Electromagnetic properties of nuclei: from few- to many-body systems

Lecture 9

Many-body methods

Sonia Bacca
November 23rd, 2017
Lecture series for SFB 1245
TU Darmstadt

Many-body theory

In the few-body systems one can calculate with high accuracy

Precision era

However, most of the nuclei are actually many-body systems

Historical approach:
shell model in nuclei \Rightarrow ab- initio approaches

Shell Model in Atoms

Electrons in atoms occupy well defined shells of discrete, well separated energies.

Evidence of electron shells in atoms: sudden jumps in atomic properties as the shell gets filled up, such as atomic radius, ionization energy etc.

Figure 5.1 Atomic radius (top) and ionization energy (bottom) of the elements. The smooth variations in these properties correspond to the gradual filling of an atomic shell, and the sudden jumps show transitions to the next shell.

Do nucleons inside the nucleus do the same or not?

Shell Model in Nuclei?

Shell structure in the nucleus would mean that individual nucleons inhabit orbitals of well defined energy. Not evident a priory why this should be the case.

- The liquid drop model (smooth) is very successful in describing the binging energy.

Shell Model in Nuclei?

Shell structure in the nucleus would mean that individual nucleons inhabit orbitals of well defined energy. Not evident a priory why this should be the case.

Why?

- The liquid drop model (smooth) is very successful in describing the binging energy.
- No obvious centre for nucleons to orbit around.
- No external potential in nuclei, that should be the equivalent of the Coulomb force in atoms.

But the experimental evidence seems to say otherwise!

From Krane "Introductory Nuclear Physics"

Here the difference in radius has been divided by the standard $\Delta \mathrm{R}_{\text {std }}$ expected from the $\mathrm{A}^{1 / 3}$ dependence

Here difference between experiment and the prediction of the semi-empirical mass formula.

Jumps/Drops at neutron number: 2, 8, 20, 28, 50, 82, $126 \Rightarrow$ evidence of shell structure

Nuclei exhibit a shell structure!
Experimental data indicate local maxima of the binding energy and local minima of radii in proximity of the neutron or proton

```
"magic numbers" 2, 8, 20,28, 50, 82, 126
```

We are physicists, so we do not believe in magic!
Where do these magic numbers come from?
They have to be related to the way nucleons interact with each other.

The theory that explains this is called non interacting shell model or nuclear shell model. It is a simplified theory that accounts though for measured properties and can predict others. It is based on the assumption that the motion of the single nucleon is governed by a potential caused by all other nucleons.

In order to understand where the magic numbers come from and to explain the theory of the nuclear shell model, we need to open a parenthesis on:

- how to represent a many-body wave function
- what is an independent particle model

Many-body wave functions

- In order to construct a many-body wave function, one first has to start from a single particle (nucleon) wave function, which is separated in space/spin/isospin components

$$
\left|\varphi_{k}\right\rangle=\left[\left|\varphi_{k}^{\text {space }}\right\rangle \otimes\left|\varphi_{k}^{\text {spin }}\right\rangle\right] \otimes\left|\varphi_{k}^{i \text { sospin }}\right\rangle
$$

This could be the solution of the single nucleon Schrödinger equation
$h\left|\varphi_{k}\right\rangle=\varepsilon_{k}\left|\varphi_{k}\right\rangle$
$\left\{\left|\varphi_{k}\right\rangle\right\}$ Set of eigenstates of a single nucleon.
Different depending on what Hamiltonian h one uses. Can assume for now that this is something we can solve analytically or also numerically. E.g., harmonic oscillator

- One can then use these single particle states to construct a many-body wave function. The many-body space is in general the product of many single particle Hilbert spaces

$$
H^{A}=h_{1} \otimes h_{2} \otimes \cdots \otimes h_{A}
$$

Each single particle Hilbert space is spanned by $\left\{\left|\varphi_{k}\right\rangle\right\}$ as solution of ($\underset{\sim}{ }$)

- We can construct a many-body wave function as the product of single particle wave functions that each live in their own single particle Hilbert space

The symbol \otimes is for an ordered product, which means if you exchange the index 1 with the index 2 you have a different w.f.

$$
\left|\varphi_{k_{1}}\right\rangle \otimes\left|\varphi_{k_{2}}\right\rangle \neq\left|\varphi_{k_{2}}\right\rangle \otimes\left|\varphi_{k_{1}}\right\rangle,
$$

The first position refers to the first particle, the second position refers to the second particle and so on...

Since we deal with identical particles which are fermions, we need to work with many-body states that are antisymmetrized with respect to the exchange of two particles

Many-body wave functions

- Antisymmetrized many-body wave function

$$
\left|\psi^{A}\right\rangle=\mathcal{A}\left\{\left|\varphi_{k_{1}}\right\rangle \otimes\left|\varphi_{k_{2}}\right\rangle \otimes \cdots \otimes\left|\varphi_{k_{A}}\right\rangle\right\}
$$

where the antisymmetrizer operator is

$$
\mathcal{A}=\frac{1}{\sqrt{A}!} \sum_{\substack{\mathcal{A} \text { all perm } \mathrm{P} \\ \text { mass number }}} \operatorname{sign}(P) P_{P}
$$

where P_{P} is the permutation operator and
$\operatorname{sign}(P)=(-1)^{n_{p}}, n_{p}$
is the number of pair exchanges

Example A=2

Suppose we neglect spin-isospin now and use a coordinate representation of the single particle states, i.e., $\left\langle r \mid \varphi_{k}\right\rangle=\varphi_{k}(r)$

$$
\begin{aligned}
& \left\langle r_{1}\right| \otimes\left\langle r_{2}\right| \mathcal{A}\left\{\left|\varphi_{k_{1}}\right\rangle \otimes\left|\varphi_{k_{2}}\right\rangle\right\}=\left\langle r_{1}\right| \otimes\left\langle r_{2}\right|\left(\left|\varphi_{k_{1}}\right\rangle \otimes\left|\varphi_{k_{2}}\right\rangle-\left|\varphi_{k_{2}}\right\rangle \otimes\left|\varphi_{k_{1}}\right\rangle\right) \frac{1}{\sqrt{2}} \\
& \quad=\frac{1}{\sqrt{2}}\left(\varphi_{k_{1}}\left(r_{1}\right) \varphi_{k_{2}}\left(r_{2}\right)-\varphi_{k_{2}}\left(r_{1}\right) \varphi_{k_{1}}\left(r_{2}\right)\right)=\frac{1}{\sqrt{2}} \operatorname{det}\left(\begin{array}{cc}
\varphi_{k_{1}}\left(r_{1}\right) & \varphi_{k_{1}}\left(r_{2}\right) \\
\varphi_{k_{2}}\left(r_{1}\right) & \varphi_{k_{2}}\left(r_{2}\right)
\end{array}\right)
\end{aligned}
$$

Imposing antisymmetrization means respecting Pauli principle \rightarrow
If we put two particle in the same state, when we permute, the antisymmetrizer will give zero.

Many-body wave functions

Case of A particles coordinate space representation

Slater Determinant

$$
\left\langle r_{1}, r_{2}, \ldots, r_{A} \mid \psi^{A}\right\rangle=\frac{1}{\sqrt{A!}} \operatorname{det}\left(\begin{array}{cccc}
\varphi_{k_{1}}\left(r_{1}\right) & \varphi_{k_{1}}\left(r_{2}\right) & \cdots & \varphi_{k_{1}}\left(r_{A}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\varphi_{k_{A}}\left(r_{1}\right) & \varphi_{k_{A}}\left(r_{2}\right) & \cdots & \varphi_{k_{A}}\left(r_{A}\right)
\end{array}\right)
$$

Determinant of an AxA matrix, with same particle in each column and same single particle state in each row.

It is a (simple) way to construct antisymmetrized states.

Independent particle model

In an independent particle model it is assumed that particles do not interact with each other. They are only subject to the Pauli principle.

Formally this means that one can write the Hamiltonian for A particles as
$H=\sum_{i}^{A} h_{i}, \quad h_{i}:$ single particle Hamiltonian
Note: there is nothing that connects particle i with particle j
Examples:
$h_{i}=\frac{p_{i}^{2}}{2 m} \quad$ only kinetic energy (Fermi gas models with SD of plane waves)
$h_{i}-\frac{p_{i}^{2}}{2 m}+U_{i}$ is the potential felt by particle i , which could be an external potential like the Coulomb force in atoms or an average potential given to i by the presence of all the other A-1 particles.

Assumption: The interaction of a nucleon with ALL the other particles is approximated by a "mean" potential

Independent particle model

$H=\sum_{i}^{A} h_{i} \begin{aligned} & \text { The solution of such Hamiltonian is obtained by solving the } \\ & \text { single particle Schrödinger equation }\end{aligned}$
$h_{i}\left|\varphi_{k}\right\rangle=\varepsilon_{k}\left|\varphi_{k}\right\rangle \Longrightarrow h_{i} \varphi_{k}\left(r_{i}\right)=\varepsilon_{k} \varphi_{k}\left(r_{i}\right) \quad$ in coordinate space representation
Then the A-body states are just Slater Determinants of single particle states $\varphi_{k}\left(r_{i}\right)$

The solution of $H\left|\psi^{A}\right\rangle=E\left|\psi^{A}\right\rangle \quad$ has the following energy

$$
E=\sum_{k}^{A} \varepsilon_{k} d_{k} \longrightarrow \begin{aligned}
& \text { degeneracy: measures the occupancy of } \\
& \text { a single particle state }
\end{aligned}
$$

To convince yourself, prove that this is true for $\mathrm{A}=2$

Independent particle model

$H=\sum_{i}^{A} h_{i} \begin{aligned} & \text { The solution of such Hamiltonian is obtained by solving the } \\ & \text { single particle Schrödinger equation }\end{aligned}$
$h_{i}\left|\varphi_{k}\right\rangle=\varepsilon_{k}\left|\varphi_{k}\right\rangle \Longrightarrow h_{i} \varphi_{k}\left(r_{i}\right)=\varepsilon_{k} \varphi_{k}\left(r_{i}\right) \quad$ in coordinate space representation
Then the A-body states are just Slater Determinants of single particle states $\varphi_{k}\left(r_{i}\right)$

The solution of $H\left|\psi^{A}\right\rangle=E\left|\psi^{A}\right\rangle \quad$ has the following energy

$$
E=\sum_{k}^{A} \varepsilon_{k} d_{k} \longrightarrow \begin{aligned}
& \text { degeneracy: measures the occupancy of } \\
& \text { a single particle state }
\end{aligned}
$$

\square energy of the highest occupied state
Fill in the shells respecting Pauli principle (d_{k}) up to A particles

Magic numbers arise because the single particle spectrum is not smooth, but is made by discrete levels. Particles are grouped into shells with relatively large gaps between them.

Separation energy

Energy of A-body system
$E_{7}=2 \varepsilon_{1}+4 \varepsilon_{2}+\varepsilon_{3}$
$E_{6}=2 \varepsilon_{1}+4 \varepsilon_{2}$
$E_{5}=2 \varepsilon_{1}+3 \varepsilon_{2}$
$E_{4}=2 \varepsilon_{1}+2 \varepsilon_{2}$
$E_{3}=2 \varepsilon_{1}+\varepsilon_{2}$
$E_{2}=2 \varepsilon_{1}$
$E_{1}=\varepsilon_{1}$
$S^{(A)}=B E(A)-B E(A-1)=E_{A-1}-E_{A}$
$S^{(7)}=-\varepsilon_{3}$
$S^{(6)}=-\varepsilon_{2}$
$S^{(5)}=-\varepsilon_{2}$
$S^{(4)}=-\varepsilon_{2}$
$S^{(3)}=-\varepsilon_{2}$
$S^{(2)}=-\varepsilon_{1}$

Case of the spherical HO potential

$U_{i}=\frac{1}{2} m \omega^{2} r_{i}^{2} \quad \Longrightarrow \quad h_{i}=\frac{p_{i}^{2}}{2 m}+\frac{1}{2} m \omega^{2} r_{i}^{2}$
$h_{i} \varphi\left(\vec{r}_{i}\right)=\varepsilon_{k} \varphi\left(\vec{r}_{i}\right) \quad$ HO in 3 dimensions
k bunch of quantum numbers $\quad k=n \ell m$
For every particle (omit i index)

$$
\begin{array}{ccc}
\varphi_{n \ell m}(\vec{r})=R_{\uparrow \ell}(r) & Y_{\ell m}(\hat{r}) & n \quad \text { radial quantum number } \\
\text { analytical solution of the } \\
\text { radial equation }
\end{array} \uparrow_{\text {spherical harmonics }} \quad \begin{gathered}
\ell, m \text { quantum numbers related to } \\
\text { angular momentum and its } \\
\text { projection }
\end{gathered}
$$

$\varepsilon_{n \ell}=\left(N+\frac{3}{2}\right) \hbar \omega=(\underbrace{2(n-1)+\ell}_{N}+\frac{3}{2}) \hbar \omega=\varepsilon_{N}$
with degeneracy $\quad d_{N}=2 \quad(2 \ell+1)$
two possible spin projections

Nuclear shell model

Case of the spherical HO potential

The integrated degeneracy is related to the magic numbers

N	E_{N}	d_{N}	$\sum_{N} d_{N}$	$n(l)$	parity
0	$\frac{3}{2} \hbar \omega$	2	2	$1 s$	+
1	$\frac{5}{2} \hbar \omega$	6	8	$1 p$	-
2	$\frac{7}{2} \hbar \omega$	12	20	$1 d, 2 s$	+
3	$\frac{9}{2} \hbar \omega$	20	40	$1 f, 2 p$	-
4	$\frac{11}{2} \hbar \omega$	30	70	$1 g, 2 d, 3 s$	+
5	$\frac{13}{2} \hbar \omega$	42	112	$1 h, 2 f, 3 p$	-
6	$\frac{15}{2} \hbar \omega$	56	168	$1 i, 2 g, 3 d, 4 s$	+

The magic numbers are wrong after the first three!

Does it depend on the "mean" potential we chose? We can do the same using a different U_{i}

Figure 5.4 Shell structure obtained with infinite well and harmonic oscillator potentials. The capacity of each level is indicated to its right. Large gaps occur between the levels, which we associate with closed shells. The circled numbers indicate the total number of nucleons at each shell closure.

Krane, Introductory
Nuclear Physics

One can try to use a Wood-Saxton form for U_{i}

Nuclear shell model

Is there a spin-orbit force?
Mean field central potential plus an empirical spin-orbit term like

$$
U(r)=V_{0}(r)+V_{\ell s}(r) \vec{\ell} \cdot \vec{s} \quad \begin{array}{cc}
\vec{\ell} & \text { orbital angular momentum } \\
\vec{s} & \text { spin (intrinsic) angular momentum }
\end{array}
$$

with $V_{0}(r), V_{\ell s}(r)$ being negative (attractive potentials)

L and S anti-parallel shallower attractive potential

Spin-orbit splitting

Now the good quantum numbers is j , so we have to consider the angular momentum coupling

$$
\vec{j}=\vec{\ell}+\vec{s}=\vec{\ell}+\frac{\overrightarrow{1}}{2}=\left\{\begin{array}{l}
j=\frac{3}{2} \\
j=\frac{1}{2}
\end{array} \quad \text { for } \ell=1\right.
$$

no spin-orbit force \Rightarrow
degenerate levels
with spin-orbit \Longrightarrow
splitting of the levels

$\mathrm{JG} \mid \mathrm{U}$
 Nuclear shell model

With the addition of the spin-orbit, the magic numbers are reproduced $2,8,20,28,50,82,126$
termediate form

Maria Goppert-Mayer and Hans Jensen Nobel prize in 1963
Phys. Rev. 75, 1969 (1949)
Degeneracy with spin-orbit force

$$
d_{N}=(2 j+1)
$$

P-shell

What we have described so far is known as non interacting shell model and we have discussed the ground state of nuclei.
However, in modern research what is used is the interacting shell model/shell model.
One can construct excited states or correlated ground states out of particle-hole excitations of the starting Slater determinant.
mean field/non interacting

one-particle/one-hole

two-particles/two-holes

In this way you construct many Slater determinants, that can form a many-body basis which one can use to expand the many-body wave function. This is also called configuration mixing or configuration interaction

$$
\left|\Psi^{A}\right\rangle=\sum_{i} c_{i}\left|\psi_{i}^{A}\right\rangle
$$

Hamiltonian with a two-body potential (now particles are interacting)

$$
\begin{aligned}
& H=\sum_{i}^{A} \frac{p_{i}^{2}}{2 m}+\sum_{i<j}^{A} V_{i j} \\
& H=\sum_{i}^{A} \frac{p_{i}^{2}}{2 m}+\sum_{i<j}^{A} V_{i j}+\underbrace{\sum_{i}^{A} U_{i}-\sum_{i}^{A} U_{i}}_{=0} \\
& =\sum_{\substack{\text { non interacting } \\
\text { Hamiltonian }}}^{A} \frac{p_{i}^{2}}{2 m}+\sum_{i}^{A} U_{i}+\sum_{i<j}^{A} V_{i j}-\sum_{i}^{A} U_{i}
\end{aligned}
$$

If $\mathrm{W}_{\text {res }}$ is small, then mean field or perturbation around it are good. If $W_{\text {res }}$ is big, then you need to solve the problem non perturbatively by diagonalizing the whole H on the basis of eigenstates of H_{0}

Idea of
interacting
shell model

Construct orbitals from the HO potential

$$
U_{i}=\frac{1}{2} m \omega^{2} r_{i}^{2} \quad \hbar \omega \simeq 41 A^{-\frac{1}{3}} \mathrm{MeV}
$$

Ansatz:

For a given number on p and n, the mean field orbitals $\left(\varepsilon_{i}\right)$ can be grouped in:

- inherent core: orbitals that are always full
- valence space:
orbits that can have particle-hole excitations
- external space:
all the remaining orbits that are always empty

1. Starting from $V_{i j}$ you construct a Veffij that lives in the valence space, using phenomenology or many body perturbation theory
2. Solve $\mathrm{H}_{0}+\mathrm{W}_{\text {res }}$ by diagonalizing a matrix with particle-hole excitations in your valence space

Effective Potentials

Phenomenological approach

The model space and the effective interaction are very much related. Typically, the effective interaction is a set of two-body matrix elements tuned to reproduce experimental data

$\mathrm{Jg} \mid \mathrm{U}$
 Effective Potentials

Phenomenological approach

The model space and the effective interaction are very much related. Typically, the effective interaction is a set of two-body matrix elements tuned to reproduce experimental data

$\mathrm{JG} \mid \mathrm{U}$
 Effective Potentials

Phenomenological approach

The model space and the effective interaction are very much related. Typically, the effective interaction is a set of two-body matrix elements tuned to reproduce experimental data

jg|u Effective potentials from MBPT

More fundamental approach

Otsuka et al. PRL 105, 032501 (2010)

First results with 3NF (effective 2NF)

To go beyond phenomenological potentials or the core approximations, using the more fundamental approach to nuclear interactions from chiral EFT

Solve the many-body problem with ab initio many-body methods

