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After having wormed up with the deuteron
we will present the modern perspective 

Ab-initio methods
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Few-body: A≲12 Many-body: 12≲A≲40 or more 

• Faddeev Yakubowski (FY) • Coupled Cluster (CC)  

• Other Monte Carlo methods  

• IMSRG 

• Self consistent Green’s function 

• Diagonalization methods 
  (on different basis)

Ab-initio methods

Most representative approaches

• Green Function Monte Carlo

• Faddeev Yakubowski (FY) 

• HH Kohn-Variational P. (2 fragments)

• NCSMC (only at very low energy)



Focus on diagonalization methods 

Keep in mind we want to be able to compute the ground-state 
and the Schrödinger-like equation appearing in the integral 
transform approach to electro-weak reactions 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 Solve Schroedinger equation by expanding the w.f. on a complete basis states

| i =
1X

i

ci | iiH | i = E | i  cannot store an infinite vector    

 basis states    

H

NX

i

ci | ii = E

NX

i

ci | iih j |⇥

�jiHji

NX

i

h j |H | ii ci = E

NX

i

ci h j | ii}}

 controlled increasing N   

Hc = Ec Eigenvalue problem for an 
Hermitian matrix   H = H†

Diagonalize H

Computationally challenging for growing N and mass number A  High Performance 
Computing

Diagonalization methods
Given a complete set of basis states:



My choice of basis: 
Hyper-spherical harmonic expansions
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• The study of nuclear systems composed of A-nucleons have led to 
the construction of the hyper-spherical harmonics, which are 
harmonic polynomials in 3(A-1) dimensional space. 

•The hyper-spherical coordinates and the hyper-spherical 
harmonics are  generalization of the spherical harmonics from 3D 
space into the general case 

•The HH were introduced in 1935 by Zernike and Brinkman 

•They were reintroduced 25 years later by Delves and Smith 

• …. 

• Present developers, practitioners: Barnea, Efros, Gattobigio, 
Viviani etc… 

Hyper-spherical Harmonics

They are built starting from relative coordinates
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Two-body problem

 (x1,x2) = hx1x2| i

H = E 

H = � ~2
2m1

r2
1 �

~2
2m2

r2
2 + V (|x2 � x1|)

x

y

z

x1

x2

recap



Sonia Bacca 9

Two-body problem

 (x1,x2) = hx1x2| i

H = E 

H = � ~2
2m1

r2
1 �

~2
2m2

r2
2 + V (|x2 � x1|)

In the 2-body case we separate the centre of mass motion from the 
relative motion through the transformation

R =
1

M12
(m1x1 +m2x2)

r = (x2 � x1)

The internal Hamiltonian is given by 

H = � ~2
2µ

r2 + V (r) µ =
m1m2

m1 +m2

x

y

z

R

r

M12 = m1 +m2with

recap
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Two-body problem

x

y

z


� ~2
2µ

r2 + V (r)

�
 (r) = E (r)

r

R

"
� ~2
2µ

 
d2

dr2
+

2

r

d

dr
�

ˆ̀2

r2

!
+ V (r)

#
 (r) = E (r)

Angular momentum operatorGoing to spherical coordinates in r

recap

ˆ̀2Y`m(r̂) = `(`+ 1)Y`m(r̂) ˆ̀
zY`m(r̂) = mY`m(r̂)

Spherical harmonics

Intrinsic wave function  (r) = Y`m(r̂)R`(r)
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Two-body problem

x

y

z

r
Intrinsic wave function  (r) = Y`m(r̂)R`(r)


� ~2
2µ

✓
d2

dr2
+

2

r

d

dr
� `(`+ 1)

r2

◆
+ V (r)

�
R`(r) = ER`(r)

Radial Schrödinger equation

If you know the potential, you can solve it either on a grid or 
expanding the radial wave function on a basis

R

recap
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Jacobi coordinates  A=2
In the 2-body case we separate the centre of mass motion from the relative  
motion through the transformation

R =
1

M12
(m1x1 +m2x2)

r = (x2 � x1)

M12 = m1 +m2With

It should be noted that this transformation is not orthogonal. 

The orthogonal transformation is

⌘0 =

r
1

M12
(m1r1 +m2r2)

⌘1 =

r
m1m2

M12
(r2 � r1)

CoM

Relative

A two-body problem is reduced to a one-body problem, once the CoM is removed

m

m arbitrary mass, typically taken 
to be the nucleon mass
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Jacobi coordinates  A=3

⌘0 =

r
1

M123
(m1r1 +m2r2 +m3r3)

⌘1 =

r
m1m2

M12
(r2 � r1)

⌘2 =

r
M12m3

M123

✓
r3 �

m1r1 +m2r2
M12

◆

CoM

Relative

x

y

z

⌘2

⌘1

A three-body problem is reduced to a two-body problem, once the CoM is removed

m

m
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Jacobi coordinates general A

⌘k�1 =

r
M1...k�1mk

M1...k

⇣
rk � 1

M1...k�1
(m1r1 +m2r2 + · · ·+mk�1rk�1)

⌘

Mass-weighted Jacobi coordinates

⌘0 =

r
1

M1...k
(m1r1 +m2r2 + · · ·+mArA) CoM

Relative  (A-1) coordinates

An A-body problem is reduced to an (A-1)-body problem, once the CoM is removed

m

NB: one can write this as an orthogonal transformation and then compute the 
expressions of the gradients
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Jacobi coordinates general A
Normalized equal mass (A-1) Jacobi coordinates

⌘1 =

r
1

2

⇣
r2 � r1

⌘

⌘2 =

r
2

3

⇣
r3 �

1

2
(r2 + r3)

⌘

. . .

⌘A�2 =

r
A� 2

A� 1

⇣
rA�2 �

1

A� 2
(r1 + r2 + · · ·+ rA�3)

⌘

⌘A�1 =

r
A� 1

A

⇣
rA�1 �

1

A� 1
(r1 + r2 + · · ·+ rA�1)

⌘

⌘1

⌘2

⌘A�1

One may start these definitions with an arbitrary permutation of particles



Once you have the Jacobi coordinates, you can 
perform another transformation to hyperspherical 
harmonics coordinates



Sonia Bacca 17

Recursive definition of hyper-spherical coordinates 

⇥ =
�

�2
1 + �2

2

sin�2 = �2
⇥

A=3 �

�2

�2

�1

Hyper-spherical coordinates

Hyper-radius

How many angular coordinates in total? 
How many HH coordinates in total? 

2(A-1)+A-2 = 3A-4 
3A-3

Hyper-angles

⌦ = (⌘̂1, . . . , ⌘̂A�1,↵2, . . . ,↵A�1)

�,�In general ⌘1, . . .⌘A

⌘1

⌘2

A=4 2

3
⌘3

⌘1

⌘2
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⇥2 =
A�

i=1

r2
i =

A�1�

i=1

�2
i

Hyper-spherical coordinates

Exercise: prove this property of the hyper-radius

Nuclear matter radius is related simply to the hyper-radius



Once we have a new set of coordinates, we need 
to rewrite our Hamiltonian in these coordinates

1) Kinetic energy
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Laplace operator in hyper-spherical coordinates

The internal kinetic energy operator for a two-particle system is given 
by the three-dimensional Laplace operator, expressed in terms of the 
relative motion 
Jacobi coordinate        and the corresponding angle coordinates

A=2 
Recap

⌘1 ⌦

Where the radial part is

�⌘1 =
@2

@⌘21
+

2

⌘1

@

@⌘1

And        is the angular momentum operator of the relative motionˆ̀2
1

�(1) = �⌘1
= �⌘1 �

1

⌘21
ˆ̀2
1

N.B.:
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Laplace operator in hyper-spherical coordinates

A=3 The internal kinetic energy of a three-particle system is described 
by the six-dimensional Laplace operator which is a sum over the three  
dimensional Laplace operators that act on the coordinates      and          
separately.

⌘1 ⌘2

�(2) = �⌘1
+�⌘2

= �⌘1 +�⌘2 �
1

⌘21
ˆ̀2
1 �

1

⌘22
ˆ̀2
2

Now transforming to HH coordinates using the definition of hyper-radius and

one gets

⌘1 = ⇢ cos↵2

⌘2 = ⇢ sin↵2

�(2) =
@2

@⇢2
+

5

⇢

@

@⇢
� 1

⇢2
K̂2

with ˆK2
= � @2

@↵2
2

� 4 cot(2↵2)
@

@↵2
+

1

cos

2 ↵2

ˆ`21 +
1

sin

2 ↵2

ˆ`22

Grand-angular momentum operator
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Important observations

These operators form a complete set of commuting hyper-spherical  
operators, and therefore we can introduce a set of quantum numbers 

K̂2, ˆ̀21, ˆ̀1,z, ˆ̀
2
2, ˆ̀2,z

These operators commute also with             and K, `1,m1, `2,m2 �(2)

obtained from the internal angular momentum  
of the three-particle system 

L̂ = ˆ̀
1 + ˆ̀

2

L̂2, L̂z

Since it is a recursive definition, it should be labelled by the number of particles

⇢A�1, K̂
2
A�1
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Laplace operator in hyper-spherical coordinates

General A The Laplace operator in 3( A-1)  dimensions, that describes the internal 
kinetic energy of an A-body system, is

�(A�1) =
A�1X

i=1

�⌘i
=

A�1X

i=1

✓
�⌘i �

1

⌘2i
ˆ̀2
i

◆

with

Radial part

�
A�1

⇢A�1
=

@2

@⇢2A�1

+
3(A� 1)� 1

⇢A�1

@

@⇢A�1

Now transforming to A-body HH coordinates it becomes

�(A�1) = �
A�1

⇢A�1
� 1

⇢2A�1

K̂ 2
A�1

Angular part

and

ˆK 2
A�1=� @2

@↵2
A�1

+

3A�9�(3A�5)cos (2↵A�1)

sin (2↵A�1)

@

@↵A�1
+

ˆ` 2A�1

sin

2 ↵A�1
+

+

ˆK 2
A�2

cos

2 ↵A�1Grand-angular momentum operator
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Important observations

These operators form a complete set 
of commuting hyper-spherical 
operators. 
The recursion can be used so that at 
the end we can introduce a set of 
quantum numbers corresponding to 
operators that commute

K̂2
A�2, ˆ̀

2
A�1, K̂

2
A�1, L̂

2
A�1, L̂A�1z

[KA�1] = KA�1,KA�2, . . . ,K2, `A�1, `A�2, . . . , `2, `1,mA�1,mA�2, . . . ,m2,m1

…

Cumulative quantum number 

K̂2
A�1 commutes with the kinetic energy



Once we have a new set of coordinates, we need 
to rewrite our Hamiltonian in these coordinates

2) Potential

The simplest potential you can use is an hyper-radial 
potential
In general, NN potentials are more complicated…

V (⇢)
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Hyper-spherical Harmonics

Are eigenfunctions of the grand-angular momentum operator

HH
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Hyper-spherical Harmonics
A=2

A=3

spherical harmonics

Start of hpyer-spherical harmonics

Y`1,m1(⌘̂1)

Y[K2](⌦(2),↵2) =  K2;`2`1 (↵2)�L2M2;`1`2

�
⌦(2)

�

�L2M2;`1`2

�
⌦(2)

�
=

X

m1,m2

h`1`2L2|m1m2M2iY`1m1 (⌘̂1)Y`2m2 (⌘̂2)

coupled spherical harmonics 

N2 (K2; `2`1) =

"
(2K2 + 4)n2!� (n2 + `2 + `1 + 2)

�
�
n2 + `2 +

3
2

�
�
�
n2 + `1 +

3
2

�
# 1

2

Hyper-angular function and polynomial

 K2;`2`1 (↵2) = N2 (K2; `2`1) (sin↵2)
`2
(cos↵2)

`1 P
(

`2+ 1
2 ,`1+

1
2 )

n2 (cos 2↵2)

Jacobi polynomial
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Hyper-spherical Harmonics
General A

Y[KA�1]

�
⌦(A�1),↵(A�1)

�
=  KA�1;`A�1KA�2

�
↵(A�1)

�
�LA�1MA�1;[KA�2]`A�1

�
⌦(A�1),↵(A�2)

�

coupled spherical and hyper-spherical harmonics 

�LA�1MA�1;[KA�2]`A�1

�
⌦(A�1),↵(A�2)

�
=

X

MA�2,mA�1

hLA�2`A�1LA�1|MA�2mA�1MA�1iY[KA�2]

�
⌦(A�2),↵(A�2)

�
Y`A�1mA�1(⌘̂A�1)

Hyper-angular function and polynomial

Jacobi polynomial

 KA�1;`A�1KA�2 (↵A�1) =

NA�1! (KA�1; `A�1KA�2)(sin↵A�1)
`A�1

(cos↵A�1)
KA�2P

(

`A�1+ 1
2 ,KA�2+

3A�8
2 )

nA�1 (cos 2↵A�1)

KA�1 = 2nA�1 +KA�2 + `A�1

with 
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Hyper-spherical Harmonics
To make the long story short:

• The Laplacian can be written as

� =
@2

@⇢2
+

D � 1

⇢

@

@⇢
� K̂2

⇢2

depends on particle number

• The HH are eigenstates of K̂2

• The HH are eigenstates of the kinetic energy operator 

• The HH form a complete set of orthonormal states

hY[K](⌦
0)|Y[K0](⌦)i = �[K],[K0]

K̂2Y[K](⌦) = K(K +D � 2)Y[K](⌦)
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2

Hydrogen atom A-body Nucleus
1

CM

• Solve the problem in the CM frame 

~r

• Solve the problem in the CM frame 

[T + V (r)] (~r) = E (~r)

ˆ̀2 Y`m(⌦) = `(`+ 1)Y`m(⌦)

⌘1

⌘2

⌘A�1

K̂2Y[K](⌦) = K(K +D � 2)Y[K](⌦)

• Use hyperspherical coordinates

 (~⌘1, ~⌘2) ⇠ Y[K](⌦)R[K](⇢)

�,�⌘1, . . .⌘A

 (⌘1, . . .⌘A)

T = � ~2
2m

"
�⇢ �

K̂2

⇢2

#

• Solve the radial equation

(
� ~2
2m

"
�r �

ˆ̀2

r2

#
� E + V (r)

)
R`(r) = 0

• Use spherical coordinates

~r = (r, ✓,�)

⌦

}

 (~r) ⇠ Y`m(⌦)u`(r)

T = � ~2
2m

"
�r �

ˆ̀2

r2

#

• Solve the hyperradial equation

(
� ~2
2m

"
�⇢ �

K̂2

⇢2

#
�[K],[K0] � E �[K],[K0] + hY[K]|V (⇢,⌦)|Y[K0]i

)
R[K](⇢) = 0

[T + V ] (⌘1, . . .⌘A) = E (⌘1, . . .⌘A)

Understanding with an analogy
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• If we want to work with fermions, we may want to antisymmetrize HH

• Antisymmetrization can be achieved by diagonalizing the 
antisymmetrizer operator

• Or one can use other algorithms based on their symmetry properties

N. Barnea and A. Novoselsky, Ann. Phys (N.Y.)  256, 192 (1997). 
N. Barnea and A. Novoselsky, Phys. Rev.  A  57, 48 (1998).

Antisymmetrization
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| i =
K

maxX

[K]

⌫
maxX

⌫

c[K]⌫ Y[K](⌦) e
�⇢/2bL⌫(⇢) K

max

⇤ ⌫
max = # states

Exact method

When you converge your expansion,  
every kind of correlation induced by the Hamiltonian 
is taken into account

Bad computational scaling

Matrices become big very fast…

HH expansion
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0 2 4 6 8 10 12 14 16 18 20 22 24 26
Kmax

1

10

100

1000

10000

1e+05

# 
H

H
 st

at
es

A=3
A=4
A=6
A=8

Ground States 

Total number of states: 

106 dense matrix

| i =
K

maxX

[K]

⌫
maxX

⌫

c[K]⌫ Y[K](⌦) e
�⇢/2bL⌫(⇢) K

max

⇤ ⌫
max = # states

#

HH expansion
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Benchmark on 4He

� =2 .0 fm�1

Eexp=-28.296 MeV

0 2 4 6 8 10 12 14
Kmax

−30

−25

−20

−15

−10

E 0 [M
eV

]

Λ = 1.8 fm−1

Λ = 2.0 fm−1

Λ = 2.4 fm−1

HH

Vlow k NN  from N3LO (500 MeV) 

4He

S.Bacca et al., Eur. Phys. J. A 42, 553 (2009)


