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Non-observability and 
reaction-structure interplay

Topical lecture week: 
Nuclear Structure from Spectroscopy and Direct Reactions



Reaction processes within ab initio frameworks

Calculations generally involve:
• nuclear structure part for description of initial/final state wave functions
• reaction part describes interaction with external probes
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For calculations of observables a factorization of structure and reaction parts 
has to be assumed:

� ⇠ h F (�)|O(�)| A(�)i
whereas      is a chosen resolution scale�



Overview RG Summary Extras Physics Resolution Forces Filter Coupling

Why is textbook nuclear physics so hard?

VL=0(k , k �) ⇤
�

r2 dr j0(kr) V (r) j0(k �r) = ⌅k |VL=0|k �⇧ =⇥ Vkk � matrix

Momentum units (� = c = 1): typical relative momentum
in large nucleus � 1 fm�1 � 200 MeV but . . .

Repulsive core =⇥ large high-k (� 2 fm�1) components
Dick Furnstahl RG in Nuclear Physics

• constructed to fit scattering data (long-wavelength information)

• long-range part dominated by one pion exchange interaction

• short range part strongly model dependent!

• traditional NN interactions contain strongly repulsive core at small distance
‣ strong coupling between low and high-momenta
‣ many-body problem hard to solve using basis expansion!

“Traditional” NN interactions
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strong ‘short-range 
correlations’!
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Convenient to choose resolution scale     such that

• wave functions include only momentum scales that are constrained by 
scattering phase shifts (reduction of scheme dependence)

• nuclear structure calculations are simplified
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= [⌘�, H�]
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One solution: the Similarity Renormalization Group
• generate unitary transformation which decouples low- and high momenta:

• change resolution systematically in small steps:

with the resolution parameter 

• generator       can be chosen and tailored to different applications 

• observables are preserved due to unitarity of transformation

⌘�

H� = U�HU †
�
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• elimination of coupling between low- and high momentum components,
          simplified many-body calculations!

• observables unaffected by resolution change (for exact calculations)

• residual resolution dependences can be used as tool to test calculations

Not the full story:
RG transformations also change three-body (and higher-body) interactions...

Systematic decoupling of high-momentum physics:
the Similarity Renormalization Group



Application of SRG-evolved NN+3N forces to nuclei
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2

responding solution of the flow equation in two-body space
(using either a partial-wavemomentum or harmonic-oscillator
representation) we extract the irreducible two- and three-body
terms of the Hamiltonian for the use in A-body calculations.
We have made major technical improvements regarding

the SRG transformation, reducing the computational effort by
three orders of magnitude compared to Ref. [6], e.g., by us-
ing a solver with adaptive step-size and optimized matrix op-
erations. Furthermore, we have developed a transformation
from 3N Jacobi matrix elements to a JT -coupled representa-
tion with a highly efficient storage scheme, which allows us
to handle 3N matrix-element sets of unprecedented size. A
detailed discussion of these aspects is presented elsewhere.
Importance-Truncated NCSM. Based on the SRG-

evolved Hamiltonian we treat the many-body problem in the
NCSM, i.e., we solve the large-scale eigenvalue problem
of the Hamiltonian, represented in a many-body basis of
HO Slater determinants truncated w.r.t. the maximum HO
excitation energy Nmax!Ω. In order to cope with the factorial
growth of the basis dimension with Nmax and particle number
A, we use the importance-truncation (IT) scheme introduced
in Refs. [12, 13]. The IT-NCSM uses an importance measure
κν for the individual basis states |Φν⟩ derived frommany-body
perturbation theory and retains only states with |κν| above
a threshold κmin in the model space. Through a variation
of the threshold and an a posteriori extrapolation κmin → 0
the contribution of discarded states is recovered. We use
the sequential update scheme discussed in Ref. [13], which
connects to the full NCSM model space and thus the exact
NCSM results in the limit of vanishing threshold. In the
following we always report threshold-extrapolated results
including an estimate for the extrapolation uncertainties. For
the present application we have extended the IT-NCSM to
include full 3N interactions. Using the JT -coupled 3N matrix
elements we are able to perform calculations up to Nmax = 12
or 14 for all p-shell nuclei with moderate computational
resources. Due to the JT -coupling, we can keep all 3N matrix
elements in memory using a fast on-the-fly decoupling.
Ground-State Energies. We first focus on IT-NCSM cal-

culations for the ground states of 4He, 6Li, 12C, and 16O us-
ing SRG-transformed chiral NN+3N interactions. Through-
out this work we use the chiral NN interaction at N3LO of
Entem and Machleidt [1] and the 3N interaction at N2LO [14]
with low energy constants determined from the triton binding
energy and β-decay half-live [15]. In order to disentangle the
effects of the initial and the SRG-induced 3N contributions,
we consider three different Hamiltonians. (1) NN only: start-
ing from the chiral NN interaction only the SRG-evolved NN
contributions are kept. (2) NN+3N-induced: starting from the
chiral NN interaction the SRG-evolved NN and the induced
3N terms are kept. (3) NN+3N-full: starting from the chiral
NN+3N interaction the SRG-evolved NN and all 3N terms
are kept. For each Hamiltonian we assess the dependence of
the observables, here the ground-state energies, on the flow-
parameter α. We use the five values α = 0.04 fm4, 0.05 fm4,
0.0625 fm4, 0.08 fm4, and 0.16 fm4, which correspond to mo-
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FIG. 1: (color online) IT-NCSM ground-state energies for 4He and
6Li as function of Nmax for the three types of Hamiltonians (see col-
umn headings) for a range of flow parameters: α = 0.04 fm4 (•),
0.05 fm4 ( !), 0.0625 fm4 ("), 0.08 fm4 (!), and 0.16 fm4 (★). Error
bars indicate the uncertainties of the threshold extrapolations. The
bars at the right-hand-side of each panel indicate the results of expo-
nential extrapolations of the individual Nmax-sequences (see text).

mentum scales Λ = α−1/4 = 2.24 fm−1, 2.11 fm−1, 2 fm−1,
1.88 fm−1, and 1.58 fm−1, respectively. For extrapolations to
infinite model space, Nmax → ∞, we use simple exponen-
tial fits based on the last 3 or 4 data points. The extrapolated
energy is given by the average of the two extrapolations, the
uncertainty by the difference.
The ground-state energies obtained in IT-NCSM calcula-

tions for 4He and 6Li with the three Hamiltonians are sum-
marized in Fig. 1. Analogous calculations in the full NCSM
for the same SRG-evolved initial Hamiltonian have been pre-
sented in Ref. [5] for 4He and in Ref. [6] for 6Li. We have
cross-checked our results with Refs. [5, 6] and found excel-
lent agreement.
The first and foremost effect of the SRG transformation

is the acceleration of the convergence of NCSM calculations
with Nmax. With increasing α the convergence is systemati-
cally improved for all three versions of the Hamiltonian. With
the initial Hamiltonian, i.e. α = 0, even the large model spaces
we use here are not sufficient to even obtain meaningful ex-
trapolations, with the exception of the tightly-bound 4He.
For the NN-only Hamiltonian Fig. 1 shows a clear α-

dependence of the extrapolated ground-state energies for 4He
and 6Li, hinting at sizable SRG-induced 3N contributions.
When including those induced 3N terms, i.e. when using the
NN+3N-induced Hamiltonian, the extrapolated ground-state
energies are shifted significantly and become α-independent
within the uncertainties of the Nmax-extrapolation. Thus, in-
duced contributions beyond the 3N level originating from the

Roth et al. PRL 107, 072501 (2011)
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three orders of magnitude compared to Ref. [6], e.g., by us-
ing a solver with adaptive step-size and optimized matrix op-
erations. Furthermore, we have developed a transformation
from 3N Jacobi matrix elements to a JT -coupled representa-
tion with a highly efficient storage scheme, which allows us
to handle 3N matrix-element sets of unprecedented size. A
detailed discussion of these aspects is presented elsewhere.
Importance-Truncated NCSM. Based on the SRG-

evolved Hamiltonian we treat the many-body problem in the
NCSM, i.e., we solve the large-scale eigenvalue problem
of the Hamiltonian, represented in a many-body basis of
HO Slater determinants truncated w.r.t. the maximum HO
excitation energy Nmax!Ω. In order to cope with the factorial
growth of the basis dimension with Nmax and particle number
A, we use the importance-truncation (IT) scheme introduced
in Refs. [12, 13]. The IT-NCSM uses an importance measure
κν for the individual basis states |Φν⟩ derived frommany-body
perturbation theory and retains only states with |κν| above
a threshold κmin in the model space. Through a variation
of the threshold and an a posteriori extrapolation κmin → 0
the contribution of discarded states is recovered. We use
the sequential update scheme discussed in Ref. [13], which
connects to the full NCSM model space and thus the exact
NCSM results in the limit of vanishing threshold. In the
following we always report threshold-extrapolated results
including an estimate for the extrapolation uncertainties. For
the present application we have extended the IT-NCSM to
include full 3N interactions. Using the JT -coupled 3N matrix
elements we are able to perform calculations up to Nmax = 12
or 14 for all p-shell nuclei with moderate computational
resources. Due to the JT -coupling, we can keep all 3N matrix
elements in memory using a fast on-the-fly decoupling.
Ground-State Energies. We first focus on IT-NCSM cal-

culations for the ground states of 4He, 6Li, 12C, and 16O us-
ing SRG-transformed chiral NN+3N interactions. Through-
out this work we use the chiral NN interaction at N3LO of
Entem and Machleidt [1] and the 3N interaction at N2LO [14]
with low energy constants determined from the triton binding
energy and β-decay half-live [15]. In order to disentangle the
effects of the initial and the SRG-induced 3N contributions,
we consider three different Hamiltonians. (1) NN only: start-
ing from the chiral NN interaction only the SRG-evolved NN
contributions are kept. (2) NN+3N-induced: starting from the
chiral NN interaction the SRG-evolved NN and the induced
3N terms are kept. (3) NN+3N-full: starting from the chiral
NN+3N interaction the SRG-evolved NN and all 3N terms
are kept. For each Hamiltonian we assess the dependence of
the observables, here the ground-state energies, on the flow-
parameter α. We use the five values α = 0.04 fm4, 0.05 fm4,
0.0625 fm4, 0.08 fm4, and 0.16 fm4, which correspond to mo-
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FIG. 1: (color online) IT-NCSM ground-state energies for 4He and
6Li as function of Nmax for the three types of Hamiltonians (see col-
umn headings) for a range of flow parameters: α = 0.04 fm4 (•),
0.05 fm4 ( !), 0.0625 fm4 ("), 0.08 fm4 (!), and 0.16 fm4 (★). Error
bars indicate the uncertainties of the threshold extrapolations. The
bars at the right-hand-side of each panel indicate the results of expo-
nential extrapolations of the individual Nmax-sequences (see text).

mentum scales Λ = α−1/4 = 2.24 fm−1, 2.11 fm−1, 2 fm−1,
1.88 fm−1, and 1.58 fm−1, respectively. For extrapolations to
infinite model space, Nmax → ∞, we use simple exponen-
tial fits based on the last 3 or 4 data points. The extrapolated
energy is given by the average of the two extrapolations, the
uncertainty by the difference.
The ground-state energies obtained in IT-NCSM calcula-

tions for 4He and 6Li with the three Hamiltonians are sum-
marized in Fig. 1. Analogous calculations in the full NCSM
for the same SRG-evolved initial Hamiltonian have been pre-
sented in Ref. [5] for 4He and in Ref. [6] for 6Li. We have
cross-checked our results with Refs. [5, 6] and found excel-
lent agreement.
The first and foremost effect of the SRG transformation

is the acceleration of the convergence of NCSM calculations
with Nmax. With increasing α the convergence is systemati-
cally improved for all three versions of the Hamiltonian. With
the initial Hamiltonian, i.e. α = 0, even the large model spaces
we use here are not sufficient to even obtain meaningful ex-
trapolations, with the exception of the tightly-bound 4He.
For the NN-only Hamiltonian Fig. 1 shows a clear α-

dependence of the extrapolated ground-state energies for 4He
and 6Li, hinting at sizable SRG-induced 3N contributions.
When including those induced 3N terms, i.e. when using the
NN+3N-induced Hamiltonian, the extrapolated ground-state
energies are shifted significantly and become α-independent
within the uncertainties of the Nmax-extrapolation. Thus, in-
duced contributions beyond the 3N level originating from the

Roth et al. PRL 107, 072501 (2011)
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FIG. 5: (Color online) Ground-state energies from CR-CC(2,3) for (a) the NN+3N-induced Hamiltonian starting from the N3LO and N2LO-
optimized NN interaction and (c) the NN+3N-full Hamiltonian with Λ3N = 400 MeV/c and Λ3N = 350 MeV/c. The boxes represent the
spread of the results from α = 0.04 fm4 to α = 0.08 fm4, and the tip points into the direction of smaller values of α. Also shown are the
contributions of the CR-CC(2,3) triples correction to the (b) NN+3N-induced and (d) NN+3N-full results. All results employ !Ω = 24 MeV
and 3N interactions with E3max = 18 in NO2B approximation and full inclusion of the 3N interaction in CCSD up to E3max = 12. Experimental
binding energies [32] are shown as black bars.

ies have shown that for both cutoffs, the induced 4N inter-
action are small up into the sd-shell [6, 9]. For heavier nuclei,
Fig. 5(c) reveals that the α-dependence of the ground-state
energies remains small for Λ3N = 400 MeV/c up to the heav-
iest nuclei. Thus, the attractive induced 4N contributions that
originate from the initial NN interaction are canceled by ad-
ditional repulsive 4N contributions originating from the ini-
tial chiral 3N interaction. By reducing the initial 3N cutoff
to Λ3N = 350 MeV/c, the repulsive 4N component resulting
for the initial 3N interaction is weakened [9] and the attrac-
tive induced 4N from the initial NN prevails, leading to an
increased α-dependence indicating an attractive net 4N con-
tribution. All of these effects are larger than the truncation un-
certainties of the calculations, such as the cluster truncation,
as is evident by the comparatively small triples contributions
shown in Fig. 5(b) and (d).

Taking advantage of the cancellation of induced 4N terms
for the NN+3N-full Hamiltonian with Λ3N = 400 MeV/c we
compare the energies to experiment. Throughout the different
isotopic chains starting from Ca, the experimental pattern of
the binding energies is reproduced up to a constant shift of
the order of 1 MeV per nucleon. The stability and qualitative
agreement of the these results over an unprecedented mass
range is remarkable, given the fact that the Hamiltonian was
determined in the few-body sector alone.

When considering the quantitative deviations, one has to
consider consistent chiral 3N interaction at N3LO, and the
initial 4N interaction. In particular for heavier nuclei, the

contribution of the leading-order 4N interaction might be siz-
able. Another important future aspect is the study of other
observables, such as charge radii. In the present calcula-
tions the charge radii of the HF reference states are sys-
tematically smaller than experiment and the discrepancy in-
creases with mass. For 16O, 40Ca, 88Sr, and 120Sn the cal-
culated charge radii are 0.3 fm, 0.5 fm, 0.7 fm, and 1.0 fm
too small [32]. These deviations are larger than the ex-
pected effects of beyond-HF correlations and consistent SRG-
evolutions of the radii. This discrepancy will remain a chal-
lenge for future studies of medium-mass and heavy nuclei
with chiral Hamiltonians.

Conclusions. In this Letter we have presented the first
accurate ab initio calculations for heavy nuclei using SRG-
evolved chiral interactions. We have identified and eliminated
a number of technical hurdles, e.g., regarding the SRG model
space, that have inhibited state-of-the-art medium-mass ap-
proaches to address heavy nuclei. As a result, many-body
calculations up to 132Sn are now possible with controlled un-
certainties on the order of 2%. The qualitative agreement of
ground-state energies for nuclei ranging from 16O to 132Sn
obtained in a single theoretical framework demonstrates the
potential of ab initio approaches based on chiral Hamiltoni-
ans. This is a first direct validation of chiral Hamiltonians in
the regime of heavy nuclei using ab initio techniques. Future
studies will have to involve consistent chiral Hamiltonians at
N3LO considering initial and SRG-induced 4N interactions
and provide an exploration of other observables.

Binder et al. , Phys. Lett B 736, 119 (2014)
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Application: deep-inelastic knock-out reactions

Subedi et al., Science 320, 1476 (2008)
Short-range-correlation
interpretation (SRC):

• detection of knocked out pairs 
with large relative momenta
• excess of np pairs over pp pairs

These kinematic settings covered (e,e'p) missing
momenta, which is the momentum of the
undetected particles, in the range from 300 to
600 MeV/c, with overlap between the different
settings. For highly correlated pairs, the missing
momentum of the (e,e'p) reaction is balanced
almost entirely by a single recoiling nucleon,
whereas for a typical uncorrelated (e,e'p) event,
themissingmomentum is balanced by the sum of
many recoiling nucleons. In a partonic picture, xB
is the fraction of the nucleon momentum carried
by the struck quark. Hence, when xB > 1, the
struck quark has more momentum than the entire
nucleon, which points to nucleon correlation. To
detect correlated recoiling protons, a large
acceptance spectrometer (“BigBite”) was placed
at an angle of 99° to the beam direction and 1.1
m from the target. To detect correlated recoiling
neutrons, a neutron array was placed directly
behind the BigBite spectrometer at a distance of 6
m from the target. Details of these custom proton
and neutron detectors can be found in the
supporting online material (16).

The electronics for the experiment were set
up so that for every 12C(e,e'p) event in the HRS
spectrometers, we read out the BigBite and
neutron-detector electronics; thus, we could deter-
mine the 12C(e,e'pp)/12C(e,e'p) and the 12C(e,e'pn)/
12C(e,e'p) ratios. For the 12C(e,e'pp)/12C(e,e'p)
ratio, we found that 9.5 ± 2% of the (e,e'p) events
had an associated recoiling proton, as reported in
(12). Taking into account the finite acceptance of
the neutron detector [using the same procedure
as with the proton detector (12)] and the neutron
detection efficency, we found that 96 ± 22% of
the (e,e'p) events with a missing momentum above
300 MeV/c had a recoiling neutron. This result
agrees with a hadron beam measurement of
(p,2pn)/(p,2p), in which 92 ± 18% of the (p,2p)
events with a missing momentum above the Fermi

momentum of 275 MeV/c were found to have a
single recoilingneutroncarrying themomentum(11).

Because we collected the recoiling proton
12C(e,e'pp) and neutron 12C(e,e'pn) data simulta-
neously with detection systems covering nearly
identical solid angles, we could also directly
determine the ratio of 12C(e,e'pn)/12C(e,e'pp). In
this scheme, many of the systematic factors
needed to compare the rates of the 12C(e,e'pn)
and 12C(e,e'pp) reactions canceled out. Correct-
ing only for detector efficiencies, we determined
that this ratio was 8.1 ± 2.2. To estimate the effect
of final-state interactions (that is, reactions that
happen after the initial scattering), we assumed
that the attenuations of the recoiling protons and
neutrons were almost equal. In this case, the only
correction related to final-state interactions of the
measured 12C(e,e'pn)/12C(e,e'pp) ratio is due to a
single-charge exchange. Because the measured
(e,e'pn) rate is about an order of magnitude larger
than the (e,e'pp) rate, (e,e'pn) reactions followed
by a single-charge exchange [and hence detected
as (e,e'pp)] dominated and reduced the measured
12C(e,e'pn)/12C(e,e'pp) ratio. Using the Glauber
approximation (17), we estimated that this effect
was 11%. Taking this into account, the corrected
experimental ratio for 12C(e,e'pn)/12C(e,e'pp) was
9.0 ± 2.5.

To deduce the ratio of p-n to p-p SRC pairs in
the ground state of 12C, we used the measured
12C(e,e'pn)/12C(e,e'pp) ratio. Because we used
(e,e'p) events to search for SRC nucleon pairs, the
probability of detecting p-p pairs was twice that
of p-n pairs; thus, we conclude that the ratio of
p-n/p-p pairs in the 12C ground state is 18 ± 5
(Fig. 2). To get a comprehensive picture of the
structure of 12C, we combined the pair faction
results with the inclusive 12C(e,e') measurements
(4, 5, 14) and found that approximately 20% of
the nucleons in 12C form SRC pairs, consistent

with the depletion seen in the spectroscopy ex-
periments (1, 2). As shown in Fig. 3, the com-
bined results indicate that 80% of the nucleons in
the 12C nucleus acted independently or as de-
scribed within the shell model, whereas for the
20% of correlated pairs, 90 ± 10% were in the
form of p-n SRC pairs; 5 ± 1.5%were in the form
of p-p SRC pairs; and, by isospin symmetry, we
inferred that 5 ± 1.5% were in the form of SRC
n-n pairs. The dominance of the p-n over p-p
SRC pairs is a clear consequence of the nucleon-
nucleon tensor force. Calculations of this effect
(18,19) indicate that it is robust anddoes not depend
on the exact parameterization of the nucleon-
nucleon force, the type of the nucleus, or the
exact ground-state wave function used to de-
scribe the nucleons.

If neutron stars consisted only of neutrons, the
relatively weak n-n short-range interaction would
mean that they could be reasonably well approxi-
mated as an ideal Fermi gas, with only perturba-
tive corrections. However, theoretical analysis of
neutrino cooling data indicates that neutron stars
contain about 5 to 10% protons and electrons in
the first central layers (20–22). The strong p-n
short-range interaction reported here suggests
that momentum distribution for the protons and
neutrons in neutron stars will be substantially
different from that characteristic of an ideal Fermi
gas. A theoretical calculation that takes into
account the p-n correlation effect at relevant
neutron star densities and realistic proton concen-
tration shows the correlation effect on the mo-
mentum distribution of the protons and the
neutrons (23). We therefore speculate that the
small concentration of protons inside neutron
stars might have a disproportionately large effect
that needs to be addressed in realistic descriptions
of neutron stars.
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Fig. 3. The average fraction of nucleons in the
various initial-state configurations of 12C.
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one unitary SRG transformation renormalizes all operators 

quantities like momentum distributions are generally scale dependent:
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• applies generally to all quantities like spectroscopic factors, short-range corr.,...

• consistency requires consistent RG evolution of reaction and structure parts

• key for all momenta involving high-momentum components
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Figure 33. Parton distribution xu(x,Q2) for the u-quarks in the proton as a function of x and
Q2 (left, calculated from [130]) and deuteron momentum distribution n(k) at di↵erent SRG
resolutions � (right).

with highly suppressed SRCs. But the RG implies that nuclear momentum distributions are
scale (and scheme) dependent, just like QCD parton distributions [121]. This analogy is
illustrated in figure 33. In the left panel, the combination xu(x,Q2) measures the share of
momentum carried by u-quarks in a proton within a particular x-interval [136, 130]. This
momentum distribution changes as a function of the resolution scale Q2 according to RG
evolution equations. In the right panel, the deuteron momentum distribution n�(k) for an

Furnstahl, KH, Rep. Prog. Phys. 76, 126301 (2013)



(a)
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FIG. 4. (Color online) Same as Fig. 3 but for q = 3.02 fm�1.

It can come in at low momentum, as we see here; or, (ii) the operator can gain strength
only at high momenta, where the operator would have to become pathologically large. If
the second case were to occur, practical calculations with the SRG in a reduced basis would
not be possible. This is found empirically to not be the case, and we can be confident such
pathologies will not occur based on more general arguments discussed in what follows.

The operator at low q, however, picks up some strength at larger values of momentum
than present in the initial operator. This is also needed to compensate for the suppression of
low momentum dependence in high-energy eigenstates to maintain their expectation values.
One should note that the operator display scale used here can be a bit deceptive, in that it
has been amplified to make the qualitative features of the evolution more apparent. Most
of the evolution does, in fact, remain at low momentum for deuteron expectation values.

We show the occupation operator as an integrand given by h d| a†qaq | di in Figs. 3(b) and
4(b). The expectation value filters the general operator by weighting its matrix elements
with the deuteron wave function. Now we can see a clean RG flow in the strength for
both operators. The integrand of the operator at q = 3.02 fm�1 begins as a sharp spike,

9

(a)

(b)

FIG. 3. (Color online) (a) SRG evolution of the operator hk| a†qaq |k0i for q = 0.34 fm�1 in the 3S
1

partial wave from � = 6 fm�1 to � = 1.5 fm�1, with the N3LO (500MeV) [17] initial potential. (b)
Integrand of h d(s)| (a†qaq)s | d(s)i with linear (top) and logarithmic magnitude (bottom) scales.

Consider the operator (top row) sequences first. For both q values, the evolution begins
along the momentum axes around the delta function where we see strength developing
that was not present in the original operator. This behavior can be understood from the
momentum basis SRG [Eq. (14)] and the features of the corresponding potential evolution.
Holding k fixed, one can see that only the second term in the integral initially picks up
strength along the axis that passes through the delta function, because the operator is zero
everywhere else, and vice versa holding k0 fixed. For the operator at high q we see that
it develops more and more strength at low momentum as it evolves. The need for this
additional strength is particularly evident because of the decoupling via evolution of the
potential and the consequent suppression of high-momentum components in the deuteron
wave function, as seen in Fig. 2(b). As a result, the operator must pick up additional strength
for the expectation values to remain unchanged. This strength can appear in two ways: (i)

8

Evolved density operator in the deuteron
⌦
 D(�)|U(�)a†qaqU

†(�)| D(�)
↵

investigate

q = 0.32 fm�1

q = 3.0 fm�1

• for low-momentum operators RG evolution provides only small corrections 

• for high-momentum operators induced two-body contributions at small 

momenta completely dominate contribution at small resolution scales

Anderson, Bogner, Furnstahl, Perry, PRC 82, 054001 (2010)
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Hamiltonian and evolved occupation operators (i.e., set them to zero above � = 2.5 fm�1).

both operators. The integrand of the operator at q = 3.02 fm�1 begins as a sharp spike,
corresponding to the original operator, but then flows out along the momentum axes to lower
momentum. By the time the integrand reaches lower values of � in the evolution nearly all
of the strength in the expectation value is in the low-momentum region. The original spike
disappears as the wave function dependence at high momentum falls o�.

As for the operator at q = 0.34 fm�1, the strength does begin to flow out to some extent,
but remains almost entirely in the low-momentum region. Once again, the display scale
has overemphasized the extent of the evolution in the values of the integrand. The spike
which remains at � = 1.5 fm�1 actually contains � 96% of the full expectation value. Due
to the possibility of misinterpreting these plots on a linear display scale, we also include the
same plots with logarithmic display scale. These pictures show only the magnitude of the
integrands, but display nearly the full range of their values. Now it is conclusive that the
strength of the high momentum operator flows to low momentum, and the strength of the
low-momentum operator remains at low momentum for a low-energy state. We will see this
pattern repeat in the calculation of other operators in the next section.

Despite the apparent changes in the integrands as they evolve, it is important to note that
the sum of all the points (the expectation value) remains unchanged due to the unitarity
of the SRG transformation. The momentum distribution calculations shown in Fig. 2 were
performed in the full momentum space of the original potential. Decoupling of the potential
allows us to truncate the model space, thereby making numerical simulations more feasible,
while at the same time allowing us to calculate the correct binding energies. If the calculation
of other expectation values must be performed in the full model space, then the benefits of
the SRG would be lost. However, the redistribution of strength implies that we have a form

10

• short-distance correlations in wave function at very resolution dependent

• perfect invariance of momentum distribution function with evolved density 
operator

•              factorizes for            and           :q � �k < �U�(k, q) U�(k, q) � K�(k)Q�(q)

Evolved density operator in the deuteron

Low k High-k Probing Extras RG LP Universal Structure

Nuclear structure natural with low momentum scale
But soft potentials don’t lead to short-range correlations (SRC)!

0 2 4 6

r [fm]

0

0.05

0.1

0.15

0.2

0.25

|ψ
(r

)|
2
 [

fm
−

3
]

Argonne v
18

λ = 4.0 fm
-1

λ = 3.0 fm
-1

λ = 2.0 fm
-1

3
S

1
 deuteron probability density

softened

original

0 1 2 3 4

r [fm]

0

0.2

0.4

0.6

0.8

1

1.2

g
(r

)

Λ = 10.0 fm
−1

 (NN only)

Λ = 3.0 fm
−1

Λ = 1.9 fm
−1

Fermi gas

pair-distribution g(r)

k
F
 = 1.35 fm

−1

original

softened Nuclear matter

Continuously transformed potential =) variable SRC’s in wfs!

Therefore, it seems that SRC’s are very resolution dependent

Dick Furnstahl Hi Res/Lo Res



Electron inclusive cross sections at high momentum:
Scaling in nuclear systems

would demonstrate the presence of 3-nucleon (3N) SRC
and confirm the previous observation of NN SRC.

Note that: (i) Refs. [5,6] argue that the c.m. motion of the
NN SRC may change the value of a2 (by up to 20% for
56Fe) but not the scaling at xB < 2. For 3N SRC there are
no estimates of the effects of c.m. motion. (ii) Final state
interactions (FSI) are dominated by the interaction of the
struck nucleon with the other nucleons in the SRC [7,8].
Hence the FSI can modify !j, while such modification of
aj!A" are small since the pp, pn, and nn cross sections at
Q2 > 1 GeV2 are similar in magnitudes.

In our previous work [6] we showed that the ratios
R!A; 3He" # 3!A!Q2;xB"

A!3He!Q2;xB" scale for 1:5< xB < 2 and 1:4<

Q2 < 2:6 GeV2, confirming findings in Ref. [7]. Here we
repeat our previous measurement with higher statistics
which allows us to estimate the absolute per-nucleon prob-
abilities of NN SRC.

We also search for the even more elusive 3N SRC,
correlations which originate from both short-range NN
interactions and three-nucleon forces, using the ratio
R!A; 3He" at 2< xB $ 3.

Two sets of measurements were performed at the
Thomas Jefferson National Accelerator Facility in 1999
and 2002. The 1999 measurements used 4.461 GeV elec-
trons incident on liquid 3He, 4He and solid 12C targets. The
2002 measurements used 4.471 GeVelectrons incident on a
solid 56Fe target and 4.703 GeV electrons incident on a
liquid 3He target.

Scattered electrons were detected in the CLAS spec-
trometer [9]. The lead-scintillator electromagnetic calo-
rimeter provided the electron trigger and was used to
identify electrons in the analysis. Vertex cuts were used
to eliminate the target walls. The estimated remaining
contribution from the two Al 15 "m target cell windows
is less than 0.1%. Software fiducial cuts were used to
exclude regions of nonuniform detector response. Kine-
matic corrections were applied to compensate for drift
chamber misalignments and magnetic field uncertainties.

We used the GEANT-based CLAS simulation, GSIM, to
determine the electron acceptance correction factors, tak-
ing into account ‘‘bad’’ or ‘‘dead’’ hardware channels in
various components of CLAS. The measured acceptance-
corrected, normalized inclusive electron yields on 3He,
4He, 12C, and 56Fe at 1< xB < 2 agree with Sargsian’s
radiated cross sections [10] that were tuned on SLAC data
[11] and describe reasonably well the Jefferson Lab Hall C
[12] data.

We constructed the ratios of inclusive cross sections as a
function of Q2 and xB, with corrections for the CLAS
acceptance and for the elementary electron-nucleon cross
sections:

r!A; 3He" # A!2!ep % !en"
3!Z!ep % N!en"

3Y!A"
AY!3He"R

A
rad; (2)

where Z and N are the number of protons and neutrons in
nucleus A, !eN is the electron-nucleon cross section, Y is
the normalized yield in a given (Q2; xB) bin, and RA

rad is the
ratio of the radiative correction factors for 3He and nucleus
A [see Ref. [8] ]. In our Q2 range, the elementary cross
section correction factor A!2!ep%!en"

3!Z!ep%N!en" is 1:14& 0:02 for C

and 4He and 1:18& 0:02 for 56Fe. Note that the 3He yield
in Eq. (2) is also corrected for the beam energy difference
by the difference in the Mott cross sections. The corrected
3He cross sections at the two energies agree within $ 3:5%
[8].

We calculated the radiative correction factors for the
reaction A!e; e0" at xB < 2 using Sargsian’s upgraded
code of Ref. [13] and the formalism of Mo and Tsai [14].
These factors change 10%–15% with xB for 1< xB < 2.
However, their ratios, RA

rad, for 3He to the other nuclei are
almost constant (within 2%–3%) for xB > 1:4. We applied
RA
rad in Eq. (2) event by event for 0:8< xB < 2. Since there

are no theoretical cross section calculations at xB > 2, we
applied the value of RA

rad averaged over 1:4< xB < 2 to the
entire 2< xB < 3 range. Since the xB dependence of RA

rad
for 4He and 12C are very small, this should not affect the
ratio r of Eq. (2). For 56Fe, due to the observed small slope
of RA

rad with xB, r!A; 3He" can increase up to 4% at xB #
2:55. This was included in the systematic errors.

Figure 1 shows the resulting ratios integrated over 1:4<
Q2 < 2:6 GeV2. These cross section ratios (a) scale ini-
tially for 1:5< xB < 2, which indicates that NN SRCs
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FIG. 1. Weighted cross section ratios [see Eq. (2)] of (a) 4He,
(b) 12C, and (c) 56Fe to 3He as a function of xB for Q2 >
1:4 GeV2. The horizontal dashed lines indicate the NN (1:5<
xB < 2) and 3N (xB > 2:25) scaling regions.
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Electron inclusive cross sections at high momentum:
Scaling in nuclear systems

would demonstrate the presence of 3-nucleon (3N) SRC
and confirm the previous observation of NN SRC.

Note that: (i) Refs. [5,6] argue that the c.m. motion of the
NN SRC may change the value of a2 (by up to 20% for
56Fe) but not the scaling at xB < 2. For 3N SRC there are
no estimates of the effects of c.m. motion. (ii) Final state
interactions (FSI) are dominated by the interaction of the
struck nucleon with the other nucleons in the SRC [7,8].
Hence the FSI can modify !j, while such modification of
aj!A" are small since the pp, pn, and nn cross sections at
Q2 > 1 GeV2 are similar in magnitudes.

In our previous work [6] we showed that the ratios
R!A; 3He" # 3!A!Q2;xB"

A!3He!Q2;xB" scale for 1:5< xB < 2 and 1:4<

Q2 < 2:6 GeV2, confirming findings in Ref. [7]. Here we
repeat our previous measurement with higher statistics
which allows us to estimate the absolute per-nucleon prob-
abilities of NN SRC.

We also search for the even more elusive 3N SRC,
correlations which originate from both short-range NN
interactions and three-nucleon forces, using the ratio
R!A; 3He" at 2< xB $ 3.

Two sets of measurements were performed at the
Thomas Jefferson National Accelerator Facility in 1999
and 2002. The 1999 measurements used 4.461 GeV elec-
trons incident on liquid 3He, 4He and solid 12C targets. The
2002 measurements used 4.471 GeVelectrons incident on a
solid 56Fe target and 4.703 GeV electrons incident on a
liquid 3He target.

Scattered electrons were detected in the CLAS spec-
trometer [9]. The lead-scintillator electromagnetic calo-
rimeter provided the electron trigger and was used to
identify electrons in the analysis. Vertex cuts were used
to eliminate the target walls. The estimated remaining
contribution from the two Al 15 "m target cell windows
is less than 0.1%. Software fiducial cuts were used to
exclude regions of nonuniform detector response. Kine-
matic corrections were applied to compensate for drift
chamber misalignments and magnetic field uncertainties.

We used the GEANT-based CLAS simulation, GSIM, to
determine the electron acceptance correction factors, tak-
ing into account ‘‘bad’’ or ‘‘dead’’ hardware channels in
various components of CLAS. The measured acceptance-
corrected, normalized inclusive electron yields on 3He,
4He, 12C, and 56Fe at 1< xB < 2 agree with Sargsian’s
radiated cross sections [10] that were tuned on SLAC data
[11] and describe reasonably well the Jefferson Lab Hall C
[12] data.

We constructed the ratios of inclusive cross sections as a
function of Q2 and xB, with corrections for the CLAS
acceptance and for the elementary electron-nucleon cross
sections:

r!A; 3He" # A!2!ep % !en"
3!Z!ep % N!en"

3Y!A"
AY!3He"R

A
rad; (2)

where Z and N are the number of protons and neutrons in
nucleus A, !eN is the electron-nucleon cross section, Y is
the normalized yield in a given (Q2; xB) bin, and RA

rad is the
ratio of the radiative correction factors for 3He and nucleus
A [see Ref. [8] ]. In our Q2 range, the elementary cross
section correction factor A!2!ep%!en"

3!Z!ep%N!en" is 1:14& 0:02 for C

and 4He and 1:18& 0:02 for 56Fe. Note that the 3He yield
in Eq. (2) is also corrected for the beam energy difference
by the difference in the Mott cross sections. The corrected
3He cross sections at the two energies agree within $ 3:5%
[8].

We calculated the radiative correction factors for the
reaction A!e; e0" at xB < 2 using Sargsian’s upgraded
code of Ref. [13] and the formalism of Mo and Tsai [14].
These factors change 10%–15% with xB for 1< xB < 2.
However, their ratios, RA

rad, for 3He to the other nuclei are
almost constant (within 2%–3%) for xB > 1:4. We applied
RA
rad in Eq. (2) event by event for 0:8< xB < 2. Since there

are no theoretical cross section calculations at xB > 2, we
applied the value of RA

rad averaged over 1:4< xB < 2 to the
entire 2< xB < 3 range. Since the xB dependence of RA

rad
for 4He and 12C are very small, this should not affect the
ratio r of Eq. (2). For 56Fe, due to the observed small slope
of RA

rad with xB, r!A; 3He" can increase up to 4% at xB #
2:55. This was included in the systematic errors.

Figure 1 shows the resulting ratios integrated over 1:4<
Q2 < 2:6 GeV2. These cross section ratios (a) scale ini-
tially for 1:5< xB < 2, which indicates that NN SRCs
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(b) 12C, and (c) 56Fe to 3He as a function of xB for Q2 >
1:4 GeV2. The horizontal dashed lines indicate the NN (1:5<
xB < 2) and 3N (xB > 2:25) scaling regions.
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• scaling behavior of momentum distribution function:

• dominance of np pairs over pp pairs

• “hard” (high resolution) interaction used

• dominance explained by short-range tensor forces

Schiavilla et al., PRL 98, 132501 (2007)

Scaling in nuclear systems

at large �NN(q, Q = 0) ⇥ CA � �NN,Deuteron(q, Q = 0) q

2

tions is well documented (see Refs. [10, 11] and references
therein), as is the quality of the AV18/UIX Hamiltonian
in quantitatively accounting for a wide variety of light
nuclei properties, such as elastic and inelastic electro-
magnetic form factors [12], and low-energy capture re-
actions [13]. However, it is important to stress that the
large effect of tensor correlations on two-nucleon momen-
tum distributions and the resulting isospin dependence of
the latter remain valid, even if one uses a semi-realistic
Hamiltonian model. This will be shown explicitly below.

The double Fourier transform in Eq. (1) is computed
by Monte Carlo (MC) integration. A standard Metropo-
lis walk, guided by |ψJMJ

(r1, r2, r3, . . . , rA)|2, is used to
sample configurations [11]. For each configuration a two-
dimensional grid of Gauss-Legendre points, xi and Xj , is
used to compute the Fourier transform. Instead of just
moving the ψ′ position (r′12 and R′

12) away from a fixed
ψ position (r12 and R12), both positions are moved sym-
metrically away from r12 and R12, so Eq. (1) becomes

ρTMT
(q,Q) =

A(A − 1)

2 (2J + 1)

∑
MJ

∫
dr1 dr2 dr3 · · ·drA dx dXψ†

JMJ
(r12+x/2,R12+X/2, r3, . . . , rA)

× e−iq·x e−iQ·X PTMT
(12)ψJMJ

(r12−x/2,R12−X/2, r3, . . . , rA) . (3)

Here the polar angles of the x and X grids are also
sampled by MC integration, with one sample per pair.
This procedure is similar to that adopted most recently
in studies of the 3He(e, e′p)d and 4He(e⃗, e′p⃗ )3H reac-
tions [14], and has the advantage of very substantially re-
ducing the statistical errors originating from the rapidly
oscillating nature of the integrand for large values of q
and Q. Indeed, earlier calculations of nucleon and cluster
momentum distributions in few-nucleon systems, which
were carried out by direct MC integration over all coordi-
nates, were very noisy for momenta beyond 2 fm−1, even
when the random walk consisted of a very large number
of configurations [2].

The present method is, however, computationally in-
tensive, because complete Gaussian integrations have to
be performed for each of the configurations sampled in
the random walk. The large range of values of x and X
required to obtain converged results, especially for 3He,
require fairly large numbers of points; we used grids of
up to 96 and 80 points for x and X , respectively. We
also sum over all pairs instead of just pair 12.

The np and pp momentum distributions in 3He, 4He,
6Li, and 8Be nuclei are shown in Fig. 1 as functions of the
relative momentum q at fixed total pair momentum Q=0,
corresponding to nucleons moving back to back. The
statistical errors due to the Monte Carlo integration are
displayed only for the pp pairs; they are negligibly small
for the np pairs. The striking features seen in all cases
are: i) the momentum distribution of np pairs is much
larger than that of pp pairs for relative momenta in the
range 1.5–3.0 fm−1, and ii) for the helium and lithium
isotopes the node in the pp momentum distribution is
absent in the np one, which instead exhibits a change of
slope at a characteristic value of p ≃ 1.5 fm−1. The nodal
structure is much less prominent in 8Be. At small val-
ues of q the ratios of np to pp momentum distributions
are closer to those of np to pp pair numbers, which in

3He, 4He, 6Li, and 8Be are respectively 2, 4, 3, and 8/3.
Note that the np momentum distribution is given by the
linear combination ρTMT =10+ρTMT =00, while the pp mo-
mentum distribution corresponds to ρTMT =11. The wave
functions utilized in the present study are eigenstates of
total isospin (1/2 for 3He, and 0 for 4He, 6Li, and 8Be),
so the small effects of isospin-symmetry-breaking inter-
actions are ignored. As a result, in 4He, 6Li, and 8Be
the ρTMT

is independent of the isospin projection and,
in particular, the pp and T = 1 np momentum distribu-
tions are the same.

The excess strength in the np momentum distribution
is due to the strong correlations induced by tensor com-
ponents in the underlying NN potential. For Q=0, the
pair and residual (A–2) system are in a relative S-wave.
In 3He and 4He with uncorrelated wave functions, 3/4 of
the np pairs are in deuteron-like T, S=0,1 states, while
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mentum distributions in various nuclei as functions of the
relative momentum q at vanishing total pair momentum Q.
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would demonstrate the presence of 3-nucleon (3N) SRC
and confirm the previous observation of NN SRC.

Note that: (i) Refs. [5,6] argue that the c.m. motion of the
NN SRC may change the value of a2 (by up to 20% for
56Fe) but not the scaling at xB < 2. For 3N SRC there are
no estimates of the effects of c.m. motion. (ii) Final state
interactions (FSI) are dominated by the interaction of the
struck nucleon with the other nucleons in the SRC [7,8].
Hence the FSI can modify !j, while such modification of
aj!A" are small since the pp, pn, and nn cross sections at
Q2 > 1 GeV2 are similar in magnitudes.

In our previous work [6] we showed that the ratios
R!A; 3He" # 3!A!Q2;xB"

A!3He!Q2;xB" scale for 1:5< xB < 2 and 1:4<

Q2 < 2:6 GeV2, confirming findings in Ref. [7]. Here we
repeat our previous measurement with higher statistics
which allows us to estimate the absolute per-nucleon prob-
abilities of NN SRC.

We also search for the even more elusive 3N SRC,
correlations which originate from both short-range NN
interactions and three-nucleon forces, using the ratio
R!A; 3He" at 2< xB $ 3.

Two sets of measurements were performed at the
Thomas Jefferson National Accelerator Facility in 1999
and 2002. The 1999 measurements used 4.461 GeV elec-
trons incident on liquid 3He, 4He and solid 12C targets. The
2002 measurements used 4.471 GeVelectrons incident on a
solid 56Fe target and 4.703 GeV electrons incident on a
liquid 3He target.

Scattered electrons were detected in the CLAS spec-
trometer [9]. The lead-scintillator electromagnetic calo-
rimeter provided the electron trigger and was used to
identify electrons in the analysis. Vertex cuts were used
to eliminate the target walls. The estimated remaining
contribution from the two Al 15 "m target cell windows
is less than 0.1%. Software fiducial cuts were used to
exclude regions of nonuniform detector response. Kine-
matic corrections were applied to compensate for drift
chamber misalignments and magnetic field uncertainties.

We used the GEANT-based CLAS simulation, GSIM, to
determine the electron acceptance correction factors, tak-
ing into account ‘‘bad’’ or ‘‘dead’’ hardware channels in
various components of CLAS. The measured acceptance-
corrected, normalized inclusive electron yields on 3He,
4He, 12C, and 56Fe at 1< xB < 2 agree with Sargsian’s
radiated cross sections [10] that were tuned on SLAC data
[11] and describe reasonably well the Jefferson Lab Hall C
[12] data.

We constructed the ratios of inclusive cross sections as a
function of Q2 and xB, with corrections for the CLAS
acceptance and for the elementary electron-nucleon cross
sections:

r!A; 3He" # A!2!ep % !en"
3!Z!ep % N!en"

3Y!A"
AY!3He"R

A
rad; (2)

where Z and N are the number of protons and neutrons in
nucleus A, !eN is the electron-nucleon cross section, Y is
the normalized yield in a given (Q2; xB) bin, and RA

rad is the
ratio of the radiative correction factors for 3He and nucleus
A [see Ref. [8] ]. In our Q2 range, the elementary cross
section correction factor A!2!ep%!en"

3!Z!ep%N!en" is 1:14& 0:02 for C

and 4He and 1:18& 0:02 for 56Fe. Note that the 3He yield
in Eq. (2) is also corrected for the beam energy difference
by the difference in the Mott cross sections. The corrected
3He cross sections at the two energies agree within $ 3:5%
[8].

We calculated the radiative correction factors for the
reaction A!e; e0" at xB < 2 using Sargsian’s upgraded
code of Ref. [13] and the formalism of Mo and Tsai [14].
These factors change 10%–15% with xB for 1< xB < 2.
However, their ratios, RA

rad, for 3He to the other nuclei are
almost constant (within 2%–3%) for xB > 1:4. We applied
RA
rad in Eq. (2) event by event for 0:8< xB < 2. Since there

are no theoretical cross section calculations at xB > 2, we
applied the value of RA

rad averaged over 1:4< xB < 2 to the
entire 2< xB < 3 range. Since the xB dependence of RA

rad
for 4He and 12C are very small, this should not affect the
ratio r of Eq. (2). For 56Fe, due to the observed small slope
of RA

rad with xB, r!A; 3He" can increase up to 4% at xB #
2:55. This was included in the systematic errors.

Figure 1 shows the resulting ratios integrated over 1:4<
Q2 < 2:6 GeV2. These cross section ratios (a) scale ini-
tially for 1:5< xB < 2, which indicates that NN SRCs
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FIG. 1. Weighted cross section ratios [see Eq. (2)] of (a) 4He,
(b) 12C, and (c) 56Fe to 3He as a function of xB for Q2 >
1:4 GeV2. The horizontal dashed lines indicate the NN (1:5<
xB < 2) and 3N (xB > 2:25) scaling regions.
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Nuclear scaling within chiral EFT
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Nuclear scaling at low resolution

                   factorizes into a low-momentum structure and a 
universal high momentum part if the initial operator only 
weakly couples low and high momenta           explains scaling!
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factorization!
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Deuteron disintegration at low resolution scales
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Figure 7. (color online) fL calculated for E0 = 30 MeV and
q2 = 25 fm�2 (point “30” in Fig. 3) for the AV18 potential.
Legends indicate which component of the matrix element in
Eq. (30) used to calculate fL is evolved. Prominent enhance-
ment with evolution of the current only and suppression with
evolution of the initial state and the final state only, respec-
tively.

approximation is smaller than fL calculated by including
the final-state interactions.

a. Evolving the initial state Let us first consider the
e↵ect of evolving the initial state only. We have

h f |J0| �
i i = h�|J0| �

i i + h�|t† G†

0 J0| �
i i . (38)

As seen in Eq. (7), in the term h�|J0| �
i i the deuteron

wave function is probed between |p0 � q/2| and p0 + q/2.
These numbers are (1.2, 2.9) fm�1 and (1.7, 3.4) fm�1

for E0 = 30 MeV, q2 = 16 fm�2 and E0 = 30 MeV,
q2 = 25 fm�2, respectively. The evolved deuteron wave
function is significantly suppressed at these high mo-
menta. This behavior is reflected in the deuteron mo-
mentum distribution plotted in Fig. 8. The deuteron
momentum distribution n(k) is proportional to the sum
of the squares of S- andD- state deuteron wave functions.
Thus, the first (IA) term in Eq. (38) is much smaller than
its unevolved counterpart in Eq. (13), for all angles. We
note that even though we only use the AV18 potential
to study changes due to evolution, these changes will be
significant for other potentials as well.

Evaluation of the second (FSI) term in Eq. (38)
involves an integral over all momenta, as indicated
in Eq. (19). We find that |h�|t† G†

0 J0| �
i i| <

|h�|t† G†

0 J0| ii|. As mentioned before, because the terms

h�|J0| ii and h�|t† G†

0 J0| ii add constructively below
the quasi-free ridge and because the magnitude of both
these terms decreases upon evolving the wave function,
we have

|h f |J0| �
i i| < |h f |J0| ii| . (39)

The above relation holds for most combinations of mJd

and msf . For those mJd and msf for which Eq. (39) does
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Figure 8. (color online) Momentum distribution for the
deuteron for the AV18 [48], CD-Bonn [51], and the Entem-
Machleidt N3LO chiral EFT [52] potentials, and for the AV18
potential evolved to two SRG �’s.

not hold, the absolute value of the matrix element is much
smaller than for those for which the Eq. (39) does hold,
and therefore we have fL calculated from h f |J0| �

i i
smaller than the fL calculated from h f |J0| ii, as seen
in Figs. 6 and 7.
b. Evolving the final state As indicated in Eq. (26),

evolving the final state entails the evolution of the t-
matrix. The overlap matrix element therefore is

h �
f |J0| ii = h�|J0| ii + h�|t†� G†

0 J0| ii . (40)

The IA term is the same as in the unevolved case. The
SRG evolution leaves the on-shell part of the t-matrix—
which is directly related to observables—invariant. The
magnitude of the relevant o↵-shell t-matrix elements de-
creases on evolution, though. As a result we have

|h �
f |J0| ii| < |h f |J0| ii| . (41)

This is reflected in fL as calculated from the evolved final
state, and seen in Figs. 6 and 7.
The e↵ect of evolution of the initial state and the final

state is to suppress fL. When all the three components
are evolved, we reproduce the unevolved answer as indi-
cated in Fig. 6 and 7. It is therefore required that we find
a huge enhancement when just the current is evolved.
The kinematics E0 = 30 MeV, q2 = 25 fm�2 is fur-

ther away from the quasi-free ridge than E0 = 30 MeV,
q2 = 16 fm�2. The e↵ects due to evolution discussed
above get progressively more prominent the further away
one is from the quasi-free ridge. This can be verified by
comparing the e↵ects due to evolution of individual com-
ponents in Figs. 6 and 7.
As remarked earlier, away from the quasi-free ridge the

FSI become important. Nonetheless, it is still instructive
to look at fL calculated in the IA at these kinematics.

More, König, Furnstahl, KH,
PRC 92, 064002 (2015)
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The one-body current matrix element is given by

hk1 T1| J0(q) |k2 T = 0i
=

1

2

�
Gp

E + (�1)T1Gn
E

�
�(k1 � k2 � q/2)

+
1

2

�
(�1)T1Gp

E +Gn
E

�
�(k1 � k2 + q/2) , (4)

where Gp
E and Gn

E are the electric form factors of the pro-
ton and the neutron, and the deuteron state has isospin
T = 0.

The final-state wave function of the outgoing proton-
neutron pair can be written as

| f i = |�i +G0(E
0) t(E0) |�i , (5)

where |�i denotes a relative plane wave, G0 and t are
the Green’s function and the t-matrix respectively, and

E0 = p0

2/M is the energy of the outgoing nucleons. The
second term in Eq. (5) describes the interaction between
the outgoing nucleons.
In the impulse approximation (IA) as defined here, the

interaction between the outgoing nucleons is ignored and
| f iIA ⌘ |�i. The plane wave |�i will have both isospin 0
and 1 components. The current J0, G0, and the t-matrix
are diagonal in spin space. The deuteron has spin S = 1
and therefore the final state will also have S = 1. Hence,
we have

|�i ⌘ |p0 S = 1msf T i
=

1

2

X

T=0,1

⇣
|p0 S = 1msf i

+ (�1)T |�p0 S = 1msf i
⌘

|T i .
(6)

Using Eqs. (4) and (6), the overlap matrix element in IA
becomes

h f | J0 | iiIA =

r
2

⇡

X

Ld=0,2

hLd mJd � msf S = 1msf |J = 1mJdi

⇥
h
Gp

E  Ld(|p0 � q/2|)YLd,mJd
�msf

(⌦p0
�q/2) +Gn

E  Ld(|p0 + q/2|)YLd,mJd
�msf

(⌦p0+q/2)
i
, (7)

where ⌦p0
±q/2 is the solid angle between the unit vector

ẑ and p0 ± q/2.  Ld is the deuteron wave function in
momentum space defined as

hk1 J1 mJ
1

L1 S1 T1| ii =  L
1

(k1)

⇥ �J
1

,1�mJ
1

,mJd
�L

1

,Ld�S1

,1�T
1

,0 . (8)

The S-wave (L = 0) and D-wave (L = 2) components
of the deuteron wave function satisfy the normalization
condition

2

⇡

Z
dp p2

�
 2
0(p) +  2

2(p)
�
= 1 . (9)

In deriving Eq. (7) we have used the property of the
spherical harmonics that

Ylm(⇡ � ✓,�+ ⇡) = (�1)l Ylm(✓,�) . (10)

In our work we follow the conventions of Ref. [41]. Since
✓0 and '0 are the angles of p0, ⌦p0

�q/2 ⌘ �
↵0(p0, ✓0),'0

�

and ⌦p0+q/2 ⌘ �
↵00(p0, ✓0),'0

�
, where

↵0(p0, ✓0) = cos�1

0

@ p0 cos ✓0 � q/2q
p02 � p0q cos ✓0 + q2/4

1

A (11)

and

↵00(p0, ✓0) = cos�1

0

@ p0 cos ✓0 + q/2q
p02 + p0q cos ✓0 + q2/4

1

A . (12)

The overlap matrix element including the final-state
interactions (FSI) is given by

h f | J0 | ii = h�| J0 | ii| {z }
IA

+ h�|t† G†

0 J0 | ii| {z }
FSI

. (13)

The first term on the right side of Eq. (13) has already
been evaluated in Eq. (7). Therefore, the term we still
need to evaluate is h�|t† G†

0 J0 | ii. The t-matrix is most
conveniently calculated in a partial-wave basis. Hence,
the FSI term is evaluated by inserting complete sets of
states in the form

1 =
2

⇡

X

L,S
J,mJ

X

T=0,1

Z
dp p2 |p J mJ LS T i hp J mJ LS T | .

(14)
The outgoing plane-wave state in the partial-wave basis
is given by

h�| k1 J1 mJ
1

L1 S = 1T1i = 1

2

r
2

⇡

⇡

2

�(p0 � k1)

k21
⇥ hL1 mJ

1

� msf S = 1msf |J1 mJ
1

i
⇥ �

1 + (�1)T1(�1)L1

�
YL

1

,mJ
1

�msf
(✓0,'0) . (15)

The Green’s function is diagonal in J , mJ , L, S, and T ,
so we have

hk1|G†

0 |k2i = ⇡

2

�(k1 � k2)

k21

M

p02 � k21 � i✏
. (16)
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Figure 7. (color online) fL calculated for E0 = 30 MeV and
q2 = 25 fm�2 (point “30” in Fig. 3) for the AV18 potential.
Legends indicate which component of the matrix element in
Eq. (30) used to calculate fL is evolved. Prominent enhance-
ment with evolution of the current only and suppression with
evolution of the initial state and the final state only, respec-
tively.

approximation is smaller than fL calculated by including
the final-state interactions.

a. Evolving the initial state Let us first consider the
e↵ect of evolving the initial state only. We have

h f |J0| �
i i = h�|J0| �

i i + h�|t† G†

0 J0| �
i i . (38)

As seen in Eq. (7), in the term h�|J0| �
i i the deuteron

wave function is probed between |p0 � q/2| and p0 + q/2.
These numbers are (1.2, 2.9) fm�1 and (1.7, 3.4) fm�1

for E0 = 30 MeV, q2 = 16 fm�2 and E0 = 30 MeV,
q2 = 25 fm�2, respectively. The evolved deuteron wave
function is significantly suppressed at these high mo-
menta. This behavior is reflected in the deuteron mo-
mentum distribution plotted in Fig. 8. The deuteron
momentum distribution n(k) is proportional to the sum
of the squares of S- andD- state deuteron wave functions.
Thus, the first (IA) term in Eq. (38) is much smaller than
its unevolved counterpart in Eq. (13), for all angles. We
note that even though we only use the AV18 potential
to study changes due to evolution, these changes will be
significant for other potentials as well.

Evaluation of the second (FSI) term in Eq. (38)
involves an integral over all momenta, as indicated
in Eq. (19). We find that |h�|t† G†

0 J0| �
i i| <

|h�|t† G†

0 J0| ii|. As mentioned before, because the terms

h�|J0| ii and h�|t† G†

0 J0| ii add constructively below
the quasi-free ridge and because the magnitude of both
these terms decreases upon evolving the wave function,
we have

|h f |J0| �
i i| < |h f |J0| ii| . (39)

The above relation holds for most combinations of mJd

and msf . For those mJd and msf for which Eq. (39) does
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Figure 8. (color online) Momentum distribution for the
deuteron for the AV18 [48], CD-Bonn [51], and the Entem-
Machleidt N3LO chiral EFT [52] potentials, and for the AV18
potential evolved to two SRG �’s.

not hold, the absolute value of the matrix element is much
smaller than for those for which the Eq. (39) does hold,
and therefore we have fL calculated from h f |J0| �

i i
smaller than the fL calculated from h f |J0| ii, as seen
in Figs. 6 and 7.
b. Evolving the final state As indicated in Eq. (26),

evolving the final state entails the evolution of the t-
matrix. The overlap matrix element therefore is

h �
f |J0| ii = h�|J0| ii + h�|t†� G†

0 J0| ii . (40)

The IA term is the same as in the unevolved case. The
SRG evolution leaves the on-shell part of the t-matrix—
which is directly related to observables—invariant. The
magnitude of the relevant o↵-shell t-matrix elements de-
creases on evolution, though. As a result we have

|h �
f |J0| ii| < |h f |J0| ii| . (41)

This is reflected in fL as calculated from the evolved final
state, and seen in Figs. 6 and 7.
The e↵ect of evolution of the initial state and the final

state is to suppress fL. When all the three components
are evolved, we reproduce the unevolved answer as indi-
cated in Fig. 6 and 7. It is therefore required that we find
a huge enhancement when just the current is evolved.
The kinematics E0 = 30 MeV, q2 = 25 fm�2 is fur-

ther away from the quasi-free ridge than E0 = 30 MeV,
q2 = 16 fm�2. The e↵ects due to evolution discussed
above get progressively more prominent the further away
one is from the quasi-free ridge. This can be verified by
comparing the e↵ects due to evolution of individual com-
ponents in Figs. 6 and 7.
As remarked earlier, away from the quasi-free ridge the

FSI become important. Nonetheless, it is still instructive
to look at fL calculated in the IA at these kinematics.
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The one-body current matrix element is given by

hk1 T1| J0(q) |k2 T = 0i
=

1

2

�
Gp

E + (�1)T1Gn
E

�
�(k1 � k2 � q/2)

+
1

2

�
(�1)T1Gp

E +Gn
E

�
�(k1 � k2 + q/2) , (4)

where Gp
E and Gn

E are the electric form factors of the pro-
ton and the neutron, and the deuteron state has isospin
T = 0.

The final-state wave function of the outgoing proton-
neutron pair can be written as

| f i = |�i +G0(E
0) t(E0) |�i , (5)

where |�i denotes a relative plane wave, G0 and t are
the Green’s function and the t-matrix respectively, and

E0 = p0

2/M is the energy of the outgoing nucleons. The
second term in Eq. (5) describes the interaction between
the outgoing nucleons.
In the impulse approximation (IA) as defined here, the

interaction between the outgoing nucleons is ignored and
| f iIA ⌘ |�i. The plane wave |�i will have both isospin 0
and 1 components. The current J0, G0, and the t-matrix
are diagonal in spin space. The deuteron has spin S = 1
and therefore the final state will also have S = 1. Hence,
we have

|�i ⌘ |p0 S = 1msf T i
=

1

2

X

T=0,1

⇣
|p0 S = 1msf i

+ (�1)T |�p0 S = 1msf i
⌘

|T i .
(6)

Using Eqs. (4) and (6), the overlap matrix element in IA
becomes

h f | J0 | iiIA =

r
2

⇡

X

Ld=0,2

hLd mJd � msf S = 1msf |J = 1mJdi

⇥
h
Gp

E  Ld(|p0 � q/2|)YLd,mJd
�msf

(⌦p0
�q/2) +Gn

E  Ld(|p0 + q/2|)YLd,mJd
�msf

(⌦p0+q/2)
i
, (7)

where ⌦p0
±q/2 is the solid angle between the unit vector

ẑ and p0 ± q/2.  Ld is the deuteron wave function in
momentum space defined as

hk1 J1 mJ
1

L1 S1 T1| ii =  L
1

(k1)

⇥ �J
1

,1�mJ
1

,mJd
�L

1

,Ld�S1

,1�T
1

,0 . (8)

The S-wave (L = 0) and D-wave (L = 2) components
of the deuteron wave function satisfy the normalization
condition
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⇡

Z
dp p2
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0(p) +  2

2(p)
�
= 1 . (9)

In deriving Eq. (7) we have used the property of the
spherical harmonics that

Ylm(⇡ � ✓,�+ ⇡) = (�1)l Ylm(✓,�) . (10)

In our work we follow the conventions of Ref. [41]. Since
✓0 and '0 are the angles of p0, ⌦p0

�q/2 ⌘ �
↵0(p0, ✓0),'0

�

and ⌦p0+q/2 ⌘ �
↵00(p0, ✓0),'0
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, where

↵0(p0, ✓0) = cos�1
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and
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The overlap matrix element including the final-state
interactions (FSI) is given by

h f | J0 | ii = h�| J0 | ii| {z }
IA

+ h�|t† G†

0 J0 | ii| {z }
FSI

. (13)

The first term on the right side of Eq. (13) has already
been evaluated in Eq. (7). Therefore, the term we still
need to evaluate is h�|t† G†

0 J0 | ii. The t-matrix is most
conveniently calculated in a partial-wave basis. Hence,
the FSI term is evaluated by inserting complete sets of
states in the form

1 =
2

⇡

X

L,S
J,mJ

X

T=0,1

Z
dp p2 |p J mJ LS T i hp J mJ LS T | .

(14)
The outgoing plane-wave state in the partial-wave basis
is given by

h�| k1 J1 mJ
1

L1 S = 1T1i = 1
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⇡
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� msf S = 1msf |J1 mJ
1

i
⇥ �
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The Green’s function is diagonal in J , mJ , L, S, and T ,
so we have

hk1|G†

0 |k2i = ⇡

2

�(k1 � k2)

k21

M

p02 � k21 � i✏
. (16)
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kinematics, as well as beyond the deuteron system and
one-body initial currents.

II. FORMALISM

A. Deuteron electrodisintegration: a primer

Deuteron electrodisintegration is the simplest nucleon-
knockout process and has been considered as a test
ground for various NN models for a long time (see, for
example, Refs. [9, 35]). It has also been well studied ex-
perimentally [36, 37]. As outlined in the introduction,
the absence of three-body currents and forces makes it
an ideal starting point for studying the interplay with
SRG evolution of the deuteron wave function, current,
and final-state interactions.

We follow the approach of Ref. [34], which we briefly
review. The kinematics for the process in the labora-
tory frame is shown in Fig. 1. The virtual photon from

Figure 1. (color online) The geometry of the electro-
disintegration process in the lab frame. The virtual photon
disassociates the deuteron into the proton and the neutron
(not shown in this figure).

electron scattering transfers enough energy and momen-
tum to break up the deuteron into a proton and neutron.
The di↵erential cross section for deuteron electrodisin-
tegration for unpolarized scattering in the lab frame is
given by [38]

d3�

dk0labd⌦lab
e d⌦lab

p

=
↵

6⇡2

k0lab

klab(Q2)2

h
vLfL + vT fT

+ vTT fTT cos 2�labp + vLT fLT cos�labp

i
. (1)

Here ⌦lab
e and ⌦lab

p are the solid angles of the electron

and the proton, klab and k0lab are the magnitude of in-
coming and outgoing electron 3-momenta, Q2

lab is the 4-
momentum-squared of the virtual photon, and ↵ is the

fine structure constant. �labp is the angle between the
scattering plane containing the electrons and the plane
spanned by outgoing nucleons. vL , vT , . . . are electron
kinematic factors, and fL, fT , . . . are the deuteron struc-
ture functions. These structure functions contain all the
dynamic information about the process. The four struc-
ture functions are independent and can be separated by
combining cross-section measurements carried out with
appropriate kinematic settings [39]. Structure functions
are thus cross sections up to kinematic factors and are
independent of the SRG scale �. In this work we focus
on the longitudinal structure function fL, following the
approach of Ref. [34].

B. Calculating fL

As in Ref. [34], we carry out the calculations in
the center-of-mass frame of the outgoing proton-neutron
pair. In this frame the photon four-momentum is (!,q),
which can be obtained from the initial electron energy
and ✓e, the electron scattering angle. We denote the
momentum of the outgoing proton by p0 and take q
to be along z-axis. The angles of p0 are denoted by
⌦p0 = (✓0,'0).
The longitudinal structure function can be written as

fL =
X

Sf ,msf
mJd

TSf ,msf
,µ=0,mJd

(✓0,'0) T ⇤

Sf ,msf
,µ=0,mJd

(✓0,'0) ,

(2)
where Sf and msf are the spin quantum numbers of the
final neutron-proton state, µ is the Lorentz index of the
current, and mJd is the angular momentum of the initial
deuteron state. The amplitude T is given by [40]

TS,msf
,µ,mJd

= �⇡
q

2↵|p0|EpEd/Md h f | Jµ(q) | ii ,
(3)

where h f | is the final-state wavefunction of the outgoing
neutron-proton pair, | ii is the initial deuteron state, and
Jµ(q) is the current operator that describes the momen-
tum transferred by the photon. The variables in Eq. (3)
are:

• fine-structure constant ↵;

• outgoing proton (neutron) 3-momentum p0 (�p0);

• proton energy Ep =
q
M2 + p0

2, where M is the
average of proton and neutron mass

• deuteron energy Ed =
q

M2
d + q2, where Md is the

mass of the deuteron.

As mentioned before, all of these quantities are in the
center-of-mass frame of the outgoing nucleons.
For fL, only the µ = 0 component of T and therefore

only the zeroth component of the current contributes.

3
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electron scattering transfers enough energy and momen-
tum to break up the deuteron into a proton and neutron.
The di↵erential cross section for deuteron electrodisin-
tegration for unpolarized scattering in the lab frame is
given by [38]

d3�

dk0labd⌦lab
e d⌦lab

p

=
↵

6⇡2

k0lab

klab(Q2)2

h
vLfL + vT fT

+ vTT fTT cos 2�labp + vLT fLT cos�labp

i
. (1)

Here ⌦lab
e and ⌦lab

p are the solid angles of the electron

and the proton, klab and k0lab are the magnitude of in-
coming and outgoing electron 3-momenta, Q2 is the 4-
momentum-squared of the virtual photon, and ↵ is the

fine structure constant. �labp is the angle between the
scattering plane containing the electrons and the plane
spanned by outgoing nucleons. vL , vT , . . . are electron
kinematic factors, and fL, fT , . . . are the deuteron struc-
ture functions. These structure functions contain all the
dynamic information about the process. The four struc-
ture functions are independent and can be separated by
combining cross-section measurements carried out with
appropriate kinematic settings [39]. Structure functions
are thus cross sections up to kinematic factors and are
independent of the SRG scale �. In this work we focus
on the longitudinal structure function fL, following the
approach of Ref. [34].

B. Calculating fL

As in Ref. [34], we carry out the calculations in
the center-of-mass frame of the outgoing proton-neutron
pair. In this frame the photon four-momentum is (!,q),
which can be obtained from the initial electron energy
and ✓e, the electron scattering angle. We denote the
momentum of the outgoing proton by p0 and take q
to be along z-axis. The angles of p0 are denoted by
⌦p0 = (✓0,'0).
The longitudinal structure function can be written as
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mJd
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(✓0,'0) T ⇤

Sf ,msf
,µ=0,mJd

(✓0,'0) ,

(2)
where Sf and msf are the spin quantum numbers of the
final neutron-proton state, µ is the polarization index of
the virtual photon, and mJd is the angular momentum
of the initial deuteron state. The amplitude T is given
by [40]

TS,msf
,µ,mJd
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q

2↵|p0|EpEd/Md h f | Jµ(q) | ii ,
(3)

where h f | is the final-state wavefunction of the outgoing
neutron-proton pair, | ii is the initial deuteron state, and
Jµ(q) is the current operator that describes the momen-
tum transferred by the photon. The variables in Eq. (3)
are:

• fine-structure constant ↵;

• outgoing proton (neutron) 3-momentum p0 (�p0);

• proton energy Ep =
q
M2 + p0

2, where M is the
average of proton and neutron mass

• deuteron energy Ed =
q

M2
d + q2, where Md is the

mass of the deuteron.

As mentioned before, all of these quantities are in the
center-of-mass frame of the outgoing nucleons.
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 �
f |J�

0 | �
i

↵

2H momentum
distribution functions



8

There, the quasi-elastic ridge is defined by W 2 = m2
p )

Q2 = 2!lab mp, where W is the invariant mass. On
the quasi-elastic ridge, the so-called missing momentum4

vanishes, pmiss = 0.
In Fig. 2 we plot fL along the quasi-free ridge both

in the impulse approximation (IA) and with the final-
state interactions (FSI) included as a function of energy
of the outgoing nucleons for a fixed angle, ✓0 = 15

�
of

the outgoing proton. E0 and q2 in Fig. 2 are related by
Eq. (36). Comparing the solid curve labeled h f |J0| ii
in the legend to the dashed curve (labeled h�|J0| ii) we
find that FSI e↵ects are minimal for configurations on
the quasi-free ridge especially at large energies.

Figure 2. (color online) fL calculated at various points on the
quasi-free ridge for ✓0 = 15� for the AV18 potential. Legends
indicate which component of the matrix element in Eq. (30)
used to calculate fL is evolved. There are no appreciable
e↵ects due to the evolution all along the quasi-free ridge. The
e↵ect due to evolution of the final state is small as well and is
not shown here to avoid clutter. fL calculated in the impulse
approximation is also shown for comparison.

In an intuitive picture, this is because after the initial
photon is absorbed, both the nucleons in the deuteron
are on their mass shell at the quasi-free ridge, and there-
fore no FSI are needed to make the final-state particles
real. As we move away from the ridge, FSI become more
important, as additional energy-momentum transfer is
required to put the neutron and the proton on shell in
the final state. The di↵erence between full fL and fL
in IA at small energies is also seen to hold for few-body
nuclei [50].

Figure 2 also shows fL calculated from evolving only
one of the components of the matrix element in Eq. (30).
We note that the e↵ects of SRG evolution of the indi-
vidual components are minimal at the quasi-free ridge

4 The missing momentum is defined as the di↵erence of the mea-
sured proton momentum and the momentum transfer, p

miss

⌘
pproton

lab

� q
lab

.

as well. The kinematics at the quasi-free ridge are such
that only the long-range (low-momentum) part of the
deuteron wave function is probed, the FSI remains small
under evolution, and then unitarity implies minimal evo-
lution of the current. As one moves away from the
quasi-free ridge, the e↵ects of evolution of individual
components become prominent. Note that h f |J0| ii =
h �

f |J�
0 | �

i i and therefore the unevolved vs. all-evolved
fL overlap in Fig. 2.

Figure 3. (color online) ‘Phase space’ of kinematics for � =
1.5 fm�1. The e↵ects of evolution get progressively prominent
as one moves further away from the quasi-free ridge. The
kinematics of the labeled points are considered in Sec. III C.

Figure 3 shows the ‘phase space’ of kinematics for SRG
� = 1.5 fm�1. The quasi-free ridge is along the solid
line in Fig. 3. In the shaded region the e↵ects due to
evolution of individual components are weak (only a few
percent relative di↵erence). As one moves away from
the quasi-free ridge, these di↵erences get progressively
more prominent. The terms ‘small’ and ‘weak’ in Fig. 3
are used in a qualitative sense. In the shaded region
denoted by ‘weak e↵ects’, the e↵ects of evolution are not
easily discernible on a typical fL versus ✓0 plot, as seen in
Fig. 4, whereas in the region labeled by ‘strong e↵ects’,
the di↵erences due to evolution are evident on a plot
(e.g., see Fig. 6). The size of the shaded region in Fig. 3
depends on the SRG �. It is large for high �’s and gets
smaller as the � is decreased (note that smaller SRG �
means greater evolution). In the next subsection we look
in detail at a few representative kinematics, indicated by
points in Fig. 3.

C. Illustrative examples

1. At the quasi-free ridge

As a representative of quasi-free kinematics, we choose
E0 = 100 MeV and q2 = 10 fm�2 and plot fL as a
function of angle in Fig. 4. The e↵ect of including FSI
is small for this configuration for all angles. Also, the
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vanishes, pmiss = 0.
In Fig. 2 we plot fL along the quasi-free ridge both

in the impulse approximation (IA) and with the final-
state interactions (FSI) included as a function of energy
of the outgoing nucleons for a fixed angle, ✓0 = 15
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of

the outgoing proton. E0 and q2 in Fig. 2 are related by
Eq. (36). Comparing the solid curve labeled h f |J0| ii
in the legend to the dashed curve (labeled h�|J0| ii) we
find that FSI e↵ects are minimal for configurations on
the quasi-free ridge especially at large energies.

Figure 2. (color online) fL calculated at various points on the
quasi-free ridge for ✓0 = 15� for the AV18 potential. Legends
indicate which component of the matrix element in Eq. (30)
used to calculate fL is evolved. There are no appreciable
e↵ects due to the evolution all along the quasi-free ridge. The
e↵ect due to evolution of the final state is small as well and is
not shown here to avoid clutter. fL calculated in the impulse
approximation is also shown for comparison.

In an intuitive picture, this is because after the initial
photon is absorbed, both the nucleons in the deuteron
are on their mass shell at the quasi-free ridge, and there-
fore no FSI are needed to make the final-state particles
real. As we move away from the ridge, FSI become more
important, as additional energy-momentum transfer is
required to put the neutron and the proton on shell in
the final state. The di↵erence between full fL and fL
in IA at small energies is also seen to hold for few-body
nuclei [50].

Figure 2 also shows fL calculated from evolving only
one of the components of the matrix element in Eq. (30).
We note that the e↵ects of SRG evolution of the indi-
vidual components are minimal at the quasi-free ridge

4 The missing momentum is defined as the di↵erence of the mea-
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as well. The kinematics at the quasi-free ridge are such
that only the long-range (low-momentum) part of the
deuteron wave function is probed, the FSI remains small
under evolution, and then unitarity implies minimal evo-
lution of the current. As one moves away from the
quasi-free ridge, the e↵ects of evolution of individual
components become prominent. Note that h f |J0| ii =
h �

f |J�
0 | �

i i and therefore the unevolved vs. all-evolved
fL overlap in Fig. 2.

Figure 3. (color online) ‘Phase space’ of kinematics for � =
1.5 fm�1. The e↵ects of evolution get progressively prominent
as one moves further away from the quasi-free ridge. The
kinematics of the labeled points are considered in Sec. III C.

Figure 3 shows the ‘phase space’ of kinematics for SRG
� = 1.5 fm�1. The quasi-free ridge is along the solid
line in Fig. 3. In the shaded region the e↵ects due to
evolution of individual components are weak (only a few
percent relative di↵erence). As one moves away from
the quasi-free ridge, these di↵erences get progressively
more prominent. The terms ‘small’ and ‘weak’ in Fig. 3
are used in a qualitative sense. In the shaded region
denoted by ‘weak e↵ects’, the e↵ects of evolution are not
easily discernible on a typical fL versus ✓0 plot, as seen in
Fig. 4, whereas in the region labeled by ‘strong e↵ects’,
the di↵erences due to evolution are evident on a plot
(e.g., see Fig. 6). The size of the shaded region in Fig. 3
depends on the SRG �. It is large for high �’s and gets
smaller as the � is decreased (note that smaller SRG �
means greater evolution). In the next subsection we look
in detail at a few representative kinematics, indicated by
points in Fig. 3.

C. Illustrative examples

1. At the quasi-free ridge

As a representative of quasi-free kinematics, we choose
E0 = 100 MeV and q2 = 10 fm�2 and plot fL as a
function of angle in Fig. 4. The e↵ect of including FSI
is small for this configuration for all angles. Also, the
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Figure 12. (color online) fL calculated for E0 = 100 MeV and
q2 = 0.5 fm�2 (point “4” in Fig. 3) for the AV18 potential.
Legends indicate which component of the matrix element in
Eq. (30) used to calculate fL is evolved. Opposite e↵ects from
the evolution of the initial state and the final state.

which leads to

|h f |J0| �
i i| < |h f |J0| ii| , (42)

and thus to the suppression of fL at small angles observed
in Fig. 12.

At large angles, the magnitude of the IA term in
Eq. (13) is smaller than that of the FSI term. With
the wave-function evolution, the magnitude of IA term
decreases substantially (large momenta in the deuteron
wave function are probed at large angles, cf. Eq. (7)),
whereas the FSI term in Eq. (13) remains almost the
same. This results in increasing the di↵erence between
the two terms in Eq. (13) as the SRG � is decreased. As
mentioned before, above the quasi-free ridge, the IA and
FSI terms in Eq. (13) add destructively and we therefore
end up with |h f |J0| �

i i| > |h f |J0| ii|, leading to the
observed enhancement at large angles upon evolution of
the wave function (see Fig. 12).

b. Evolving the final state The expression to con-
sider is Eq. (40). With the evolution of the t-matrix, the
magnitude of the term h�|t†� G†

0 J0| ii decreases, and be-
cause of the opposite relative signs of the two terms in
Eq. (40)—and due to the fact that at small angles the
magnitude of the IA term is larger than the FSI term—
the net e↵ect is |h �

f |J0| ii| > |h f |J0| ii|. This leads to
an enhancement of fL with evolved final state at small
angles, as seen in Fig. 12.

At large angles the magnitude of the IA term in
Eq. (40) is smaller than that of the FSI term. With the
evolution of the t-matrix, the magnitude of the FSI term
decreases and the di↵erence between the IA and the FSI
terms decreases as well. This leads to the observed over-
all suppression in fL at large angles due to the evolution
of the final state seen in Fig. 12. For those few (msf ,
mJd) combinations for which the above general observa-

tions do not hold, the value of individual components is
too small to make any qualitative di↵erence.
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Figure 13. (color online) fL in IA (h f | ⌘ h�|) calculated for
E0 = 100 MeV and q2 = 0.5 fm�2 for the AV18 potential.
Legends indicate which component of the matrix element in
Eq. (30) used to calculate fL are evolved.

Figure 13 shows the e↵ect of evolution of individual
components on fL calculated in the IA for the kinematics
under consideration. Again the evolved deuteron wave
function does not have strength at high momenta and
therefore fL calculated from h�|J0| �

i i has a lower value
than its unevolved counterpart.
Unitary evolution means that the e↵ect of the evolved

current is always such that it compensates the e↵ect due
to the evolution of the initial and final states. In future
work we will examine more directly the behavior of the
current as it evolves to better understand how to carry
over the results observed here to other reactions.

IV. SUMMARY AND OUTLOOK

Nuclear properties such as momentum distributions
are extracted from experiment by invoking the factor-
ization of structure, which includes descriptions of ini-
tial and final states, and reaction, which includes the
description of the probe components. The factorization
between reaction and structure depends on the scale and
scheme chosen for doing calculations. Unlike in high-
energy QCD, this scale and scheme dependence of fac-
torization is often not taken into account in low-energy
nuclear physics calculations, but is potentially critical
for interpreting experiment. In our work we investigated
this issue by looking at the simplest knockout reaction:
deuteron electrodisintegration. We used SRG transfor-
mations to test the sensitivity of the longitudinal struc-
ture function fL to evolution of its individual compo-
nents: initial state, final state, and the current.
We find that the e↵ects of evolution depend on kine-

matics, but in a systematic way. Evolution e↵ects are
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Figure 9. (color online) fL in IA (h f | ⌘ h�|) calculated for
E0 = 30 MeV and q2 = 16 fm�2 for the AV18 potential.
Legends indicate which component of the matrix element in
Eq. (30) used to calculate fL are evolved.
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Figure 10. (color online) fL in IA (h f | ⌘ h�|) calculated
for E0 = 30 MeV and q2 = 25 fm�2 for the AV18 potential.
Legends indicate which component of the matrix element in
Eq. (30) used to calculate fL are evolved.

Note that the (unevolved) fL calculated in the IA, shown
in Figs. 9 and 10, is smaller than the full fL that takes
into account the final state interactions (cf. the corre-
sponding curves in Figs. 6 and 7). This is consistent with
the claim made earlier that below the quasi-free ridge the
two terms in Eq. (13) add constructively.

The results in Figs. 9 and 10 can again be qualitatively
explained based on our discussion above. The evolution
of the deuteron wave function leads to suppression as
the evolved wave function does not have strength at high
momentum. The evolved current thus leads to enhance-
ment. Evolution of both the current and the initial state
decreases fL from just the evolved current value, but it
is not until we evolve all three components—final state,
current, and the initial state—that we recover the un-
evolved answer.

Figure 11. (color online) fL in IA calculated at ✓0 = 15�

for E0 = 30 MeV and q2 = 25 fm�2 for the AV18 potential
when the current operator in Eq. (30) used to calculate fL is
evolved to various SRG �’s. The horizontal dotted line is the
unevolved answer.

As expected, the e↵ect due to evolution increases with
further evolution. This is illustrated in Fig. 11, where we
investigate the e↵ects of the current-operator evolution
on fL as a function of the SRG �. To isolate the e↵ect of
operator evolution, we only look at fL calculated in IA
at a specific angle in Fig. 11.

4. Above the quasi-free ridge

Finally, we look at an example from above the quasi-
free ridge. Figure 12 shows the e↵ect of evolution of
individual components on fL for E0 = 100 MeV and
q2 = 0.5 fm�2, which is point “4” in Fig. 3. The ef-
fects of evolution in this case are qualitatively di↵erent
from those found below the quasi-free ridge. For instance,
we see a peculiar suppression in fL calculated from the
evolved deuteron wave function at small angles, but an
enhancement at large angles. An opposite behavior is
observed for the final state. It is again possible to quali-
tatively explain these findings.

a. Evolving the initial state Above the quasi-free
ridge, the IA and FSI terms in Eq. (13) add destruc-
tively. This can be seen by comparing the unevolved fL
curves in Figs. 12 and 13. Including the FSI brings down
the value of fL when one is above the quasi-free ridge.

At small angles, the magnitude of the IA term in
Eq. (13) is larger than that of the FSI term. The deuteron
wave function for this kinematics is probed between 1.2
and 1.9 fm�1. With the wave-function evolution, the
magnitude of the IA term in Eq. (38) decreases, whereas
the magnitude of the FSI term in that equation slightly
increases compared to its unevolved counterpart. Still,
at small angles, we have |h�|J0| �

i i| > |h�|t† G†

0 J0| �
i i|,
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e↵ects due to evolution of the individual components are
too small to be discernible. All this is consistent with the
discussion in the previous section.
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Figure 4. (color online) fL calculated for E0 = 100 MeV and
q2 = 10 fm�2 (point “1” in Fig. 3) for the AV18 potential.
Legends indicate which component of the matrix element in
Eq. (30) used to calculate fL is evolved. ✓0 is the angle of
the outgoing proton in the center-of-mass frame. There are
no discernible e↵ects due to the evolution for all angles. The
e↵ect due to evolution of the final state is small as well and
is not shown here to avoid clutter. fL calculated in the IA,
h�|J

0

| ii, is also shown for comparison.

2. Near the quasi-free ridge

Next we look at the kinematics E0 = 10 MeV and
q2 = 4 fm�2, which is near the quasi-free ridge. This is
the point “2” in Fig. 3. As seen in Fig. 5, the di↵erent
curves for fL obtained from evolving di↵erent compo-
nents start to diverge. Figure 5 also shows fL calculated
in IA. Comparing this to the full fL including FSI, we see
that the e↵ects due to evolution are small compared to
the FSI contributions. This smallness prevents us from
making any systematic observations about the e↵ects due
to evolution at this kinematics. We thus move on to kine-
matics which show more prominent e↵ects.

3. Below the quasi-free ridge

We next look in the region where E0 (in MeV) ⌧
10q2 (in fm�2), i.e., below the quasi-free ridge in Fig. 3.
We look at two momentum transfers q2 = 16 fm�2 and
q2 = 25 fm�2 for E0 = 30 MeV, which are points “3”
and “30” in Fig. 3. Figures 6 and 7 indicate the e↵ects
on fL from evolving individual components of the matrix
elements. It is noteworthy that in both cases evolution
of the current gives a prominent enhancement, whereas
evolution of the initial and final state gives a suppression.
When all the components are evolved consistently, these

Figure 5. (color online) fL calculated for E0 = 10 MeV and
q2 = 4 fm�2 (point “2” in Fig. 3) for the AV18 potential.
Legends indicate which component of the matrix element in
Eq. (30) used to calculate fL is evolved. fL calculated in the
IA, h�|J

0

| ii, is also shown for comparison. The e↵ects due
to evolution of individual components on fL are discernible,
but still small (compared to the FSI contribution). The e↵ect
due to evolution of the final state is small as well and is not
shown here to avoid clutter.

changes combine and we recover the unevolved answer
for fL. This verifies the accurate implementation of the
equations derived in Sec. II C.

Figure 6. (color online) fL calculated for E0 = 30 MeV and
q2 = 16 fm�2 (point “3” in Fig. 3) for the AV18 potential.
Legends indicate which component of the matrix element in
Eq. (30) used to calculate fL is evolved. Prominent enhance-
ment with evolution of the current only and suppression with
evolution of the initial state and the final state only, respec-
tively.

It is possible to qualitatively explain the behavior seen
in Figs. 6 and 7. As noted in Eq. (13), the overlap matrix
element is given by the sum of the IA part and the FSI
part. Below the quasi-free ridge these two terms add
constructively. In this region, fL calculated in impulse
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Summary

• for ab-initio studies of reactions it is crucial to treat structure and 
reaction part consistently and simultaneously

• theoretical interpretation sensitively depends on the resolution scale

• resolution scale change will shift contributions between structure and 
reaction parts

• deep inelastic cross sections usually explained in terms of short-range 
correlations, scheme dependent, all observables can also be explained by 
separation of scales and factorization

• studied deuteron disintegration based on RG evolved interactions and 
currents

✦ found perfect RG invariance of longitudinal structure function
✦ impact of RG evolution strongly depends on kinematics


