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JG|U Ab-initio methods

After having wormed up with the deuteron
we will present the modern perspective
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JG|U Ab-initio methods

Most representative approaches

Few-body: A<12 Many-body: 12<A<40 or more

Structure
Bound states

Faddeev Yakubowski (FY)

HH Kohn-Variational P. (2 fragments)

NCSMC (only at very low energy)

Reactions
scattering states
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Focus on diagonalization methods

Keep in mind we want to be able to compute the ground-state
and the Schrodinger-like equation appearing in the integral
transform approach to electro-weak reactions



Diagonalization methods

Given a complete set of basis states:

Solve Schroedinger equation by expanding the w.f. on a complete basis states

H ) = E |9) ) = Z c; |1;)  cannot store an infinite vector

controlled increasing N

N i |—> basis states
wj‘XHZCzhbz Ezczhbz

N
Z<¢]|H|¢z EZCZ
i —

HC p— EC Eigenvalue problem for an H — HT

Hermitian matrix

Diagonalize H

Computationally challenging for growing N and mass number A |::> High Performance
Computing
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My choice of basis:
Hyper-spherical harmonic expansions



JG|u

® The study of nuclear systems composed of A-nucleons have led to
the construction of the hyper-spherical harmonics, which are
harmonic polynomials in 3(A-1) dimensional space.

® The hyper-spherical coordinates and the hyper-spherical
harmonics are generalization of the spherical harmonics from 3D
space into the general case

® The HH were introduced in 1935 by Zernike and Brinkman

® They were reintroduced 25 years later by Delves and Smith

® Present developers, practitioners: Barnea, Efros, Gattobigio,
Viviani etc...

They are built starting from relative coordinates
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JG|u Two-body problem recap

(@1, T2) = (T172|V)

= Hv = Ev
X hQ ) h2

H = V
2m1 L

Vi + V(|zs — x1])

ng
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" (@1, T2) = (T122|0)

"y Hv = Ev
« hQ ) hZ

H = V
2m1 L

o Vi +V(|lze — x1|)

In the 2-body case we separate the centre of mass motion from the
relative motion through the transformation

1
R—=— (mlazl -+ mza’)g) with M9 = mq1 + mo
Mo

r=(xo — x1)
The internal Hamiltonian is given by

hQ
H=——V*+V(r =
21 (r) 8 mi1 + Mo
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R ? . _—h—QVQ + V(?“)_ Y(r) = Ep(r)

Going to spherical coordinates in T
Angular momentum operator

2 (2 2d 42 '
- 2u (dT2 Cdr 7~2)+/V(T) Y(r) = Ey(r)

Yy (#) = £(0 4 1) Yo, (7) 0Y o (7) = mYym ()
N
r = (0,¢p)  Spherical harmonics

Intrinsic wave function zp(r) — ng(’f“)RE(T)
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Two-body problem

/R'jf :y Intrinsic wave function w(’l“) — Yém (f)Ré (T)
T

;2 (d2 | 2 d f(é-l-l)) —I—V(T)- RE(T):ERE(T)

C2u \dr2 ' rdr r?

Radial Schrodinger equation

If you know the potential, you can solve it either on a grid or
expanding the radial wave function on a basis
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JG|U

In the 2-body case we separate the centre of mass motion from the relative
motion through the transformation

1
R=—(mix1 +moxo
i ( )
r=(xo — x1)
With  Myo = mq + mo

It should be noted that this transformation is not orthogonal.

The orthogonal transformation is ™ arbitrary mass, typically taken
to be the nucleon mass

1
U \/]\4—12 (m1r1 T m2"°2) < CoM
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Jacobi coordinates A=3

A three-body problem is reduced to a two-body problem, once the CoM is removed

1
Mo = \/ (mlrl + MoTa + mg’rg) < CoM
M3

| —

I o |

('r2 — Tl) < Relative

Miom / l‘

Mioms ('r mir, + m2T2>
3
Mo
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Jacobi coordinates general A

An A-body problem is reduced to an (A-1)-body problem, once the CoM is removed

Mass-weighted Jacobi coordinates

1
Mo = \/ (miry + morg + -+ - +mAry) < CoM
M; . g
' o 1...k—1Mk . o
| Me—1 = My &k m(mc M. k-1 (mary +maks + - mk_lrk_l)) )'

— - — — — —

Relative (A-1) coordinates

NB: one can write this as an orthogonal transformation and then compute the
expressions of the gradients
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Jacobi coordinates general A

Normalized equal mass (A-1) Jacobi coordinates

(ra-m)
=/ =719 —17
U5 9 2 1

1

=5 (s = 5ra+ 7))
no = 3"°3 2"“2 rs3

A—2 1

A—1 1
Na_1 = P ("“A—1— A_l(r1‘|‘7°2‘|‘""|‘7°A—1))

e o

One may start these definitions with an arbitrary permutation of particles
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Once you have the Jacobi coordinates, you can
perform another transformation to hyperspherical
harmonics coordinates



— 2 2 T2
= +
=3 <[771 ={m, 01,01} P ,\/771 ' P

T2 = {772,9%@52} Sz = ? %))
(N
~ - 1’]3 “\\\
M= {m,01,01} P = \/771 + 15 + 13 !
A= < M2={m2, 02,92} X SIn (= Z2 o,' M
31 1
MN3= {13,03, P3} sino,, = 2 ——
. - P / \\ /dz /
le \\\ :///
In general Mis---M4 » 0.0 Y w

Hyper-radius

() = (ﬁl) K 77/714—170527 K 7aA—1)
- \ Z m;
How many angular coordinates in total? 2(A-1)+A-2 = 3A-4
How many HH coordinates in total? 3A-3
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Hyper-spherical coordinates

Exercise: prove this property of the hyper-radius
A A—1
DD
1=1 1=1

Nuclear matter radius is related simply to the hyper-radius
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Once we have a new set of coordinates, we need
to rewrite our Hamiltonian in these coordinates

1) Kinetic energy



JG|u

The internal kinetic energy operator for a two-particle system is given

A=2 Dby the three-dimensional Laplace operator, expressed in terms of the
Recap relative motion

Jacobi coordinate 17; and the corresponding angle coordinates (2

1 A :
Ay =Dy, = A, — = N.B.: A = V?
N
Where the radial part is
0? 2 0
A, = —5 +
"ont m om

And @% is the angular momentum operator of the relative motion
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A=3 The internal kinetic energy of a three-particle system is described
by the six-dimensional Laplace operator which is a sum over the three
dimensional Laplace operators that act on the coordinates 77; and 77
separately.

| R | RN
A(Q) — A"71 + A"?z — Am T Anz - _263 - _2€%
Ui Up

Now transforming to HH coordinates using the definition of hyper-radius and

N = pCoSaz

N2 = pSIN Qg

one gets
0 59 1 .
Apy= g5+ 5 = 5K
dp>  pdp p
. 0? 0 1 4 1
ith K? = ——— —4cot(2a) — 02 /2
W A o cot( OQ)(?O@ i cos gy 1 T sinZ ay -

Grand-angular momentum operator
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JG|U Important observations

12| 2 21 /2 lﬁ2 These operators form a complete set of commuting hyper-spherical
b operators, and therefore we can introduce a set of quantum numbers

| |

K., li,mq1,¢5,my9  These operators commute also with A(Q) and L2, L,

Y

obtained from the internal angular momentum
of the three-particle system

L =20, +4¢

Since it is a recursive definition, it should be labelled by the number of particles

o2
IOA_l?KA—l
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Laplace operator in hyper-spherical coordinates

General A The Laplace operator in 3( A-1) dimensions, that describes the internal
kinetic energy of an A-body system, is

A—-1
A(A 1)—ZA Z( ni 7762)

1=1

Now transforming to A-body HH coordinates it becomes

A—1 ]_ )
Aa-ny=4,, , ———Kji,
/1 PA—1
Radial part Angular part
_ 0? 3(A—-1)—1 O
with A = ¢ 34D and
Opa_1 pa-1  Opa-
) 52  3A-9-(3A—5)cos (2a4_1) O 0%,
Ki_=-
A—-1 804124_1 T sin (2aA_1) Oag_1 i SiIl2 OZA_1+
s )
| LSS
Grand-angular momentum operator cos? aq—1
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JG|U Important observations

X X A X X These operators form a complete set
K3 9,05 1, Ki_1,L%_1,La—1.  of commuting hyper-spherical
operators.
The recursion can be used so that at
the end we can introduce a set of
quantum numbers corresponding to
operators that commute

\4
[KA—l] — KA_l,KA_Q, co ,KQ,KA_l,ZA_Q, ce ,Eg,ﬁl,mA_l,mA_g, -, Mo, MY

Cumulative quantum number

K?_, commutes with the kinetic energy
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Once we have a new set of coordinates, we need
to rewrite our Hamiltonian in these coordinates

2) Potential

The simplest potential you can use is an hyper-radial

v
potential (0)

In general, NN potentials are more complicated...



Hyper-spherical Harmonics

HH

Are eigenfunctions of the grand-angular momentum operator
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A

A=2  spherical harmonics Y, m, (1)

A=3  Start of hpyer-spherical harmonics

coupled spherical harmonics

Oronee, () = Y (CilaLalmimaMa) Yo, m, (1) Yegm, (f2)

mi,ma2

Hyper-angular function and polynomial

1941
Wicyirne, () = Na (Ka; €o6q) (sina) (cos az)” Pr,gf2+2 hts) (cos2a)
A
|
(2K +4)no!T (no + lo + 61+ 2) | Jacobi polynomial

Ny (Kq:; l9l1) =
2 (K b261) F(n2—|—€2—|—%)r(n2—|—€1—|—%)
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Hyper-spherical Harmonics

General A

MNP ’ e — i ——— w:‘-z
Via_y (Qa—1y, aa-1)) —¢KA b1 Kas (Oz(A ) | Or \Ma—1 [Kaalfas (Q(A 1)704(,4 2))

- = T e — e — —— —

coupled spherical and hyper-spherical harmonics

Pry  Ma v [Ka a)ea s (a-1), ¥a—2)) =
Z (La—2la—1La—1|Ma—oma_1Ma—1)Vik, (Qa—2), ¢a-2))Yeu 1ma_1(a-1)

MA—27mA—1

Hyper-angular function and polynomial

¢KA—1;€A—1KA—2 (aA—l) —

. 0a (EA 1+5,Ka—2 —I—3A2_8)
Na 1V (Ka_1;84_1Ka_o)(sinay_ 1) 1(cosozA_1)[(A 2Pn i, (cos2aa_1)

A

Jacobi polynomial

with
Ko 1=2n4 1+ Ka o+70la_1
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JG|u

To make the long story short:

® The Laplacian can be written as

2 2
A @ 0 K-
Op? p p?

'\

depends on particle number

® The HH are eigenstates of K?
K2Vix1(Q) = K(K + D — 2) Vi (Q)
® The HH are eigenstates of the kinetic energy operator

® The HH form a complete set of orthonormal states

Vir) (V) [V () = sy, 16
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® Solve the problem in the CM frame

[T+ V(n)]Y(F) = Ep(r)
® Use spherical coordinates
= (r,0,¢)
O
Y(7) ~ Yo (Q)ue(r)
> 1'= —% Ay — f—z]

0? Yo () = £(£ + 1) Y2 ()

® Solve the radial equation

h2 /2
S 1, N
{ 2m [ r2

—E+v<r>}m<r> =0

® Solve the problem in the CM frame

— [T+ VIU(ny,...m4) = E¥(ny,...14)

® Use hyperspherical coordinates

MNi,---MA4 > p7Q

U(ny,...n4) ~ Vi) (Q) Rk (p)

— ' = —h—z [Ap — E]
2m 02
K2V (Q) = K(K + D — 2)Yi5(9)

® Solve the hyperradial equation

12 K2
{_% !AP T2 ] Oix) ik — B Oy + Vi [V (e Q)l)ﬁ;«p} Rixi(p) = 0
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Antisymmetrization

® |f we want to work with fermions, we may want to antisymmetrize HH

® Antisymmetrization can be achieved by diagonalizing the
antisymmetrizer operator

® Or one can use other algorithms based on their symmetry properties

N. Barnea and A. Novoselsky, Ann. Phys (N.Y.) 256, 192 (1997).
N. Barnea and A. Novoselsky, Phys. Rev. A 57, 48 (1998).
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JG|U HH expansion

|¢> — y: y: CIK]v y[K] (Q) e_p/ZbLV(p) Kaz * Vmaz = # states

Exact method

When you converge your expansion,
every kind of correlation induced by the Hamiltonian
Is taken into account
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HH expansion

|¢> — y:  CIKv y[K] (Q) e_p/ZbLV(p) Kaz * Vmaz = # states
(K] v
- | | | | | | | | | | | | -
le0S L Ground States  _
10000 g E
= - .
z N ]
vlc—c) - -
@ 1000 E
H - .
I N
100 - | oo A—3 § Total number of states:
- / oo A=4 1 10° dense matrix
i oo A=8 i
1 ] ] ] ] ] ] ] ] ] ] ]
0 2 4 6 g 10 12 14 16 18 20 22 2 26
K
max
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L« @000 e

S.Bacca et al., Eur. Phys. J. A42, 553 (2009)

T T T T T 1T "1 T " 1]
~10[~v_ NN from N'LO (500 MeV)

-4 =18t
b He v A=20fm"
> - A A=24fm ]
O - i
E 20 ]
- i i
a8 I -
=251 -
?\\\‘ —
-30- HH R
I I IR I AR IO I B
0O 2 4 6 8 10 12 14
K
max
Method A=2.0fm™"! Eo(*He) [MeV]
Faddeev-Yakubovsky (FY) -28.65(5)
Hyperspherical harmonics (HH) -28.65(2)
CCSD level coupled-cluster theory (CC) -28.44

Lambda-CCSD(T) (CC with triples corrections) -28.63
Eexp=-28.296 MeV
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