thus, as we saw before, knowing that J=1, making simple considerations of spin and isospin 
 wave functions + parity, we learn that the deuteron ground state is:
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VC

VT

Using a realistic potential, the solution of the Schrödinger equation is not analytical anymore. 
From a numerical solution of the problem one obtains

S-wave
D-wave

` = 0
` = 2
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Even if we did not know about the one-pion exchange potential, we would realize that 
the spherical square well is too simple of a model for the deuteron by trying to describe 
its measured properties with it: we would fail! 

• Magnetic Moment 

•Quadrupole Moment

µd = 0.8574 µN

Q = 0.285783(30) fm2
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Tensor force

Deuteron properties
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Even if you do not solve the deuteron numerically, you can tell that a>>b from the magnetic 
moment.  
If there is no orbital angular momentum between p and n (only S-wave component), then  
magnetic moment of the deuteron is given by

Magnetic Moment µd = 0.8574 µN

µd ⇡ µp + µn =
�
gspSp + gsnSn

�
µN

 where gsp = 5.58569, gsn = �3.82608

 are the anomalous giromagnetic factors of proton and neutron, while Sp/n are their spins.

µd ⇡
✓
5.58569

2
� 3.82608

2

◆
µN = 0.879805µN

This is almost correct, but it is not exact. This means that the S-wave component is 
most of the wave function, but there has to be a small D-wave component to explain 
this little difference.
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Magnetic Moment µd = 0.8574 µN
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Magnetic moment

How do you calculate the magnetic moment of the deuteron?

Given an electromagnetic current in coordinate space, the magnetic moment is calculated 
from the latter as expectation value of this operator

LO in chiral EFT

J

c
(1)(x) =

e

2m

X

i

1 + ⌧3i
2

{pi, �(x� ri)}

J

s
(1)(x) = i

e

2m

X

i

µi
1 + ⌧3i

2
�i ⇥ [pi, �(x� ri)]

Take the convection 
and spin currents
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Magnetic Moment µd = 0.8574 µN

Take the z component, write it for 2 nucleons only and use the isoscalar and isovector 
anomalous moments

g`|pi =
1 + ⌧3

2
|pi = 1|pi

g`|ni =
1 + ⌧3

2
|ni = 0

gs|pi = [4.7⌧3 + 0.88]|pi = [4.7 + 0.88]|pi = 5.58|pi
gs|ni = [4.7⌧3 + 0.88]|ni = [�4.7 + 0.88]|ni = �3.82|ni

where
z

z

z

z

= µN

2X

i=1

✓
[4.7⌧3i + 0.88]Szi +

1 + ⌧3i
2

`zi

◆} }
gs g`

z
z
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Magnetic moment

 There always is spin part and an orbital part 
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Magnetic Moment µd = 0.8574 µN

= µN

2X

i=1

✓
[4.7⌧3i + 0.88]Szi +

1 + ⌧3i
2

`zi

◆
µd

 In the expectation value each part of the operator acts only on the corresponding  w.f. 

h |O| i = h[ L ⌦ �S ]J |Ospin�space|[ L ⌦ �S ]Jih�T |Oisospin|�T i

Expectation value has to be taken on  the total w.f.

If a general operator O = Ospin�space ⌦Oisospin

| i = [| L ⌦ �S ]Ji| {z }
spin�space

⌦ |�T i|{z}
isospin

acts on different part of the space 

z
z
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Magnetic Moment µd = 0.8574 µN

= µN

2X

i=1

✓
[4.7⌧3i + 0.88]Szi +

1 + ⌧3i
2

`zi

◆
µd

For the isoscalar part you get

hT = 0|1|T = 0i = 1

We can just take the isoscalar part of the operator

1

z
z

Isospin part

This part is a vector in spin space (isovector). The deuteron has T=0, so when 
you sandwich this with the wave function you get 0

hT = 0| ⌧31 + ⌧32 |T = 0i = 0z z

⌧zi

ˆ
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Magnetic Moment µd = 0.8574 µN

µ = µN

0

BBBB@
0.88

2X

i=1

Szi

| {z }
Sz

+
1

2

X

i

`zi

| {z }
Lz

1

CCCCAd

hµi = µN

✓
0.38hSziM=1 +

1

2

◆

d

Jz = Lz + Sz =) Lz = Jz � SzBecause and

hLziM=1 = hJziM=1 � hSziM=1 = 1� hSziM=1We have

hJziM=1 = 1`z `z
`z

`z

`z1 + `z2 = `z + LCM
zNB:

we can drop the CM part

When we take the expectation value on the spin-space we have

hµi = µN

✓
0.88hSziM=1 +

1

2
hLziM=1

◆

d
`z NB: Magnetic moment is defined as 

expectation value on state with maximally 
alligned total angular momentum, i.e. J,Jz=1,1 
for the deuterium
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Magnetic Moment µd = 0.8574 µN

hµi = µN

✓
0.38hSziM=1 +

1

2

◆

So if a=1, there is a pure S-wave and 

And if b=1, there is a pure D-wave

hµdi = µN0.88

hµdi = µN0.31

d

In calculating the expectation value of Sz we have to consider that

 = a (`=0,S=1,J=1) + b (`=2,S=1,J=1)

It can be shown that hSzi = 1 on  (`=0,S=1,J=1)

hSzi = �1/2 on  (`=2,S=1,J=1)
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Magnetic Moment µd = 0.8574 µN

Because S-wave and D-wave states are not coupled by the operator, we can write that in 
general

hµdi = µN

�
0.88 a2 + 0.31 b2

�

a2 + b2 = 1 =) a2 = 1� b2with

Then hµdi = µN

�
0.88 � 0.527 b2

�
⌘ 0.8574µN

Impose it to be equal to the experimental value

b = 0.04  4% of D-wave in the deuteron wave function2
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Magnetic moment

Linear relation between D-wave probability (b2) and magnetic moment
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N.B.: This is not the whole story. A more sophisticated theoretical treatment shows 
that our starting magnetic operator is not complete, because there are meson 
exchange currents. 

With these two-body operators then b2 becomes 0.05-0.07. 

Magnetic Moment µd = 0.8574 µN

Magnetic moment



Sonia Bacca 28

p n

n p
 

p n

n p
 

+

Leading term of  
two-body 

Chiral EFT

They appear at NLO but are purely isovector, so they do not contribute to the deuteron 
magnetic moments. 

Loop corrections and other higher order terms contribute and contain new LEC which 
can be calibrated by fitting the experimental value.

Magnetic Moment µd = 0.8574 µN

EM observables are needed to fit the new LEC in the em operators


