

Electromagnetic properties of nuclei: from few- to many-body systems

Lecture 7

Few-body methods

Sonia Bacca

November 22nd, 2017

Lecture series for SFB 1245 TU Darmstadt

After having wormed up with the deuteron we will present the modern perspective

Ab-initio methods

Most representative approaches

	Few-body: A≲12	Many-body: 12≲A≲40 or more
Structure Bound states	 Faddeev Yakubowski (FY) Diagonalization methods (on different basis) Green Function Monte Carlo 	 Coupled Cluster (CC) Other Monte Carlo methods IMSRG Self consistent Green's function
Reactions scattering states	 Faddeev Yakubowski (FY) HH Kohn-Variational P. (2 fragments) NCSMC (only at very low energy) 	

Focus on diagonalization methods

Keep in mind we want to be able to compute the ground-state and the Schrödinger-like equation appearing in the integral transform approach to electro-weak reactions

Diagonalization methods

Given a complete set of basis states:

Solve Schroedinger equation by expanding the w.f. on a complete basis states

My choice of basis: Hyper-spherical harmonic expansions

Hyper-spherical Harmonics

- The study of nuclear systems composed of A-nucleons have led to the construction of the hyper-spherical harmonics, which are harmonic polynomials in 3(A-1) dimensional space.
- The hyper-spherical coordinates and the hyper-spherical harmonics are generalization of the spherical harmonics from 3D space into the general case
- The HH were introduced in 1935 by Zernike and Brinkman
- They were reintroduced 25 years later by Delves and Smith

•

 Present developers, practitioners: Barnea, Efros, Gattobigio, Viviani etc...

They are built starting from relative coordinates

JGU

Two-body problem

recap

Two-body problem

In the 2-body case we separate the centre of mass motion from the relative motion through the transformation

$$oldsymbol{R}=rac{1}{M_{12}}\left(m_1oldsymbol{x}_1+m_2oldsymbol{x}_2
ight)$$
 with $M_{12}=m_1+m_2$
 $oldsymbol{r}=(oldsymbol{x}_2-oldsymbol{x}_1)$

The internal Hamiltonian is given by

$$H = -\frac{\hbar^2}{2\mu} \nabla^2 + V(r) \qquad \mu = \frac{m_1 m_2}{m_1 + m_2}$$

recap

Intrinsic wave function $\psi({m r}) = Y_{\ell m}(\hat{{m r}}) R_\ell(r)$

Two-body problem

Radial Schrödinger equation

If you know the potential, you can solve it either on a grid or expanding the radial wave function on a basis recap

In the 2-body case we separate the centre of mass motion from the relative motion through the transformation

$$\boldsymbol{R} = \frac{1}{M_{12}} \left(m_1 \boldsymbol{x}_1 + m_2 \boldsymbol{x}_2 \right)$$
$$\boldsymbol{r} = (\boldsymbol{x}_2 - \boldsymbol{x}_1)$$

With $M_{12} = m_1 + m_2$

It should be noted that this transformation is not orthogonal.

The orthogonal transformation is

m arbitrary mass, typically taken to be the nucleon mass

$$\begin{split} \boldsymbol{\eta}_0 &= \sqrt{\frac{1}{M_{12}} \left(m_1 \boldsymbol{r}_1 + m_2 \boldsymbol{r}_2 \right)} &\longleftarrow \quad \text{Com} \\ \boldsymbol{\eta}_1 &= \sqrt{\frac{m_1 m_2}{M_{12} m}} (\boldsymbol{r}_2 - \boldsymbol{r}_1) &\longleftarrow \quad \text{Relative} \end{split}$$

A two-body problem is reduced to a one-body problem, once the CoM is removed

Jacobi coordinates A=3

A three-body problem is reduced to a two-body problem, once the CoM is removed

JG U

$$\boldsymbol{\eta}_0 = \sqrt{\frac{1}{M_{123}}} \left(m_1 \boldsymbol{r}_1 + m_2 \boldsymbol{r}_2 + m_3 \boldsymbol{r}_3 \right) \quad \textbf{\leftarrow} \quad \text{Com}$$

$$\begin{split} \eta_1 &= \sqrt{\frac{m_1 m_2}{M_{12} m}} (\boldsymbol{r}_2 - \boldsymbol{r}_1) & \bullet & \text{Relative} \\ \eta_2 &= \sqrt{\frac{M_{12} m_3}{M_{123} m}} \left(\boldsymbol{r}_3 - \frac{m_1 \boldsymbol{r}_1 + m_2 \boldsymbol{r}_2}{M_{12}} \right) & \bullet & \bullet \\ \end{split}$$

Jacobi coordinates general A

An A-body problem is reduced to an (A-1)-body problem, once the CoM is removed

Mass-weighted Jacobi coordinates

GU

Relative (A-1) coordinates

NB: one can write this as an orthogonal transformation and then compute the expressions of the gradients

JGU

Jacobi coordinates general A

. . .

Normalized equal mass (A-1) Jacobi coordinates

$$m{\eta}_1 = \sqrt{rac{1}{2}} \Big(m{r}_2 - m{r}_1 \Big) \ m{\eta}_2 = \sqrt{rac{2}{3}} \Big(m{r}_3 - rac{1}{2} (m{r}_2 + m{r}_3) \Big)$$

$$\eta_{A-2} = \sqrt{\frac{A-2}{A-1}} \left(\boldsymbol{r}_{A-2} - \frac{1}{A-2} (\boldsymbol{r}_1 + \boldsymbol{r}_2 + \dots + \boldsymbol{r}_{A-3}) \right)$$
$$\eta_{A-1} = \sqrt{\frac{A-1}{A}} \left(\boldsymbol{r}_{A-1} - \frac{1}{A-1} (\boldsymbol{r}_1 + \boldsymbol{r}_2 + \dots + \boldsymbol{r}_{A-1}) \right)$$

One may start these definitions with an arbitrary permutation of particles

Once you have the Jacobi coordinates, you can perform another transformation to hyperspherical harmonics coordinates

Hyper-spherical coordinates

Recursive definition of hyper-spherical coordinates

JGU

$$A=3 \qquad \left\{ \begin{array}{l} \eta_{1} = \{\eta_{1}, \theta_{1}, \phi_{1}\} \\ \eta_{2} = \{\eta_{2}, \theta_{2}, \phi_{2}\} \end{array} \right. \left\{ \begin{array}{l} \rho = \sqrt{\eta_{1}^{2} + \eta_{2}^{2}} \\ \sin \alpha_{2} = \frac{\eta_{2}}{\rho} \end{array} \right. \eta_{2} \\ \eta_{2} = \{\eta_{2}, \theta_{2}, \phi_{2}\} \\ \eta_{3} = \{\eta_{3}, \theta_{3}, \phi_{3}\} \end{array} \right. \left\{ \begin{array}{l} \rho = \sqrt{\eta_{1}^{2} + \eta_{2}^{2} + \eta_{3}^{2}} \\ \sin \alpha_{2} = \frac{\eta_{2}}{\rho} \\ \sin \alpha_{3} = \frac{\eta_{3}}{\rho} \end{array} \right. \eta_{3} \\ \eta_{3} = \{\eta_{3}, \theta_{3}, \phi_{3}\} \end{array} \right. \left\{ \begin{array}{l} \rho = \sqrt{\eta_{1}^{2} + \eta_{2}^{2} + \eta_{3}^{2}} \\ \sin \alpha_{2} = \frac{\eta_{2}}{\rho} \\ \sin \alpha_{3} = \frac{\eta_{3}}{\rho} \end{array} \right. \eta_{3} \\ \eta_{4} = \sqrt{\rho} \\ \eta_{3} = \{\eta_{3}, \theta_{3}, \phi_{3}\} \end{array} \right. \left\{ \begin{array}{l} \rho = \sqrt{\eta_{1}^{2} + \eta_{2}^{2} + \eta_{3}^{2}} \\ \sin \alpha_{3} = \frac{\eta_{3}}{\rho} \\ \eta_{4} = \sqrt{\rho} \\ \eta_{3} = \{\eta_{1}, \dots, \eta_{A} \\ \eta_{4} = \sqrt{\rho} \\ \eta_{4}$$

Exercise: prove this property of the hyper-radius

$$\rho^2 = \sum_{i=1}^{A} r_i^2 = \sum_{i=1}^{A-1} \eta_i^2$$

IGU

Nuclear matter radius is related simply to the hyper-radius

Once we have a new set of coordinates, we need to rewrite our Hamiltonian in these coordinates

1) Kinetic energy

The internal kinetic energy operator for a two-particle system is given
 A=2 by the three-dimensional Laplace operator, expressed in terms of the
 Recap relative motion

Jacobi coordinate η_1 and the corresponding angle coordinates Ω

$$\Delta_{(1)} = \Delta_{\eta_1} = \Delta_{\eta_1} - \frac{1}{\eta_1^2} \hat{\ell}_1^2 \qquad \qquad \mathsf{N.B.:} \ \Delta = \nabla^2$$

Where the radial part is

$$\Delta_{\eta_1} = \frac{\partial^2}{\partial \eta_1^2} + \frac{2}{\eta_1} \frac{\partial}{\partial \eta_1}$$

And $\hat{\ell}_1^2$ is the angular momentum operator of the relative motion

A=3 The internal kinetic energy of a three-particle system is described by the six-dimensional Laplace operator which is a sum over the three dimensional Laplace operators that act on the coordinates η_1 and η_2 separately.

$$\Delta_{(2)} = \Delta_{\eta_1} + \Delta_{\eta_2} = \Delta_{\eta_1} + \Delta_{\eta_2} - \frac{1}{\eta_1^2} \hat{\ell}_1^2 - \frac{1}{\eta_2^2} \hat{\ell}_2^2$$

Now transforming to HH coordinates using the definition of hyper-radius and

 $\eta_1 = \rho \cos \alpha_2$ $\eta_2 = \rho \sin \alpha_2$

one gets

$$\Delta_{(2)} = \frac{\partial^2}{\partial \rho^2} + \frac{5}{\rho} \frac{\partial}{\partial \rho} - \frac{1}{\rho^2} \hat{K}^2$$

with
$$\hat{K}^2 = -\frac{\partial^2}{\partial \alpha_2^2} - 4\cot(2\alpha_2)\frac{\partial}{\partial \alpha_2} + \frac{1}{\cos^2 \alpha_2}\hat{\ell}_1^2 + \frac{1}{\sin^2 \alpha_2}\hat{\ell}_2^2$$

Grand-angular momentum operator

These operators form a complete set of commuting hyper-spherical operators, and therefore we can introduce a set of quantum numbers

 $,m_2$ These operators commute also with $\,\Delta_{(2)}\,$ and $\,\hat{L}^2,\hat{L}_z\,$

obtained from the internal angular momentum of the three-particle system

$$\mathbf{\hat{L}} = \hat{\boldsymbol{\ell}}_1 + \hat{\boldsymbol{\ell}}_2$$

Since it is a recursive definition, it should be labelled by the number of particles

$$\rho_{A-1}, \hat{K}_{A-1}^2$$

Laplace operator in hyper-spherical coordinates

General A The Laplace operator in 3(A-1) dimensions, that describes the internal kinetic energy of an A-body system, is

$$\Delta_{(A-1)} = \sum_{i=1}^{A-1} \Delta_{\eta_i} = \sum_{i=1}^{A-1} \left(\Delta_{\eta_i} - \frac{1}{\eta_i^2} \hat{\ell}_i^2 \right)$$

Now transforming to A-body HH coordinates it becomes

Sonia Bacca

Important observations

$$\hat{K}_{A-2}^2, \hat{\ell}_{A-1}^2, \hat{K}_{A-1}^2, \hat{L}_{A-1}^2, \hat{L}_{A-1_z}^2$$

These operators form a complete set of commuting hyper-spherical operators. The recursion can be used so that at

the end we can introduce a set of quantum numbers corresponding to operators that commute

 $[K_{A-1}] = K_{A-1}, K_{A-2}, \dots, K_2, \ell_{A-1}, \ell_{A-2}, \dots, \ell_2, \ell_1, m_{A-1}, m_{A-2}, \dots, m_2, m_1$

Cumulative quantum number

 \hat{K}_{A-1}^2 commutes with the kinetic energy

Once we have a new set of coordinates, we need to rewrite our Hamiltonian in these coordinates

2) Potential

The simplest potential you can use is an hyper-radial $$V(\rho)$$ potential

In general, NN potentials are more complicated...

Are eigenfunctions of the grand-angular momentum operator

Hyper-spherical Harmonics

A=2 spherical harmonics $Y_{\ell_1,m_1}(\hat{\eta}_1)$

JGU

A=3 Start of hpyer-spherical harmonics

$$\mathcal{Y}_{[K_2]}(\Omega_{(2)}, \alpha_2) = \psi_{K_2;\ell_2\ell_1}(\alpha_2) \Phi_{L_2M_2;\ell_1\ell_2}(\Omega_{(2)})$$

coupled spherical harmonics

$$\Phi_{L_2 M_2;\ell_1 \ell_2} \left(\Omega_{(2)} \right) = \sum_{m_1, m_2} \left\langle \ell_1 \ell_2 L_2 | m_1 m_2 M_2 \right\rangle Y_{\ell_1 m_1} \left(\hat{\eta}_1 \right) Y_{\ell_2 m_2} \left(\hat{\eta}_2 \right)$$

Hyper-angular function and polynomial

General A

$$\mathcal{Y}_{[K_{A-1}]}\left(\Omega_{(A-1)},\alpha_{(A-1)}\right) = \psi_{K_{A-1};\ell_{A-1}K_{A-2}}\left(\alpha_{(A-1)}\right)\Phi_{L_{A-1}M_{A-1};[K_{A-2}]\ell_{A-1}}\left(\Omega_{(A-1)},\alpha_{(A-2)}\right)$$

coupled spherical and hyper-spherical harmonics

$$\Phi_{L_{A-1}M_{A-1};[K_{A-2}]\ell_{A-1}} \left(\Omega_{(A-1)}, \alpha_{(A-2)}\right) = \sum_{M_{A-2}, m_{A-1}} \langle L_{A-2}\ell_{A-1}L_{A-1} | M_{A-2}m_{A-1}M_{A-1} \rangle \mathcal{Y}_{[K_{A-2}]} \left(\Omega_{(A-2)}, \alpha_{(A-2)}\right) Y_{\ell_{A-1}m_{A-1}}(\hat{\eta}_{A-1})$$

Hyper-angular function and polynomial

$$\psi_{K_{A-1};\ell_{A-1}K_{A-2}}(\alpha_{A-1}) = \mathcal{N}_{A-1}! (K_{A-1};\ell_{A-1}K_{A-2}) (\sin \alpha_{A-1})^{\ell_{A-1}} (\cos \alpha_{A-1})^{K_{A-2}} P_{n_{A-1}}^{\left(\ell_{A-1}+\frac{1}{2},K_{A-2}+\frac{3A-8}{2}\right)} (\cos 2\alpha_{A-1})$$
with
$$K_{A-1} = 2n_{A-1} + K_{A-2} + \ell_{A-1}$$
Jacobi polynomial

Hyper-spherical Harmonics

To make the long story short:

The Laplacian can be written as

$$\Delta = \frac{\partial^2}{\partial \rho^2} + \frac{D-1}{\rho} \frac{\partial}{\partial \rho} - \frac{\hat{K}^2}{\rho^2}$$

depends on particle number

• The HH are eigenstates of \hat{K}^2

 $\hat{K}^2 \mathcal{Y}_{[K]}(\Omega) = K(K + D - 2) \mathcal{Y}_{[K]}(\Omega)$

- The HH are eigenstates of the kinetic energy operator
- The HH form a complete set of orthonormal states

 $\langle \mathcal{Y}_{[K]}(\Omega') | \mathcal{Y}_{[K']}(\Omega) \rangle = \delta_{[K],[K']}$

Understanding with an analogy

Hydrogen atom

• Solve the problem in the CM frame

$$[T + V(r)] \psi(\vec{r}) = E\psi(\vec{r})$$

• Use spherical coordinates

$$\vec{r} = (r, \theta, \phi)$$

$$\widehat{\Omega}$$

$$\psi(\vec{r}) \sim Y_{\ell m}(\Omega) u_{\ell}(r)$$

$$T = -\frac{\hbar^2}{2m} \left[\Delta_r - \frac{\hat{\ell}^2}{r^2} \right]$$

$$\hat{\ell}^2 Y_{\ell m}(\Omega) = \ell(\ell+1)Y_{\ell m}(\Omega)$$

• Solve the radial equation

A-body Nucleus
$$\eta_1$$

 η_2
 η_{A-1}

Solve the problem in the CM frame

$$- [T+V]\Psi(\boldsymbol{\eta}_1,\ldots\boldsymbol{\eta}_A) = E\Psi(\boldsymbol{\eta}_1,\ldots\boldsymbol{\eta}_A)$$

• Use hyperspherical coordinates

$$\eta_1, \dots, \eta_A \longrightarrow \rho, \Omega$$

$$\Psi(\eta_1, \dots, \eta_A) \sim \mathcal{Y}_{[K]}(\Omega) R_{[K]}(\rho)$$

$$\Rightarrow T = -\frac{\hbar^2}{2m} \left[\Delta_\rho - \frac{\hat{K}^2}{\rho^2} \right]$$

$$\hat{K}^2 \mathcal{Y}_{[K]}(\Omega) = K(K + D - 2) \mathcal{Y}_{[K]}(\Omega)$$

• Solve the hyperradial equation

$$\left\{-\frac{\hbar^2}{2m}\left[\Delta_r - \frac{\hat{\ell}^2}{r^2}\right] - E + V(r)\right\} R_\ell(r) = 0 \qquad \left\{-\frac{\hbar^2}{2m}\left[\Delta_\rho - \frac{\hat{K}^2}{\rho^2}\right]\delta_{[K],[K']} - E \,\delta_{[K],[K']} + \langle \mathcal{Y}_{[K]}|V(\rho,\Omega)|\mathcal{Y}_{[K']}\rangle\right\} R_{[K]}(\rho) = 0$$

- If we want to work with fermions, we may want to antisymmetrize HH
- Antisymmetrization can be achieved by diagonalizing the antisymmetrizer operator
- Or one can use other algorithms based on their symmetry properties

N. Barnea and A. Novoselsky, Ann. Phys (N.Y.) **256**, 192 (1997). N. Barnea and A. Novoselsky, Phys. Rev. A 57, **48** (1998).

HH expansion

$$|\psi\rangle = \sum_{[K]}^{K_{max}} \sum_{\nu}^{\nu_{max}} c_{[K]\nu} \mathcal{Y}_{[K]}(\Omega) \ e^{-\rho/2b} L_{\nu}(\rho)$$

$$K_{max} * \nu_{max} = \#$$
 states

Exact method

When you converge your expansion, every kind of correlation induced by the Hamiltonian is taken into account

Bad computational scaling

Matrices become big very fast...

HH expansion

Benchmark on 4He

		E ^{exp} =-28.296 MeV
Lambda-CCSD (T) (0	CC with triples corrections)	-28.63
CCSD level coupled-	cluster theory (CC)	-28.44
Hyperspherical harm	onics (HH)	-28.65(2)
Faddeev-Yakubovsky	r (FY)	-28.65(5)
Method	$\Lambda = 2.0 \text{ fm}^{-1}$	$E_0(^4{ m He})~[{ m MeV}]$