Electromagnetic properties of nuclei: from few- to many-body systems

Lecture 7

Few-body methods

Sonia Bacca

November 22nd, 2017
Lecture series for SFB 1245
TU Darmstadt

$\mathrm{Jg} \mid \mathrm{U}$
 Ab-initio methods

After having wormed up with the deuteron we will present the modern perspective

Ab-initio methods

Most representative approaches

Few-body: $A \leq 12$
Many-body: $12 \leq A \leq 40$ or more

- Faddeev Yakubowski (FY)
- Diagonalization methods (on different basis)
- Green Function Monte Carlo

```
- Coupled Cluster (CC)
- Other Monte Carlo methods
- IMSRG
- Self consistent Green's function
```

Faddeev Yakubowski (FY)
HH Kohn-Variational P. (2 fragments)
NCSMC (only at very low energy)

Focus on diagonalization methods

Keep in mind we want to be able to compute the ground-state and the Schrödinger-like equation appearing in the integral transform approach to electro-weak reactions

Diagonalization methods

Given a complete set of basis states:

Solve Schroedinger equation by expanding the w.f. on a complete basis states

$$
\begin{aligned}
& H|\psi\rangle=E|\psi\rangle \quad|\psi\rangle=\sum_{i}^{N} c_{i}\left|\psi_{i}\right\rangle \quad \begin{array}{l}
\text { cannot store an infinite vector } \\
\text { controlled increasing } N
\end{array} \\
& \left\langle\psi_{j}\right| \times H \sum_{i}^{N} c_{i}\left|\psi_{i}\right\rangle=E \sum_{i}^{N} c_{i}\left|\psi_{i}\right\rangle \\
& \sum_{i}^{N}\langle\psi_{j} \underbrace{H\left|\psi_{i}\right\rangle}_{H_{j i}} c_{i}=E \sum_{i}^{N} c_{i}\langle\underbrace{\psi_{j}\left|\psi_{i}\right\rangle}_{\delta_{j i}}
\end{aligned}
$$

$\mathbf{H c}=E \mathbf{c}$
Eigenvalue problem for an Hermitian matrix
$\mathbf{H}=\mathbf{H}^{\dagger}$
Diagonalize H

Computationally challenging for growing N and mass number A

My choice of basis: Hyper-spherical harmonic expansions

- The study of nuclear systems composed of A-nucleons have led to the construction of the hyper-spherical harmonics, which are harmonic polynomials in 3(A-1) dimensional space.
-The hyper-spherical coordinates and the hyper-spherical harmonics are generalization of the spherical harmonics from 3D space into the general case
- The HH were introduced in 1935 by Zernike and Brinkman
- They were reintroduced 25 years later by Delves and Smith
- Present developers, practitioners: Barnea, Efros, Gattobigio, Viviani etc...

They are built starting from relative coordinates

$$
\begin{gathered}
\psi\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=\left\langle\boldsymbol{x}_{1} \boldsymbol{x}_{2} \mid \psi\right\rangle \\
H \psi=E \psi \\
H=-\frac{\hbar^{2}}{2 m_{1}} \nabla_{1}^{2}-\frac{\hbar^{2}}{2 m_{2}} \nabla_{2}^{2}+V\left(\left|\boldsymbol{x}_{2}-\boldsymbol{x}_{1}\right|\right)
\end{gathered}
$$

In the 2-body case we separate the centre of mass motion from the relative motion through the transformation

$$
\begin{aligned}
\boldsymbol{R} & =\frac{1}{M_{12}}\left(m_{1} \boldsymbol{x}_{1}+m_{2} \boldsymbol{x}_{2}\right) \quad \text { with } M_{12}=m_{1}+m_{2} \\
\boldsymbol{r} & =\left(\boldsymbol{x}_{2}-\boldsymbol{x}_{1}\right)
\end{aligned}
$$

The internal Hamiltonian is given by

$$
H=-\frac{\hbar^{2}}{2 \mu} \nabla^{2}+V(r) \quad \mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}
$$

$$
\left[-\frac{\hbar^{2}}{2 \mu} \nabla^{2}+V(r)\right] \psi(\boldsymbol{r})=E \psi(\boldsymbol{r})
$$

Going to spherical coordinates in \boldsymbol{r}
Angular momentum operator

$$
\begin{aligned}
& {\left[-\frac{\hbar^{2}}{2 \mu}\left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}-\frac{\hat{\ell}^{2}}{r^{2}}\right)+V(r)\right] \psi(\boldsymbol{r})=E \psi(\boldsymbol{r})} \\
& \hat{\ell}^{2} Y_{\ell m}(\hat{\boldsymbol{r}})=\ell(\ell+1) Y_{\ell m}(\hat{\boldsymbol{r}}) \quad \hat{\ell}_{z} Y_{\ell m}(\hat{\boldsymbol{r}})=m Y_{\ell m}(\hat{\boldsymbol{r}}) \\
& \hat{\mathbf{r}}=(\theta, \phi) \quad \text { Spherical harmonics }
\end{aligned}
$$

Intrinsic wave function $\quad \psi(\boldsymbol{r})=Y_{\ell m}(\hat{\boldsymbol{r}}) R_{\ell}(r)$

Radial Schrödinger equation
If you know the potential, you can solve it either on a grid or expanding the radial wave function on a basis

Jacobi coordinates $\mathbf{A}=2$

In the 2-body case we separate the centre of mass motion from the relative motion through the transformation

$$
\begin{aligned}
\boldsymbol{R} & =\frac{1}{M_{12}}\left(m_{1} \boldsymbol{x}_{1}+m_{2} \boldsymbol{x}_{2}\right) \\
\boldsymbol{r} & =\left(\boldsymbol{x}_{2}-\boldsymbol{x}_{1}\right)
\end{aligned}
$$

With $\quad M_{12}=m_{1}+m_{2}$
It should be noted that this transformation is not orthogonal.
The orthogonal transformation is
m arbitrary mass, typically taken to be the nucleon mass

$$
\begin{aligned}
\boldsymbol{\eta}_{0} & =\sqrt{\frac{1}{M_{12}}}\left(m_{1} \boldsymbol{r}_{1}+m_{2} \boldsymbol{r}_{2}\right) \\
\boldsymbol{\eta}_{1} & =\sqrt{\frac{m_{1} m_{2}}{M_{12} m}}\left(\boldsymbol{r}_{2}-\boldsymbol{r}_{1}\right) \longleftarrow \text { Relative }
\end{aligned}
$$

A two-body problem is reduced to a one-body problem, once the CoM is removed

Jacobi coordinates $A=3$

A three-body problem is reduced to a two-body problem, once the CoM is removed

$$
\boldsymbol{\eta}_{0}=\sqrt{\frac{1}{M_{123}}}\left(m_{1} \boldsymbol{r}_{1}+m_{2} \boldsymbol{r}_{2}+m_{3} \boldsymbol{r}_{3}\right) \longleftarrow \quad \text { CoM }
$$

$$
\begin{aligned}
\boldsymbol{\eta}_{1} & =\sqrt{\frac{m_{1} m_{2}}{M_{12} m}}\left(\boldsymbol{r}_{2}-\boldsymbol{r}_{1}\right) \\
\boldsymbol{\eta}_{2} & =\sqrt{\frac{M_{12} m_{3}}{M_{123} m}}\left(\boldsymbol{r}_{3}-\frac{m_{1} \boldsymbol{r}_{1}+m_{2} \boldsymbol{r}_{2}}{M_{12}}\right)^{2}
\end{aligned}
$$

Jacobi coordinates general A

An A-body problem is reduced to an (A-1)-body problem, once the CoM is removed
Mass-weighted Jacobi coordinates

$$
\begin{aligned}
\boldsymbol{\eta}_{0} & =\sqrt{\frac{1}{M_{1 \ldots k}}}\left(m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}+\cdots+m_{A} \mathbf{r}_{A}\right) \\
\boldsymbol{\eta}_{k-1} & =\sqrt{\frac{M_{1 \ldots k-1} m_{k}}{M_{1 \ldots k} m}}\left(\mathbf{r}_{k}-\frac{1}{M_{1 \ldots k-1}}\left(m_{1} \mathbf{r}_{1}+m_{2} \mathbf{r}_{2}+\cdots+m_{k-1} \mathbf{r}_{k-1}\right)\right)
\end{aligned}
$$

NB: one can write this as an orthogonal transformation and then compute the expressions of the gradients

Jacobi coordinates general A

Normalized equal mass (A-1) Jacobi coordinates

$$
\begin{aligned}
\boldsymbol{\eta}_{1} & =\sqrt{\frac{1}{2}}\left(\boldsymbol{r}_{2}-\boldsymbol{r}_{1}\right) \\
\boldsymbol{\eta}_{2} & =\sqrt{\frac{2}{3}}\left(\boldsymbol{r}_{3}-\frac{1}{2}\left(\boldsymbol{r}_{2}+\boldsymbol{r}_{3}\right)\right) \\
\boldsymbol{\eta}_{A-2} & =\sqrt{\frac{A-2}{A-1}}\left(\boldsymbol{r}_{A-2}-\frac{1}{A-2}\left(\boldsymbol{r}_{1}+\boldsymbol{r}_{2}+\cdots+\boldsymbol{r}_{A-3}\right)\right) \\
\eta_{A-1} & =\sqrt{\frac{A-1}{A}}\left(\boldsymbol{r}_{A-1}-\frac{1}{A-1}\left(\boldsymbol{r}_{1}+\boldsymbol{r}_{2}+\cdots+\boldsymbol{r}_{A-1}\right)\right)
\end{aligned}
$$

One may start these definitions with an arbitrary permutation of particles

Once you have the Jacobi coordinates, you can perform another transformation to hyperspherical harmonics coordinates

$\mathrm{Jg} \mid \mathrm{U}$
 Hyper-spherical coordinates

Recursive definition of hyper-spherical coordinates

$$
\mathbf{A}=3\left\{\begin{array} { l }
{ \boldsymbol { \eta } _ { 1 } = \{ \eta _ { 1 } , \theta _ { 1 } , \phi _ { 1 } \} } \\
{ \boldsymbol { \eta } _ { 2 } = \{ \eta _ { 2 } , \theta _ { 2 } , \phi _ { 2 } \} }
\end{array} \quad \left\{\begin{array}{r}
\rho=\sqrt{\eta_{1}^{2}+\eta_{2}^{2}} \\
\sin \alpha_{2}=\frac{\eta_{2}}{\rho}
\end{array}\right.\right.
$$

$$
\mathbf{A}=4 \quad\left\{\begin{array} { c }
{ \boldsymbol { \eta } _ { 1 } = \{ \eta _ { 1 } , \theta _ { 1 } , \phi _ { 1 } \} } \\
{ \boldsymbol { \eta } _ { 2 } = \{ \eta _ { 2 } , \theta _ { 2 } , \phi _ { 2 } \} } \\
{ \boldsymbol { \eta } _ { 3 } = \{ \eta _ { 3 } , \theta _ { 3 } , \phi _ { 3 } \} }
\end{array} \quad \left\{\begin{array}{c}
\rho=\sqrt{\eta_{1}^{2}+\eta_{2}^{2}+\eta_{3}^{2}} \\
\sin \alpha_{2}=\frac{\eta_{2}}{\rho} \\
\sin \alpha_{3}=\frac{\eta_{3}}{\rho}
\end{array}\right.\right.
$$

Hyper-radius

$$
{\underset{\text { Hyper-angles }}{\boldsymbol{\eta}_{1}, \ldots \boldsymbol{\eta}_{A}} \longrightarrow \Omega, \Omega}_{\uparrow}^{\longrightarrow}
$$

$$
\rho=\sqrt{\sum_{n-1}^{n-1} \theta^{2}}
$$

How many angular coordinates in total? How many HH coordinates in total?

ig|u Hyper-spherical coordinates

Exercise: prove this property of the hyper-radius

$$
\rho^{2}=\sum_{i=1}^{A} r_{i}^{2}=\sum_{i=1}^{A-1} \eta_{i}^{2}
$$

Nuclear matter radius is related simply to the hyper-radius

Once we have a new set of coordinates, we need to rewrite our Hamiltonian in these coordinates

1) Kinetic energy

The internal kinetic energy operator for a two-particle system is given A=2 by the three-dimensional Laplace operator, expressed in terms of the Recap relative motion

Jacobi coordinate η_{1} and the corresponding angle coordinates Ω

$$
\Delta_{(1)}=\Delta_{\eta_{1}}=\Delta_{\eta_{1}}-\frac{1}{\eta_{1}^{2}} \hat{\ell}_{1}^{2} \quad \text { N.B.: } \Delta=\nabla^{2}
$$

Where the radial part is

$$
\Delta_{\eta_{1}}=\frac{\partial^{2}}{\partial \eta_{1}^{2}}+\frac{2}{\eta_{1}} \frac{\partial}{\partial \eta_{1}}
$$

And $\hat{\ell}_{1}^{2}$ is the angular momentum operator of the relative motion

Laplace operator in hyper-spherical coordinates

$A=3$
The internal kinetic energy of a three-particle system is described by the six-dimensional Laplace operator which is a sum over the three dimensional Laplace operators that act on the coordinates η_{1} and η_{2} separately.

$$
\Delta_{(2)}=\Delta_{\eta_{1}}+\Delta_{\eta_{2}}=\Delta_{\eta_{1}}+\Delta_{\eta_{2}}-\frac{1}{\eta_{1}^{2}} \hat{\ell}_{1}^{2}-\frac{1}{\eta_{2}^{2}} \hat{\ell}_{2}^{2}
$$

Now transforming to HH coordinates using the definition of hyper-radius and

$$
\begin{aligned}
& \eta_{1}=\rho \cos \alpha_{2} \\
& \eta_{2}=\rho \sin \alpha_{2}
\end{aligned}
$$

one gets

$$
\Delta_{(2)}=\frac{\partial^{2}}{\partial \rho^{2}}+\frac{5}{\rho} \frac{\partial}{\partial \rho}-\frac{1}{\rho^{2}} \hat{K}^{2}
$$

with

$$
\hat{K}^{2}=-\frac{\partial^{2}}{\partial \alpha_{2}^{2}}-4 \cot \left(2 \alpha_{2}\right) \frac{\partial}{\partial \alpha_{2}}+\frac{1}{\cos ^{2} \alpha_{2}} \hat{\ell}_{1}^{2}+\frac{1}{\sin ^{2} \alpha_{2}} \hat{\ell}_{2}^{2}
$$

Grand-angular momentum operator
$\hat{K}^{2}, \hat{\ell}_{1}^{2}, \hat{\ell}_{1, z}, \hat{\ell}_{2}^{2}, \hat{\ell}_{2, z}$ These operators form a complete set of commuting hyper-spherical operators, and therefore we can introduce a set of quantum numbers
$K, \ell_{1}, m_{1}, \ell_{2}, m_{2} \quad$ These operators commute also with $\Delta_{(2)}$ and \hat{L}^{2}, \hat{L}_{z}
obtained from the internal angular momentum of the three-particle system

$$
\hat{\mathbf{L}}=\hat{\ell}_{1}+\hat{\ell}_{2}
$$

Since it is a recursive definition, it should be labelled by the number of particles

$$
\rho_{A-1}, \hat{K}_{A-1}^{2}
$$

General A The Laplace operator in 3(A-1) dimensions, that describes the internal kinetic energy of an A-body system, is

$$
\Delta_{(A-1)}=\sum_{i=1}^{A-1} \Delta_{\eta_{i}}=\sum_{i=1}^{A-1}\left(\Delta_{\eta_{i}}-\frac{1}{\eta_{i}^{2}} \hat{\ell}_{i}^{2}\right)
$$

Now transforming to A-body HH coordinates it becomes

$$
\Delta_{(A-1)}=\Delta_{\rho_{A-1}}^{A-1}-\frac{1}{\rho_{A-1}^{2}} \hat{K}_{A-1}^{2} \underbrace{2}_{\text {Angular part }}
$$

$$
\begin{aligned}
& \text { with } \Delta_{\rho_{A-1}}^{A-1}=\frac{\partial^{2}}{\partial \rho_{A-1}^{2}}+\frac{3(A-1)-1}{\rho_{A-1}} \frac{\partial}{\partial \rho_{A-1}} \text { and } \\
& \begin{array}{lr}
\hat{K}_{A-1}^{2}=-\frac{\partial^{2}}{\partial \alpha_{A-1}^{2}}+\frac{3 A-9-(3 A-5) \cos \left(2 \alpha_{A-1}\right)}{\sin \left(2 \alpha_{A-1}\right)} \frac{\partial}{\partial \alpha_{A-1}}+\frac{\hat{\ell}_{A-1}^{2}}{\sin ^{2} \alpha_{A-1}}+ \\
\uparrow & +\frac{\hat{K}_{A-2}^{2}}{\cos ^{2} \alpha_{A-1}}
\end{array} \\
& \text { Grand-angular momentum operator }
\end{aligned}
$$

Important observations

$\hat{K}_{A-2}^{2}, \hat{\ell}_{A-1}^{2}, \hat{K}_{A-1}^{2}, \hat{L}_{A-1}^{2}, \hat{L}_{A-1_{z}}$
These operators form a complete set of commuting hyper-spherical operators.
The recursion can be used so that at the end we can introduce a set of quantum numbers corresponding to operators that commute
$\left[K_{A-1}\right]=K_{A-1}, K_{A-2}, \ldots, K_{2}, \ell_{A-1}, \ell_{A-2}, \ldots, \ell_{2}, \ell_{1}, m_{A-1}, m_{A-2}, \ldots, m_{2}, m_{1}$
Cumulative quantum number
\hat{K}_{A-1}^{2} commutes with the kinetic energy

Once we have a new set of coordinates, we need to rewrite our Hamiltonian in these coordinates
2) Potential

The simplest potential you can use is an hyper-radial potential
In general, NN potentials are more complicated...

$\mathrm{Jg} \mid \mathrm{U}$
 Hyper-spherical Harmonics

HH

Are eigenfunctions of the grand-angular momentum operator

Hyper-spherical Harmonics

A=2 spherical harmonics $Y_{\ell_{1}, m_{1}}\left(\hat{\eta}_{1}\right)$
$A=3$ Start of hpyer-spherical harmonics

$$
\mathcal{Y}_{\left[K_{2}\right]}\left(\Omega_{(2)}, \alpha_{2}\right)=\psi_{K_{2} ; \ell_{2} \ell_{1}}\left(\alpha_{2} \Phi_{L_{2} M_{2} ; \ell_{1} \ell_{2}}\left(\Omega_{(2)}\right)\right.
$$

coupled spherical harmonics

$$
\Phi_{L_{2} M_{2} ; \ell_{1} \ell_{2}}\left(\Omega_{(2)}\right)=\sum_{m_{1}, m_{2}}\left\langle\ell_{1} \ell_{2} L_{2} \mid m_{1} m_{2} M_{2}\right\rangle Y_{\ell_{1} m_{1}}\left(\hat{\eta}_{1}\right) Y_{\ell_{2} m_{2}}\left(\hat{\eta}_{2}\right)
$$

Hyper-angular function and polynomial

$$
\begin{aligned}
& \psi_{K_{2} ; \ell_{2} \ell_{1}}\left(\alpha_{2}\right)=\mathcal{N}_{2}\left(K_{2} ; \ell_{2} \ell_{1}\right)\left(\sin \alpha_{2}\right)^{\ell_{2}}\left(\cos \alpha_{2}\right)^{\ell_{1}} P_{n_{2}}^{\left(\ell_{2}+\frac{1}{2}, \ell_{1}+\frac{1}{2}\right)}\left(\cos 2 \alpha_{2}\right) \\
& \mathcal{N}_{2}\left(K_{2} ; \ell_{2} \ell_{1}\right)=\left[\frac{\left(2 K_{2}+4\right) n_{2}!\Gamma\left(n_{2}+\ell_{2}+\ell_{1}+2\right)}{\Gamma\left(n_{2}+\ell_{2}+\frac{3}{2}\right) \Gamma\left(n_{2}+\ell_{1}+\frac{3}{2}\right)}\right]^{\frac{1}{2}} \quad \text { Jacobi polynomial }
\end{aligned}
$$

Hyper-spherical Harmonics

General A
$\mathcal{Y}_{\left[K_{A-1}\right]}\left(\Omega_{(A-1)}, \alpha_{(A-1)}\right)=\psi_{K_{A-1} ; \ell_{A-1} K_{A-2}}\left(\alpha_{(A-1)} \Phi_{L_{A-1} M_{A-1 ;}\left[K_{A-2}\right] \ell_{A-1}}\left(\Omega_{(A-1)}, \alpha_{(A-2)}\right)\right.$
coupled spherical and hyper-spherical harmonics
$\Phi_{L_{A-1} M_{A-1 ;}\left[K_{A-2}\right] \ell_{A-1}}\left(\Omega_{(A-1)}, \alpha_{(A-2)}\right)=$
$\sum_{M_{A-2}, m_{A-1}}\left\langle L_{A-2} \ell_{A-1} L_{A-1} \mid M_{A-2} m_{A-1} M_{A-1}\right\rangle \mathcal{Y}_{\left[K_{A-2}\right]}\left(\Omega_{(A-2)}, \alpha_{(A-2)}\right) Y_{\ell_{A-1} m_{A-1}}\left(\hat{\eta}_{A-1}\right)$

Hyper-angular function and polynomial

$$
\begin{aligned}
& \psi_{K_{A-1} ; \ell_{A-1} K_{A-2}}\left(\alpha_{A-1}\right)= \\
& \mathcal{N}_{A-1}!\left(K_{A-1} ; \ell_{A-1} K_{A-2}\right)\left(\sin \alpha_{A-1}\right)^{\left.\ell_{A-1}\left(\cos \alpha_{A-1}\right)^{K_{A-2}} P_{n_{A-1}}^{\left(\ell_{A-1}+\frac{1}{2}, K_{A-2}+\frac{3 A-8}{2}\right.}\right)\left(\cos 2 \alpha_{A-1}\right)}
\end{aligned}
$$

with
Jacobi polynomial

$$
K_{A-1}=2 n_{A-1}+K_{A-2}+\ell_{A-1}
$$

Hyper-spherical Harmonics

To make the long story short:

- The Laplacian can be written as

$$
\Delta=\frac{\partial^{2}}{\partial \rho^{2}}+\underbrace{\rho}_{\rho} \frac{\partial}{\partial \rho}-\frac{\hat{K}^{2}}{\rho^{2}}
$$

- The HH are eigenstates of \hat{K}^{2}

$$
\hat{K}^{2} \mathcal{Y}_{[K]}(\Omega)=K(K+D-2) \mathcal{Y}_{[K]}(\Omega)
$$

- The HH are eigenstates of the kinetic energy operator
- The HH form a complete set of orthonormal states

$$
\left\langle\mathcal{Y}_{[K]}\left(\Omega^{\prime}\right) \mid \mathcal{Y}_{\left[K^{\prime}\right]}(\Omega)\right\rangle=\delta_{[K],\left[K^{\prime}\right]}
$$

Understanding with an analogy

Hydrogen atom

- Solve the problem in the CM frame

$$
[T+V(r)] \psi(\vec{r})=E \psi(\vec{r})
$$

- Use spherical coordinates

$$
\begin{gathered}
\vec{r}=(r, \underbrace{\theta, \phi}_{\Omega}) \\
\psi(\vec{r}) \sim Y_{\ell m}(\Omega) u_{\ell}(r) \\
\rightarrow T=-\frac{\hbar^{2}}{2 m}\left[\Delta_{r}-\frac{\hat{\ell}^{2}}{r^{2}}\right] \\
\hat{\ell}^{2} Y_{\ell m}(\Omega)=\ell(\ell+1) Y_{\ell m}(\Omega)
\end{gathered}
$$

- Solve the radial equation

A-body Nucleus

- Solve the problem in the CM frame

$$
\Gamma[T+V] \Psi\left(\boldsymbol{\eta}_{1}, \ldots \boldsymbol{\eta}_{A}\right)=E \Psi\left(\boldsymbol{\eta}_{1}, \ldots \boldsymbol{\eta}_{A}\right)
$$

- Use hyperspherical coordinates

$$
\begin{aligned}
& \boldsymbol{\eta}_{1}, \ldots \boldsymbol{\eta}_{A} \longrightarrow \rho, \Omega \\
& \\
& \Psi\left(\boldsymbol{\eta}_{1}, \ldots \boldsymbol{\eta}_{A}\right) \sim \mathcal{Y}_{[K]}(\Omega) R_{[K]}(\rho) \\
& T=-\frac{\hbar^{2}}{2 m}\left[\Delta_{\rho}-\frac{\hat{K}^{2}}{\rho^{2}}\right] \\
& \hat{K}^{2} \mathcal{Y}_{[K]}(\Omega)=K(K+D-2) \mathcal{Y}_{[K]}(\Omega)
\end{aligned}
$$

- Solve the hyperradial equation

Antisymmetrization

- If we want to work with fermions, we may want to antisymmetrize HH
- Antisymmetrization can be achieved by diagonalizing the antisymmetrizer operator
- Or one can use other algorithms based on their symmetry properties
N. Barnea and A. Novoselsky, Ann. Phys (N.Y.) 256, 192 (1997).
N. Barnea and A. Novoselsky, Phys. Rev. A 57, 48 (1998).

HH expansion

$|\psi\rangle=\sum_{[K]}^{K_{\text {max }}} \sum_{\nu}^{\nu_{\text {max }}} c_{[K] \nu} y_{[K]}(\Omega) e^{-\rho / 2 b} L_{\nu}(\rho) \quad K_{\text {max }} * \nu_{\text {max }}=\#$ states

Exact method

When you converge your expansion, every kind of correlation induced by the Hamiltonian is taken into account

Bad computational scaling

Matrices become big very fast...

HH expansion

$$
|\psi\rangle=\sum_{[K]}^{K_{\max } \nu_{\max }} \sum_{\nu} c_{[K] \nu} \mathcal{Y}_{[K]}(\Omega) e^{-\rho / 2 b} L_{\nu}(\rho) \quad K_{\max } * \nu_{\max }=\# \text { states }
$$

Benchmark on ${ }^{4} \mathrm{He}$

S.Bacca et al., Eur. Phys. J. A 42, 553 (2009)

Method $\quad \Lambda=2.0 \mathrm{fm}^{-1}$	$E_{0}\left({ }^{4} \mathrm{He}\right)[\mathrm{MeV}]$
Faddeev-Yakubovsky (FY)	$-28.65(5)$
Hyperspherical harmonics (HH)	$-28.65(2)$
CCSD level coupled-cluster theory (CC)	-28.44
Lambda-CCSD(T) (CC with triples corrections)	-28.63

