

Electromagnetic properties of nuclei: from few- to many-body systems

Lecture 8

Few-body methods -Applications

Sonia Bacca

November 22nd, 2017

Lecture series for SFB 1245 TU Darmstadt

Physics cases of interest:

Muonic atoms

Halo nuclei

• Exotic nuclei with an interesting structure

 Neutron halos: Large n/p ratio (neutron-rich)

Halo	n/p
⁶ He	2
⁸ He	3
¹¹ Lj	2.66
¹² C	1

Halo nuclei

• Large size

Nuclear radius for stable nuclei: $R_N \sim r_0 A^{1/3}$ with $r_0 \sim 1.2$ fm

Small nucleon(s) separation energies

$$S_{2n} = BE(Z, N) - BE(Z, N-2)$$

The helium isotope chain

Even if they are exotic short lived nuclei, they can be investigated experimentally. From a comparison of theoretical predictions with experiment we can test our knowledge on nuclear forces in the neutron rich region

Borromean Nuclei

Named after Borromean rings by M.V. Zhukov et al., Phys. Rep 231, 151 (1993)

Isola Bella, Lago Maggiore, Italia

pic credit P.Capel

New Era of Precision Measurements for masses and radii

Masses (and thus binding energies) are measured with Penning traps
 TITAN TRIUMF

Can reach a relative precision of 10⁻⁸

• Charge radii are measured with Laser Spectroscopy

ARGONNE GANIL ISOLDE

Halo Nuclei - Experiment

JGU

Halo Nuclei - Experiment

Laser Spectroscopy for radii

Experiment

$$\widetilde{\delta\nu^{A,A'}} = \nu^{A'} - \nu^{A}$$

Theory: from precise atomic structure calculations

- Mass shifts dominates for light nuclei
- Nuclear masses are input for calculations of K local can be the largest source of systematic errors if not known precisely
- Precise mass measurements are key for a better determination of radii

⁶He from HH

 P_a

 $P_a H_{eff}^a$

 Q_a **0**

 Q_a

0

 $Q_a X_a H X_a^{-1} Q_a$

⁶He from HH

S.B. et al., PRC 86, 034321 (2012)

smaller than matter radii 🖒 halo structure

 P_a

 $P_a H_{eff}^a$

 Q_a **0**

 Q_a

0

 $Q_a X_a H X_a^{-1} Q_a$

JGU

Theory vs Experiment

- (a) Experimental matter radius relatively uncertain
- (b) Experimental charge radius well constrained

Calculated ab-initio ~-0.082 fm²

- It is important to compare observable together
- Correlation between radii and separation energy

JGU

Update on other methods

NCSM/NCSMC

Romero-Redondo et al., Phys. Rev. Lett. 117, 222501 (2016) 2.6 SRG-N³LO NN, $\Lambda = 2.0$ fm⁻¹ 2.4 rms Radius (fm) 2.2 ⁶He NCSMC 2.0 **NCSM** 1.8 2n Separation Energy (MeV) -10 00 00 01 -10 • Exp. Th. r_m ▲ r_{pp} S_{2n} 8 ∞ 10 6 4 N_{max}

No three-body forces included also here

Update on other methods

GFMC

Only method with three-body forces on ⁶He

M. Piarulli et al, <u>arXiv:1707.02883</u>

Update on other methods

GFMC

Sonia Bacca

⁸He from HH?

S.B. et al., PRC 86, 034321 (2012)

- Difference between HH and EIHH is about 2.4 MeV
- EIHH seems less effective than for 6He
- Extrapolating HH results get $E_{\infty} = -31.49 {
 m MeV}$ comparable to Coupled cluster

JGU

JGU

IGU

JG U

Sonia Bacca

JGU

Physics cases of interest:

JGU

$$\begin{aligned} R_L(\omega, \mathbf{q}) &= \sum_f |\langle \Psi_f | \rho(\mathbf{q}) | \Psi_0 \rangle|^2 \, \delta\left(E_f - E_0 - \omega + \frac{\mathbf{q}^2}{2M}\right) & \quad \text{charge operator} \\ R_T(\omega, \mathbf{q}) &= \sum_f |\langle \Psi_f | J_T(\mathbf{q}) | \Psi_0 \rangle|^2 \, \delta\left(E_f - E_0 - \omega + \frac{\mathbf{q}^2}{2M}\right) & \quad \text{current operator} \end{aligned}$$

 $\omega=0~$ No energy transfer, only momentum f=0~ Nucleus stays in ground-state

Form factors

JG U

Elastic Electron Scattering

From S. B. and S. Pastore, J. Phys. G: Nucl. Part. Phys. **41** 123002 (2014) Work by Piarulli, Schiavilla, Marcucci, ...

Traditional nuclear physics and chiral EFT agree Two-body currents not important in longitudinal FF

JG U

Elastic Electron Scattering

From S. B. and S. Pastore, J. Phys. G: Nucl. Part. Phys. 41 123002 (2014)

Traditional nuclear physics and chiral EFT slightly different Two-body currents important in transverse/magnetic FF $\omega \neq 0$ $\,$ Energy and momentum transferred $\,$

 $f \neq 0$ \quad Nucleus does not stay in ground-state

$$R_{L}(\omega, \mathbf{q}) = \sum_{f} \left| \langle \Psi_{f} | \rho(\mathbf{q}) | \Psi_{0} \rangle \right|^{2} \delta \left(E_{f} - E_{0} - \omega + \frac{\mathbf{q}^{2}}{2M} \right)$$

$$\boldsymbol{\rho}(\mathbf{q}) = \sum_{k}^{A} e^{i\mathbf{q}\cdot\mathbf{r}_{k}'} \frac{1+\tau_{k}^{3}}{2} = \sum_{J}^{\infty} C_{J}^{S}(\mathbf{q}) + C_{J}^{V}(\mathbf{q})$$

- Calculate every multipole on a grid of q
- Multipole expansion converges with finite number of multipoles
- Solve LIT equation for every multipole
- Invert LIT for every multipole and sum equiv to invert sum of LITs

JG U

Final state interaction

S.B. et al., PRL 102, 162501 (2009)

Strong effect of FSI: known form Carlson and Schiavilla PRL 68 (1992) and PRC 49 R2880 (1994) but now we can look at the energy dependence of FSI

Effects of nuclear Hamiltonians

Comparison with experiment improves with 3NF and at low q the reduction of the peak is up to 50%

Note:

JGU

Structure of the response close to threshold is not considered here. This is the response 1-2 MeV above threshold.

JG U

Effects of nuclear Hamiltonians

A=3

JG Monopole Resonance 4He(e,e')0+

JG Monopole Resonance 4He(e,e')0+

Resonant Transition Form Factor
$$|F_{\mathcal{M}}(q)|^2 = \frac{1}{Z^2} \int d\omega R_{\mathcal{M}}^{\text{res}}(q,\omega)$$

First ab-initio calculation with realistic three-nucleon forces and with the Lorentz Integral Transform method S.B. *et al.*, PRL **110**, 042503 (2013)

Sonia Bacca

Sensitivity to Nuclear Hamiltonians

JG U

S.B. et al., PRL 110, 042503 (2013)

Location of the resonance?

The "realistic Hamiltonians" fail to reproduce the correct position of the 0⁺₂ resonance

More theoretical work needed to understand this.

• This be measured again: S-Dalinac, MAMI, MESA

Study $R_T(\omega, \mathbf{q})$ and two-body currents effects

GU

