

LECTURE 2: NUCLEAR DEFORMATION

NUCLEAR STRUCTURE STUDIED WITH SPECTROSCOPY AND REACTIONS

A. Obertelli CEA Saclay

TU Darmstadt, IKP, February 2017

Cea Lecture 2: Nuclear Deformation

Deformation & nuclear shapes

- Symmetry breaking and nuclear shapes
- The deformed harmonic oscillator and Nilsson models
- Configuration mixing approaches
- Observables: rotational models and quadrupole moments
- Ground state deformation from hyperfine structure

Low-energy Coulomb excitation

- First order calculation, second order and re-orientation effect
- Physics case: shape coexistence in light Kr isotopes

Intermediate-energy Coulomb excitation

- Semi-classical description
- Physics case: island of inversion and ³²Mg

Extreme quadrupole deformations

- Superdeformation and hyperderformation

higher order multipole moments

- Octahedral and thetrahedral shapes
- Physics case: octupole deformation in ²²⁰Ra

Symmetry breaking and deformation

- A symmetry is an invariance of H and observables under a given transformation *Ex.* spherical symmetry / rotation, isospin symmetry / proton-neutron exchange
- Nuclear deformation is a spontaneous symmetry breaking
 i.e. the Hamiltonian is invariant but the physical states are not (different from « explicite » SB)
- □ **Most nuclei are deformed**: deformation = correlations = gain in energy
- □ (electric) quadrupole (elongated) shape is the most encountered

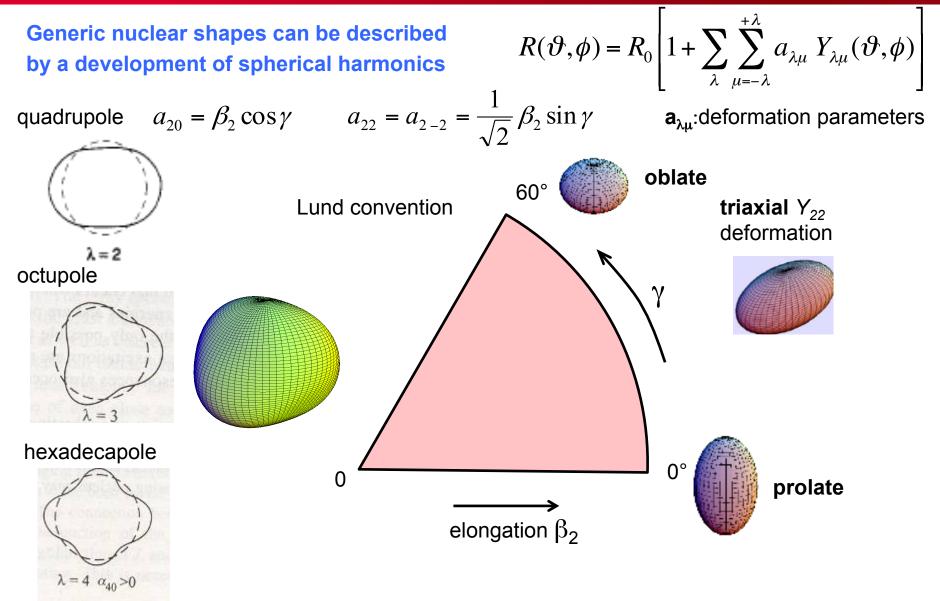
Ellipsoide:
$$\left(\frac{x}{R_{\perp}}\right)^2 + \left(\frac{y}{R_{\perp}}\right)^2 + \left(\frac{z}{R_z}\right)^2 = 1$$
 $Q_0 = \frac{2}{5}Ze^2\left(R_z^2 - R_{\perp}^2\right)$

The intrinsic quadrupole moment Q₀ measures the deviation of an elliptical shape from a sphere

- Q moment of long-lived states can be measured from hyperfine spectroscopy
- Q moment of long & short-lived states can be measured from low-energy Coulomb excitation
- A nucleus with intrinsic deformation can rotate Its spectrocopy characterizes its collectivity and deformation

OF LA RECHERCHE À L'INDUSTR

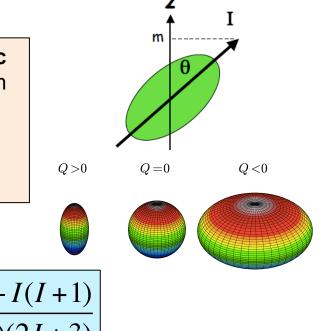
Parameterization of nuclear shapes



Spectroscopic quadrupole moment

Experiments measure the **maximum projection of the intrinsic electric quadrupole moment** along the quantization axis, which is different from the intrinsic electric Qpole

$$Q_s = Q_0 P_2(\cos\theta)_{m=I}$$



By use of angular momentum algebra:

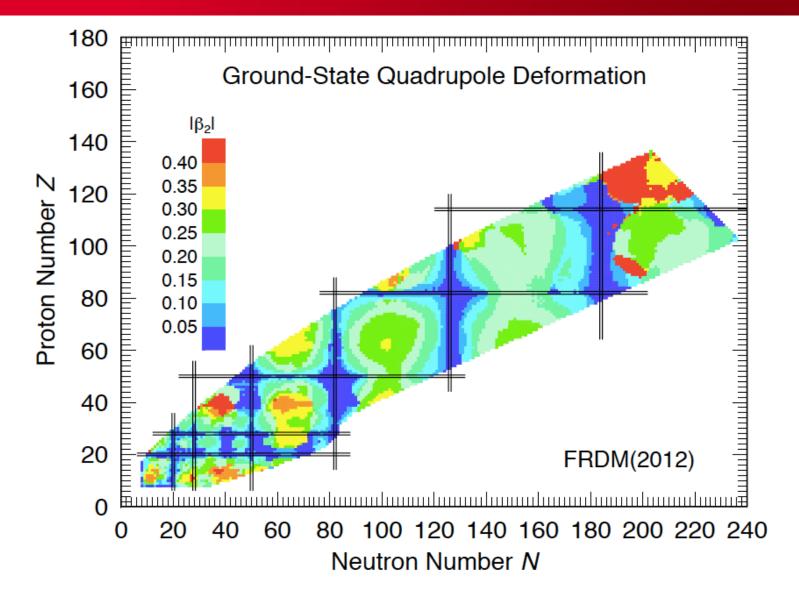
$$Q_s = Q_0 \frac{3K^2 - I(I+1)}{(I+1)(2I+3)}$$

□ K is the projection along the symmetry axis of the nuclear spin I. For spin I=0 and I=1/2 Qs vanishes even if the intrinsic shape is deformed

□ The intrinsic moment Q_0 can be related to the elongation parameter $\beta_{2:}$

$$Q_0 \approx \frac{3Zr_0^2}{\sqrt{5\pi}} \left< \beta^2 \right> (1 + 0.36 \left< \beta^2 \right>)$$

Quadrupole deformation



Cea Deformed harmonic oscillator potential

• axial symmetry:

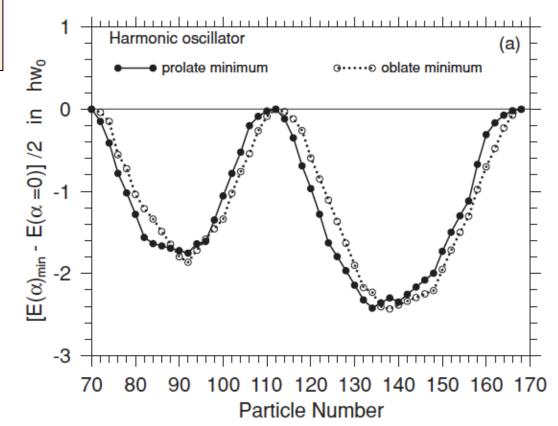
$$\omega_{\perp} = \omega_0 e^{\alpha}, \quad \omega_z = \omega_0 e^{-2\alpha}$$
$$h = -\frac{\hbar^2}{2m} \Delta + \frac{m}{2} \omega_{\perp}^2 (x^2 + y^2) + \frac{m}{2} \omega_z^2 z^2$$

 α >0: prolate, α <0:oblate

- Quantum numbers: (n_{\perp}, n_{z})
- Degeneracy: $2(n_{\perp}+1)$
- Total energy of the system:

$$E(\alpha) = \sum_{i=1}^{N_F} \varepsilon_{\Lambda}^i(\alpha)$$

I. Hammamoto and B.R. Mottelson, PRC 79, 034317 (2009) [Well bound nuclei, one type of fermions, no spin-orbit, no pairing]



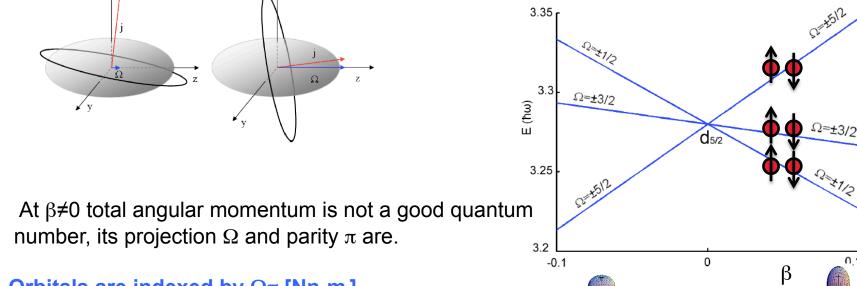
For Harmonic Oscillator, as many oblate that prolate ground states

Nilsson Hamiltonian: anisotropic one-body potential

Single-particle orbitals in an axially deformed potential (z symmetry axis)

$$h = -\frac{\hbar^2}{2m}\Delta + \frac{m}{2}\omega_{\perp}^2(x^2 + y^2) + \frac{m}{2}\omega_z^2 z^2 + C\vec{\ell}.\vec{s} + D\vec{\ell}^2$$

Energy depends on the orientation (projection of angular momentum) of the wavefunction

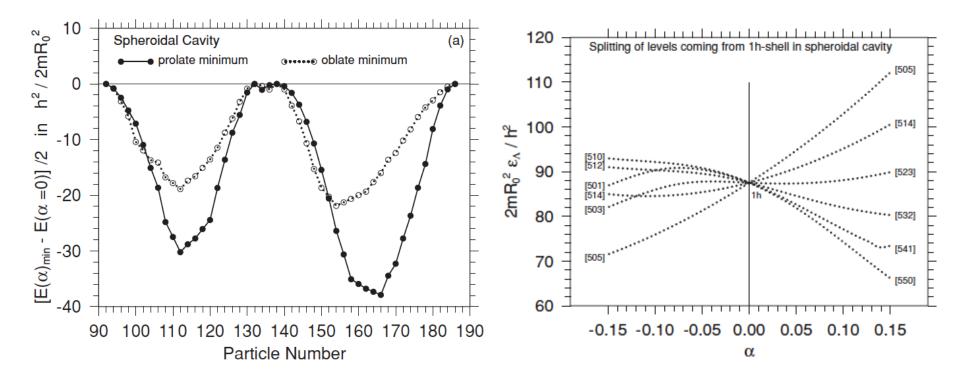


Orbitals are indexed by $\Omega \pi$ [Nn_zm_l]. $\Omega = m_1 + m_s = m_1 \pm 1/2$ N,n_z,m_i: asymptotic quantum numbers of axially-deformed harmonic oscillator

No crossing of two levels with same quantum numbers (mixing)

0.1

Cea Prolate dominance



□ Prolate dominance due to sharp nuclear surface

□ Prolate dominance may be questioned for drip line or very heavy nuclei with softer surface

CE2 EDF and configuration mixing approaches

- Variational approach based on an effective hamiltonian H
- Ansatz for the wavefunction, ex. Slater determinants or quasiparticle vacuum

$$\varepsilon \left[\phi\right] = \frac{\left\langle \phi \left| H \right| \phi \right\rangle}{\left\langle \phi \left| \phi \right\rangle} - \lambda_{Q} \left\langle \phi \left| Q \right| \phi \right\rangle - \lambda_{N} \left\langle N \right\rangle - \lambda_{Z} \left\langle Z \right\rangle$$

Minimization: $\delta \varepsilon \left[\phi\right] = 0$

• Projection method, important quantum numbers: N,Z,J,P

Ex.
$$P^{N} |\phi\rangle = \frac{1}{2\pi} \int_{0}^{2\pi} d\phi e^{i\phi(\hat{N}-N)} |\phi\rangle$$

• **Configuration Mixing** (multireference EDF)

$$\begin{split} & Set \ \Omega_{I} = \left\{ \left| \phi(Q) \right\rangle \right\} & \text{e.g. Q= collective coordinates} \\ & \left| \psi_{\varepsilon}^{JMNZP} \right\rangle = \int dQ \sum_{K=-J}^{J} f_{\varepsilon}^{JMNZP}(Q) P^{N} P^{Z} P_{MK}^{J} \left| \phi(Q) \right\rangle \\ & Minimization : \delta \frac{\left\langle \psi \right| H \left| \psi \right\rangle}{\left\langle \psi \right| \psi \right\rangle} = 0 & \text{Hill-Wheeler equations} \end{split}$$

□ The weight are determined by imposing

$$\frac{\delta E}{\delta f^*} = 0$$

norm overlaps

□ Hill-Wheeler equation

$$\int dQ' h(Q,Q') f_{\varepsilon}(Q') = E_{\varepsilon} \int dQ' n(Q,Q') f(Q')$$

with

and

W

 $h(Q,Q') = \left\langle \phi(Q) \middle| H \middle| \phi(Q') \right\rangle$

□ The choice of the generating coordinates Q depends on the physics to be described

Typically Q is a multipole moment of the mass distribution (quadrupole deformation Q_{2\lambda})

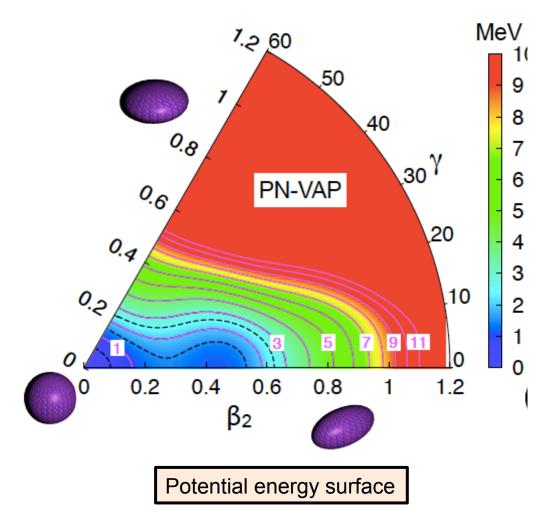
□ Resolution of HW equations by discretization of Q

 $n(Q,Q') = \left\langle \phi(Q) \middle| \phi(Q') \right\rangle$

Approximation to HW equation: Bohr Hamiltonian and Gaussian Overlap Approximation

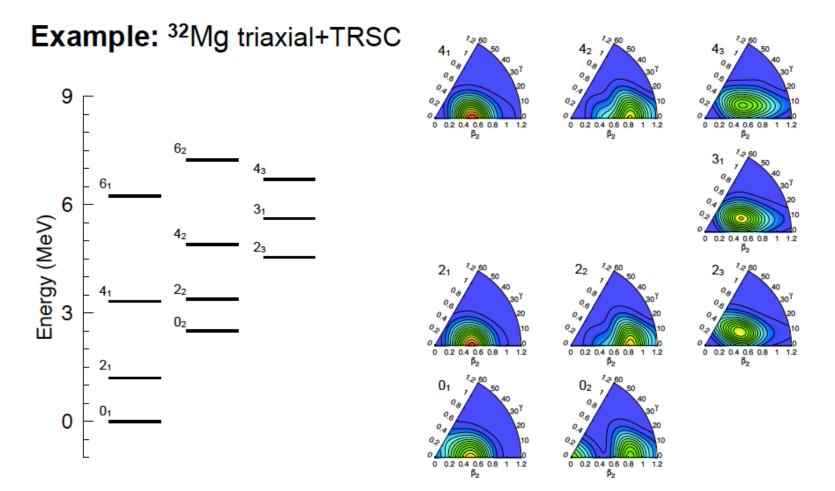
Calculations and figures by Tomàs R. Rodriguez

Example: ³²Mg triaxial+TRSC



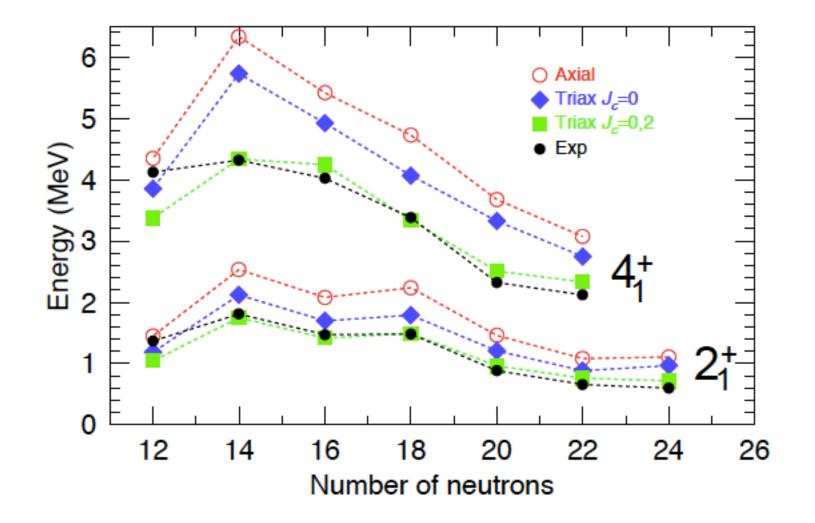
Collective wavefunctions and levels

Calculations and figures by Tomàs R. Rodriguez

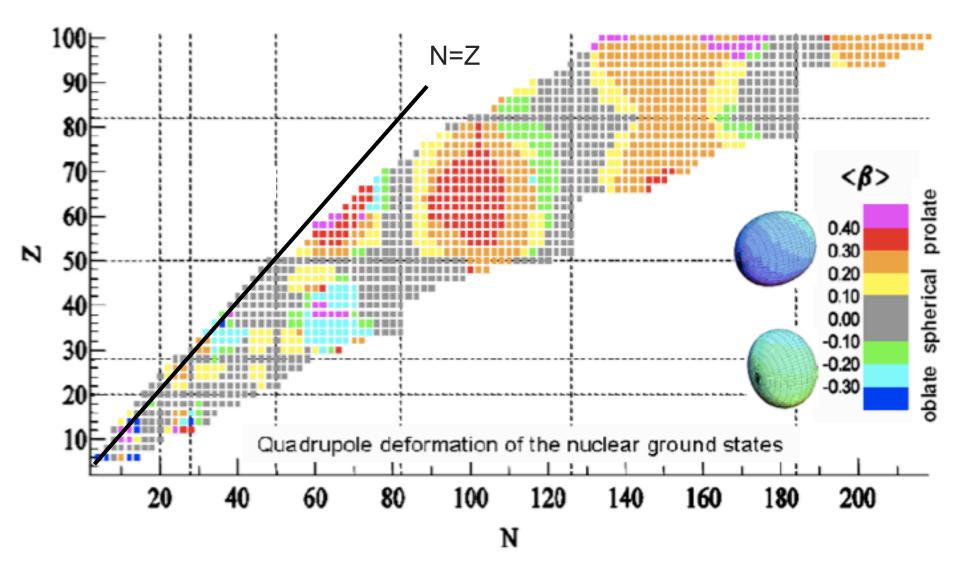


- □ level scheme, collective wavefunctions accessible
- □ further improvement: state-dependent moment of inertia (cranked states)

Calculations and figures by Tomàs R. Rodriguez



Dominance of prolate deformation over oblate



Mean-field calculations with the Gogny D1S effective interaction, M. Girod (CEA)

Hyperfine interaction in free atoms

Hyperfine interaction = the interaction of nuclear magnetic and electric moments with electromagnetic fields

We will consider the fields created by an atomic orbit of spin J The atomic and nuclear spins couple to form The total angular momentum F $\vec{F} = \vec{I} + \vec{J}$ Each state J has several F substates $|I - J| \le F \le I + J$

The energy shift caused by the interaction depends on the angle θ , thus for the same I and J, the different **F** states have slightly different energies

Magnetic dipole interaction $-\vec{\mu}.\vec{B}$ Electric quadrupole interaction $\frac{e}{A}Q_0V_{JJ}P_2(\cos\theta)$

Hyperfine structure: magnetic dipole moment

- □ yesterday's lecture: fine structure of the nucleus and isotopic shifts
- □ The nucleus may have a non-zero spin I and therefore a magnetic moment μ . It results in a perturbation of the atomic levels due to spin – B field interaction

$$-\vec{\mu}.\vec{B}$$

Energy shift of the atomic levels depend on the total spin F

$$\vec{F} = \vec{I} + \vec{J}$$
$$\left| I - J \right| \le F \le I + J$$

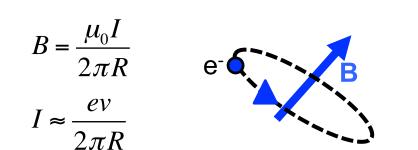
Energy shift

$$\Delta E = \mu B_0 \left\langle \vec{I} \cdot \vec{J} \right\rangle = \frac{A}{2} K$$
$$A = \frac{\mu B_0}{IJ}, \quad K = F(F+1) - I(I+1) - J(J+1)$$

B₀ magnetic field produced by the electron. Note that for I=0, there is no hyperfine structure

Hyperfine structure: magnetic dipole moment

- □ Typical value for the magnetic moment of a nucleus: nuclear **magneton** $\mu_N = \frac{e\hbar}{2m_n} = 3.15 \times 10^{-8} \ eV.T^{-1}$
- Typical B field created by an electron orbital:

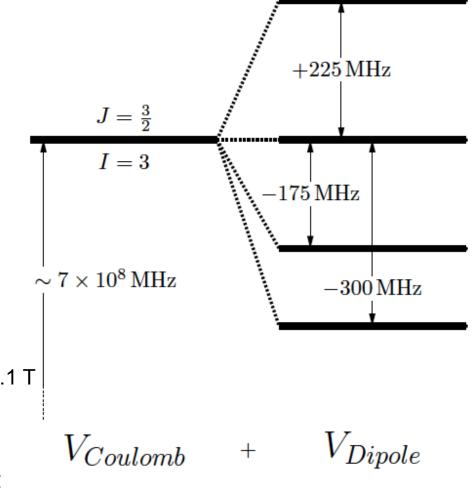


Inner orbital radius $R_n \approx a_0 = 5.2 \ 10^{-11} \text{ m}$ Bohr velocity (e²/hbar=c α) v=2.2 10⁶ m.s⁻¹

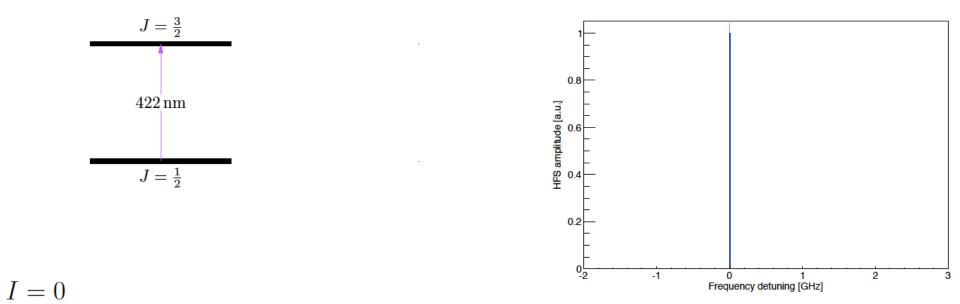
B≈4π 10⁻⁷ 1.6 10⁻¹⁹ 2.2 10⁶ /(16π² 25. 10⁻²²) = 1.1 T

Estimate of hyperfine energy shift:

$$\Delta E \approx \mu_N B = 310^{-8} eV \Rightarrow \omega = \frac{\Delta E}{\hbar} \approx 50 MHz$$

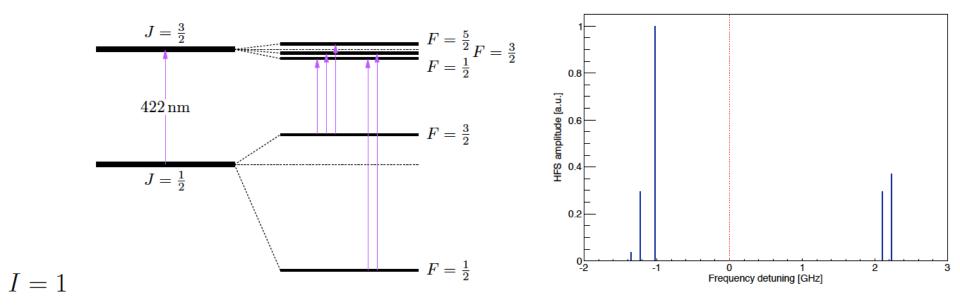


Hyperfine structure: magnetic dipole moment



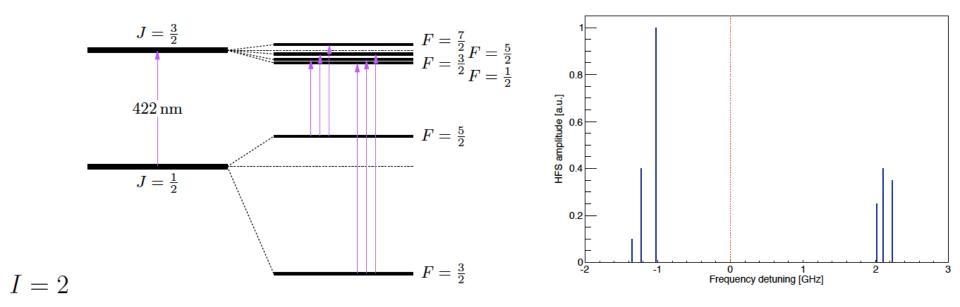
From T.E. Cocolios, Joliot-Curie school 2015

A Hyperfine structure: magnetic dipole moment



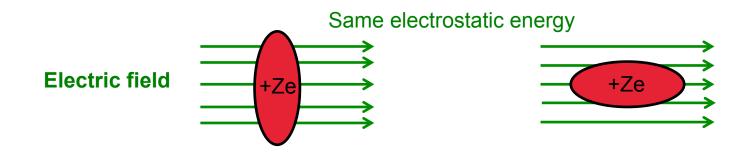
20

Base Myperfine structure: magnetic dipole moment

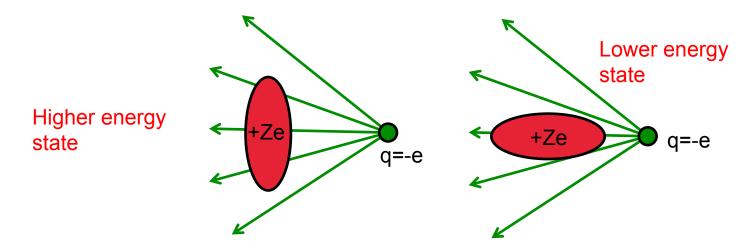


Cea Electric quadrupole moment from hyperfine structure

In a **uniform field**, the energy of a quadrupole moment is independent of the orientation (angle). Therefore there is **no quadrupole interaction**.



In an **electric field gradient**, there is an **angle dependence** of the energy. Therefore there is a **quarupole interaction**.



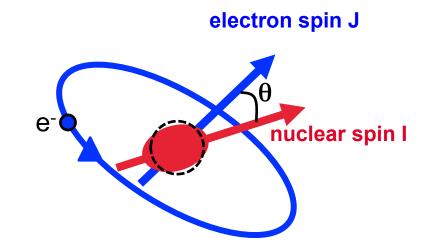
Slide concept from J. Billowes, Balkan school (2004)

Cea Electric quadrupole moment

Electric quadrupole interaction

$$E = \frac{e}{4} Q_0 V_{JJ} P_2(\cos\theta)$$

Electric field gradient along the J direction due to atomic electrons.



Energy shifts of the F states are then given by

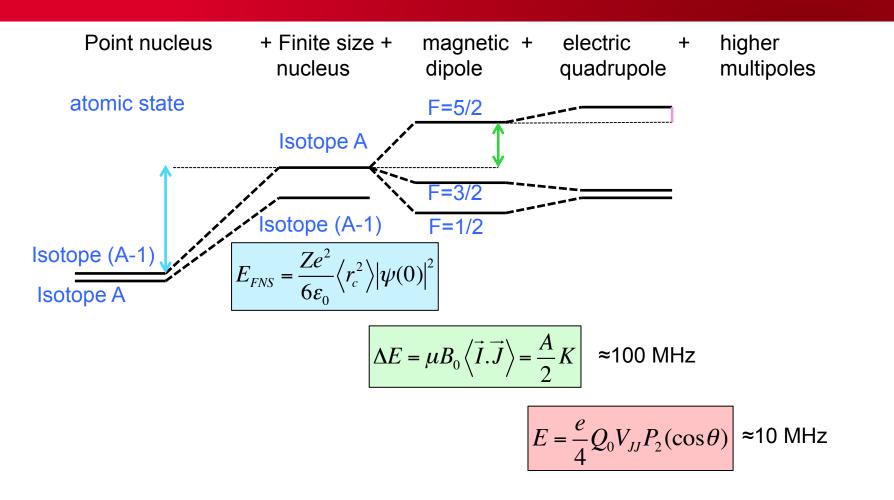
$$\Delta E = \frac{B}{4} \frac{\frac{3}{2}C(C+1) - 2I(I+1)J(J+1)}{I(2I-1)J(2J-1)}$$

$$C = \left[F(F+1) - I(I+1) - J(J+1)\right]$$

$$B = eQ_s \left\langle \frac{\partial^2 V}{\partial z^2} \right\rangle = eQ_s V_{JJ}$$

Where **B** is the hyperfine factor measured in the experiment. The electric field gradient V_{JJ} may be obtained from an isotope with known Q_s

Summary: isotope shift and hyperfine structure



Energy shifts of hyperfine structure can be few ppm of the optical atomic transition energy
 A single optical transition is split into a number of hyperfine components

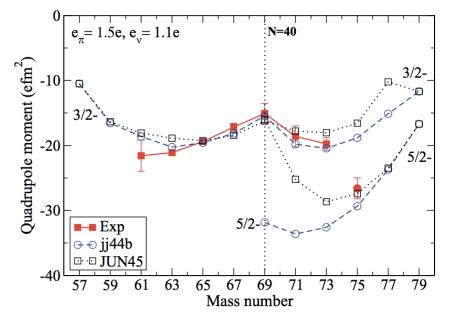
Quadrupole moment of Cu isotopes

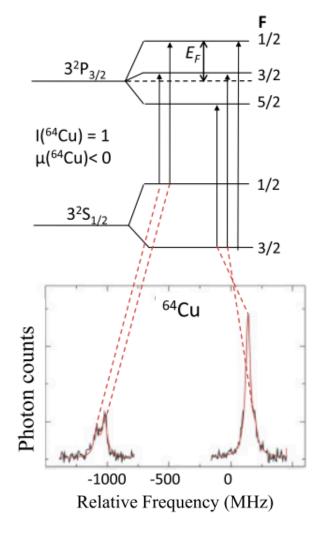
- □ Spin, magnetic and Q moments of ⁶¹⁻⁷⁵Cu at CERN/ISOLDE
- COLLAPS collinear laser spectroscopy setup
- □ Beams down to few 10⁴ pps
- D. Vingerhoets *et al.*, Phys. Rev. C 82, 064311 (2011)

□ Fit of transition energies with an atomic level splitting given by:

$$E_F = \frac{1}{2}AC + B\frac{\frac{3}{4}C(C+1) - I(I+1)J(J+1)}{2I(2I-1)J(2J-1)}$$

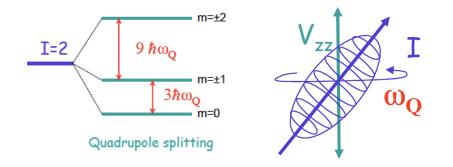
with A proportional to magnetic moment, B to quadrupole moment





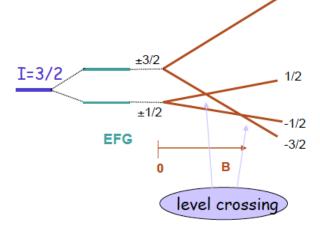
CEA Externally applied fields

- □ For light elements where both field gradients and Q moments are small, usually transitions cannot be resolved. Need for **external field**.
- Different techniques exist (ground state or isomer Q-moment)



 \square β -NQR (beta Nuclear Quadrupole Resonance) method (ground state Q moment)

- Implentation of a spin-polarized projectile
- In a crystal where strong electric field gradient exist
- Beta-decay assymetry is measured
- Scan with a radiofrequency RF magnetic field
- When RF reaches the quadrupole splitting, energy transitions occur
- Asymmetry is cancelled at the resonance

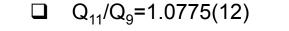


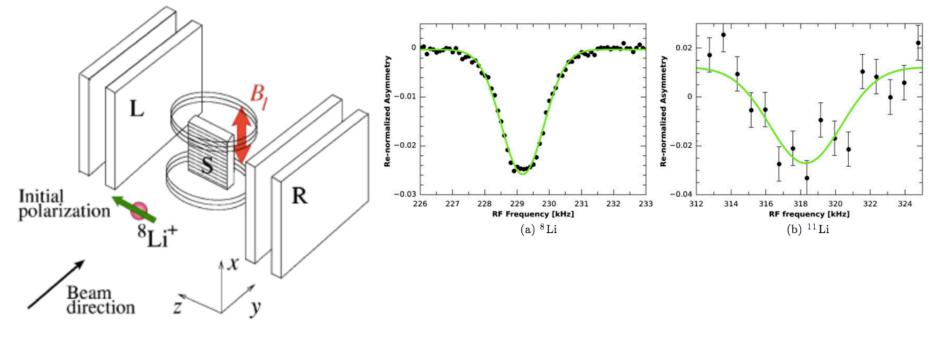
3/2

$\begin{array}{cccc} \hline \beta \text{-NQR with Lithium isotopes} \end{array}$

- TRIUMF, A. Voss *et al.*, J. Phys. G: Nucl. Part. Phys. **41**, 015104 (2014)
- □ SrTiO3 crystal at 295 K
- □ High polarization of 60%-70%
- \Box Transition frequencies proportional to V_{zz}:

$$v_{9,11} = 2\frac{eV_{zz}}{4h} |Q_{9,11}|$$





Spectroscopy of axially deformed nuclei

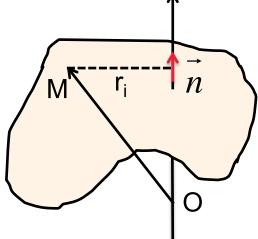
- Axial rotor in quantum mechanics: rotation around the symmetry axis does not result in a new state **but** changes only the phase of the wavefunction
- Any rotation excitation involves rotation around an axis perpendicular to the symmetry axis
- Rotation and classical mechanics:

$$E = \frac{1}{2}\Im\Omega^{2} \qquad \begin{array}{c} \Im \text{ moment of inertia} \\ \Omega \text{ angular velocity} \end{array} \text{ or } \boxed{E = \frac{1}{2}\frac{L^{2}}{\Im}} \text{ with } \vec{L} = \Im\vec{\Omega} \text{ kinetic angular momentum} \end{array}$$

Continuus

Discrete

$$\Im = \int \left\| \vec{n} \wedge \overrightarrow{OM} \right\|^2 \rho d^3 r$$
$$\Im = \sum m_i r_i^2$$

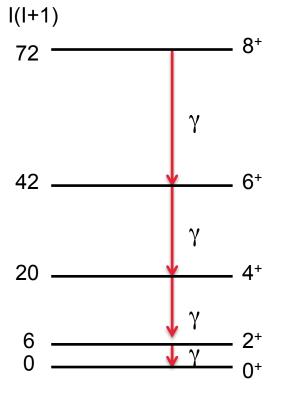


Rotor model for axially deformed nuclei

Quantum mechanics:

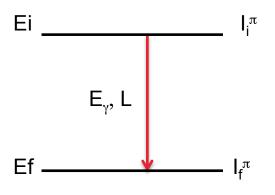
$$E = E_0 + \frac{\hbar^2}{2\Im}I(I+1)$$

$$L^{2}\left|\phi\right\rangle = \hbar^{2}I(I+1)\left|\phi\right\rangle$$



I+2 \rightarrow I: E2 γ transitions

- for even-even nuclei (0⁺ ground state) the collective wavefunction is given by rotational D_{IMK} matrices
- by symmetry, only even spins with positive parity are allowed (0⁺,2⁺,4⁺,...) for a 0⁺ ground state
- Decay dominated by γ emission following conservation laws:



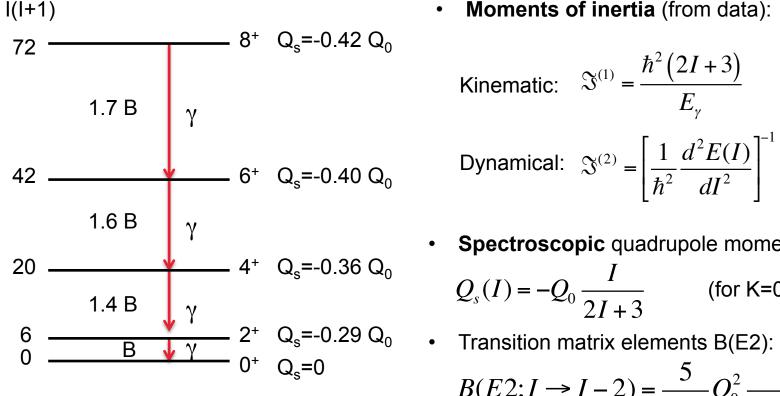
$$E_{\gamma} = E_i - E_f$$
$$\left|I_i - I_f\right| \le L \le I_i + I_f$$
$$\Delta \pi (EL) = (-1)^L$$
$$\Delta \pi (ML) = (-1)^{L+1}$$

Rotor model for axially deformed nuclei

Quantum mechanics:

$$E = E_0 + \frac{\hbar^2}{2\Im}I(I+1)$$

$$L^{2}\left|\phi\right\rangle = \hbar^{2}I(I+1)\left|\phi\right\rangle$$



Moments of inertia (from data):

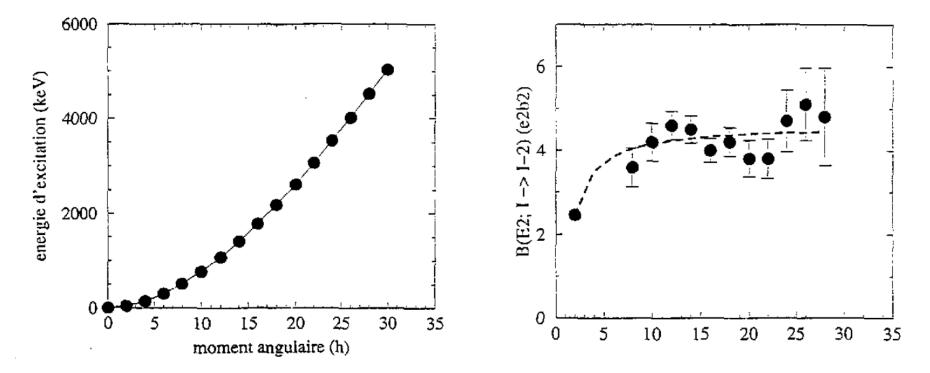
Kinematic:
$$\Im^{(1)} = \frac{\hbar^2 (2I+3)}{E_{\gamma}}$$

Dynamical: $\Im^{(2)} = \left[\frac{1}{\hbar^2} \frac{d^2 E(I)}{dI^2}\right]^{-1} \approx \frac{4\hbar^2}{\Delta E_{\gamma}}$

- Spectroscopic quadrupole moment: $Q_{s}(I) = -Q_{0} \frac{I}{2I+3}$ (for K=0 band)
- $B(E2; I \to I-2) = \frac{5}{16\pi} Q_0^2 \frac{3I(I-1)}{2(2I-1)(2I+1)}$

22 Spectroscopy of axially deformed nuclei

Example: ²³⁸U ground-state band



- At high spin, nucleon pairs may break through the Coriolis force
 → increase of moment of inertia (backbending)
- Very deformed bands are also observed (superdeformation, R_z/R_{ortho}≈2)
- Hyperdeformation ($R_z/R_{ortho} \approx 3$) predicted but still to be evidenced experimentally

CEA Transition matrix elements

Decay rate (s⁻¹):

$$T(\sigma\lambda; I_{f} \rightarrow I_{i}) = \frac{8\pi(\lambda+1)}{\lambda[(2\lambda+1)!!]^{2}} \frac{1}{\hbar} \left(\frac{E_{\gamma}}{\hbar c}\right)^{2\lambda+1} B(\sigma\lambda; I_{f} \rightarrow I_{i})$$

$$B(E2) \propto \left| \langle I_{f} \| M(E2) \| I_{i} \rangle \right|^{2}$$

$$\frac{1}{\tau_{f}} = \sum_{\sigma\lambda I_{i}} T(\sigma\lambda; I_{f} \rightarrow I_{i})$$

$$0^{+}$$

$$2^{+} \rightarrow 0^{+} \text{ decay} \quad \tau(ns) = \frac{1}{1.22 E_{\gamma}^{5} B(E2; \downarrow)} \quad E_{\gamma} \text{ in Mev, } B(E2) \text{ in } e^{2}\text{fm}^{4}$$

Three methods:

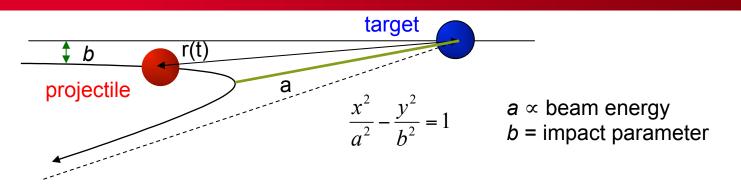
□ Low-energy coulomb excitation (next slides)

□ Lifetime measurement (see Damian Ralet's lecture)

- > 100 ns : implantation and timing
- 10 ps to few 100 ns : in flight (fast) timing
- 1 ps to 100 ps: plunger, Recoil Distance Doppler Shift method (RDDS)
- 0.01 ps to 1 ps: Doppler Shift Attenuation method (DSAM)

□ Intermediate-energy coulomb excitation (suited to low-RIB intensities)

Cea Coulomb excitation



□ Elastic scattering of charged particles under the influence of the Coulomb field $V_{\text{int}}(t) = \frac{Z_P Z_T e^2}{r}$ with $r(t) = \left| \vec{r}_1(t) - \vec{r}_2(t) \right|$

➔ hyperbolic relative motion of the reaction partners

Rutherford cross section

$$\frac{d\sigma}{d\Omega} = \frac{Z_1 Z_2 e^2}{E_{cm}^2} \times \frac{1}{\sin^4(\theta_{cm}/2)} \quad \text{valid as long as } E_{cm} = m_0 v^2 = \frac{m_p \cdot m_T}{m_p + m_T} v^2 << V_c = Z_1 Z_2 e^2 / R_{int}$$
$$\frac{d\sigma}{d\Omega} \Big|_{Ruth} \times P_{i \to f}$$

1) Solving the time-dependent Schrödinger equation:

iħ d ψ (t)/dt = [H_P + H_T + V (r(t))] ψ (t)

 $H_{P/T}$: free Hamiltonian of the projectile/target nucleus V(t) : the time-dependent electromagnetic interaction

2) Expanding $\psi(t) = \sum_{n} a_{n}(t) \phi_{n}$ with ϕ_{n} as the eigenstates of $H_{P/T}$ leads to a set of coupled equations for the time-dependent excitation amplitudes $a_{n}(t)$

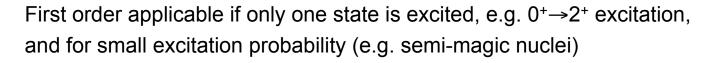
iħ da_n(t)/dt = $\sum_{m} \langle \phi_n | V(t) | \phi_m \rangle \exp[i/\hbar (E_n - E_m) t] a_m(t)$

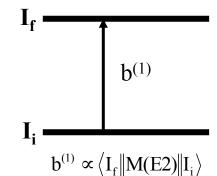
3) The transition amplitude b_{nm} are calculated by the (action) integral

 $b_{nm} = i\hbar^{-1} \int \langle a_n \phi_n | V(t) | a_m \phi_m \rangle \exp[i/\hbar (E_n - E_m) t] dt$

4) Finally leading to the excitation probability $P(I_n \rightarrow I_m) = (2I_n + 1)^{-1}b_{nm}^2$

A Low-energy Coulomb excitation: first order





1st order transition probability for multipolarity λ :

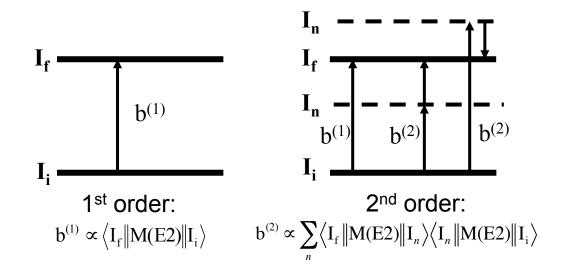
$$P_{i \to f}^{(1)}(\vartheta, \xi) = (2I_i + 1)^{-1} |b_{i \to f}^{(1)}(\vartheta, \xi)|^2 = (2I_i + 1)^{-1} |\chi_{i \to f}^{(\lambda)}|^2 R_{\lambda}^2(\vartheta, \xi)$$

with

$$\begin{split} \chi_{i \to f}^{\lambda} &= \frac{\sqrt{16\pi} (\lambda - 1)!}{(2\lambda + 1)!!} \left(\frac{Z_{T/P} e}{\hbar v_i} \right) \frac{\left\langle i \mid M(E\lambda) \mid f \right\rangle}{a^{\lambda} \sqrt{2I_i + 1}} \quad \begin{array}{l} \text{Strength} \\ \text{parameter} \end{array} \\ R_{\lambda}^2 (\vartheta, \xi) &= \sum_{\mu} |R_{\lambda\mu} (\vartheta, \xi)|^2 \quad \begin{array}{l} \text{Orbital integrals} \end{aligned} \\ \xi &= \xi_{if} = \frac{Z_1 Z_2 e^2}{\hbar} \left(\frac{1}{v_f} - \frac{1}{v_i} \right) \quad \begin{array}{l} \text{Adiabacity parameter} \end{aligned}$$

Cea Low-energy Coulex: second order

becomes necessary if **several states** can be excited from the ground state or when **multiple excitations** are possible, i.e. for larger excitation probabilities



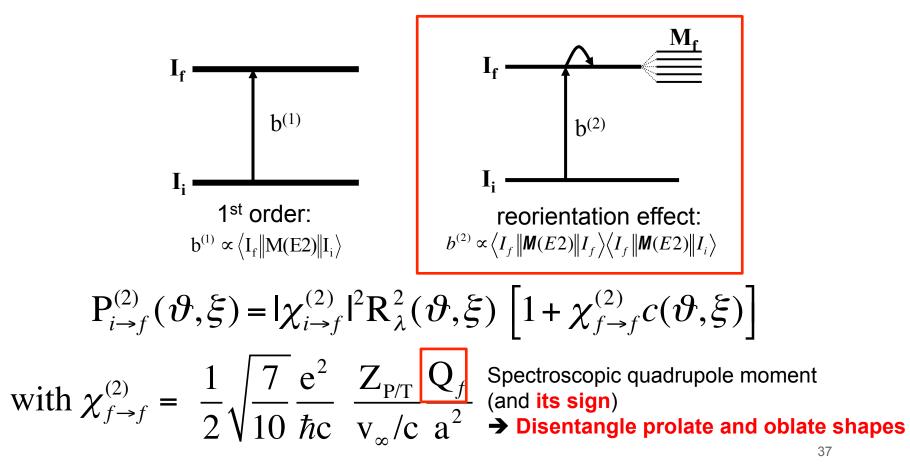
2nd order transition probability:

$$P_{i \to f}^{(2)}(\vartheta, \xi) = (2I_i + 1)^{-1} \sum_{m_i m_f} |b_{if}^{(2)}|^2 \text{ with } b_{if}^{(2)} = b_{if}^{(1)} + \sum_n b_{inf}^{(2)}$$

Specific case of second order perturbation theory

where the "intermediate" states are the **m** substates of the state of interest

2nd order excitation probability for 2⁺ state :



DE LA RECHERCHE À L'INDUSTI

 $\dot{\Omega} \approx 80\%$ $\Lambda \theta \approx 5^{\circ} - 15^{\circ}$

22 High-resolution gamma spectrometers

Scintillator array (ex. BaF₂, Nal, Cs(I), LaBr₃)

σ_E ≈ 3-10% FWHM ε_{ph} ≈ 50%

- poor energy resolution
- poor opening angle

DALI2, RIKEN

Resolving Power

(relative intensity limit)

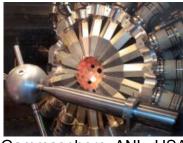
104

107

Compton Shielded Ge

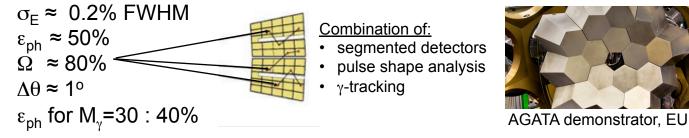
 $σ_E ≈ 0.2\% FWHM$ $ε_{ph} ≈ 10\%$ Ω ≈ 40% $Δθ ≈ 8^{\circ}$ $ε_{ph} \text{ for } M_{\gamma} = 30 :7\%$

- scattered γ-rays lost
- poor definition of incident angle
- solid angle coverage limited by compton shields

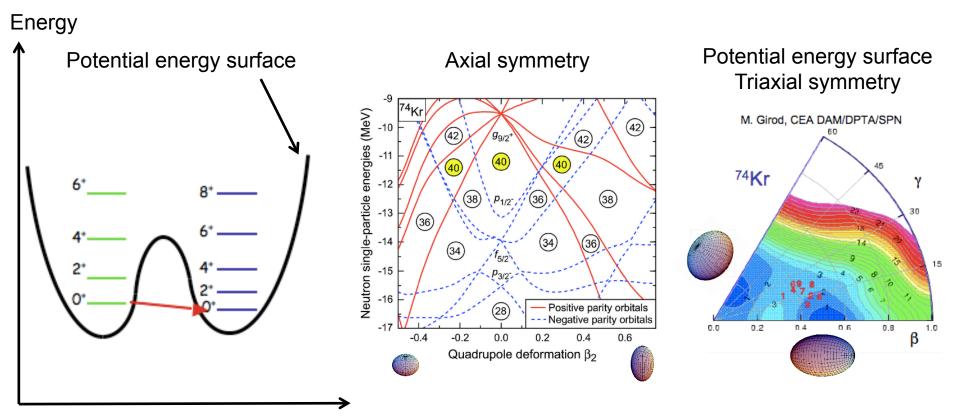


Gammasphere, ANL, USA

Ge Tracking Array



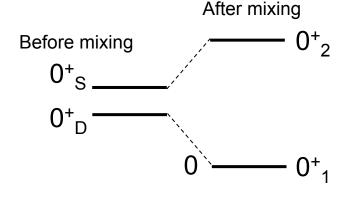
38



deformation (axial β_2)

Shape coexistence and low-lying 0⁺ states

2-level mixing model



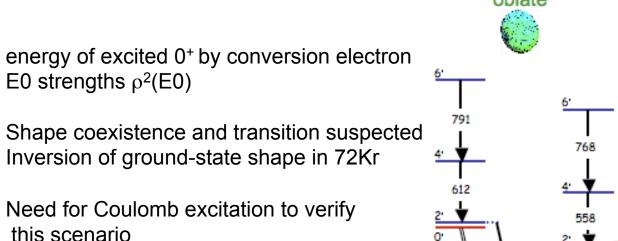
Maximum mixing Weak mixing $\cos^2 \theta \rightarrow 1 \quad \sin^2 \theta \rightarrow 0$

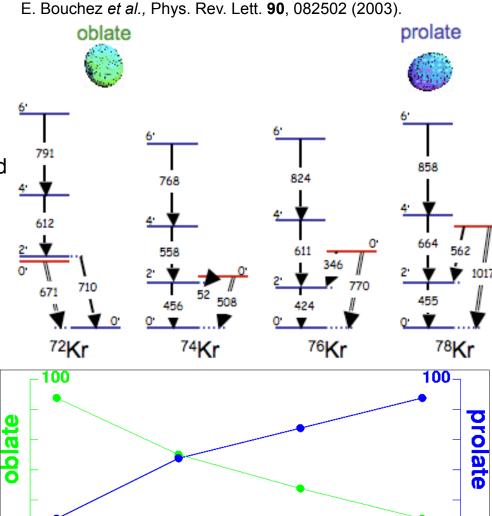
 $\cos^2 \theta = \sin^2 \theta = 0.5$

$$\begin{vmatrix} 2_1^+ \rangle = \cos \theta_2 \begin{vmatrix} 2_D^+ \rangle + \sin \theta_2 \begin{vmatrix} 2_S^+ \rangle \\ \begin{vmatrix} 2_2^+ \rangle = -\sin \theta_2 \begin{vmatrix} 2_D^+ \rangle + \cos \theta_2 \begin{vmatrix} 2_S^+ \rangle \end{vmatrix}$$

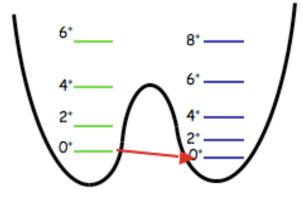
 $B(E2;0_1^+ \rightarrow 2_1^+) = \left|\cos\theta_0\cos\theta_2\left\langle 0_D^+ \left| M(E2) \right| 2_D^+ \right\rangle + \sin\theta_0\sin\theta_2\left\langle 0_S^+ \left| M(E2) \right| 2_S^+ \right\rangle \right|^2$ $B(E2;0_2^+ \rightarrow 2_1^+) = \left|-\sin\theta_0\cos\theta_2\left\langle 0_D^+ \left| M(E2) \right| 2_D^+ \right\rangle + \cos\theta_0\sin\theta_2\left\langle 0_S^+ \left| M(E2) \right| 2_S^+ \right\rangle \right|^2$

Physics case: shape coexistence in light Kr isotopes

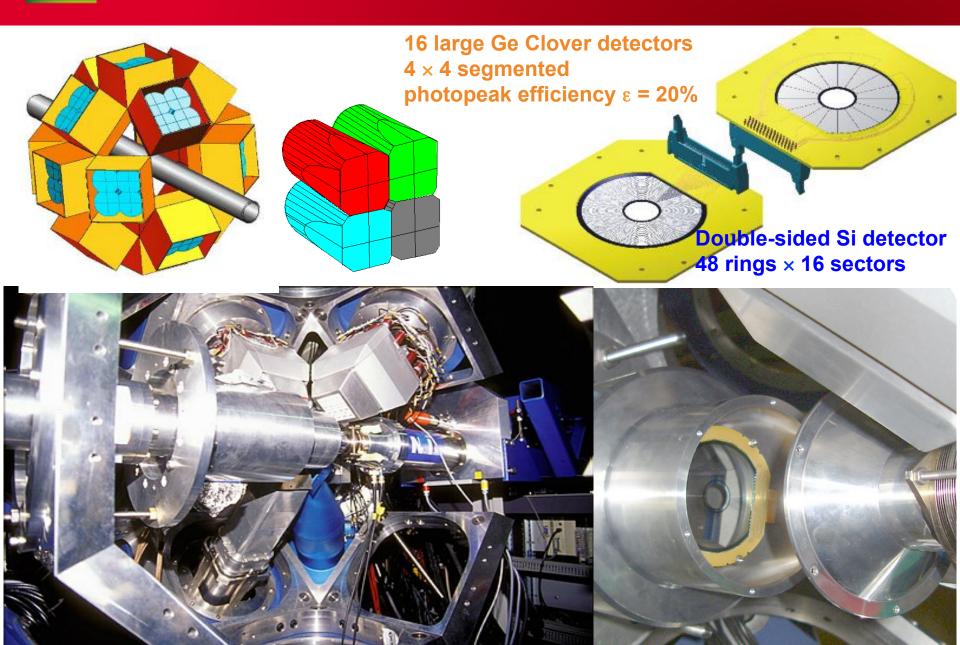




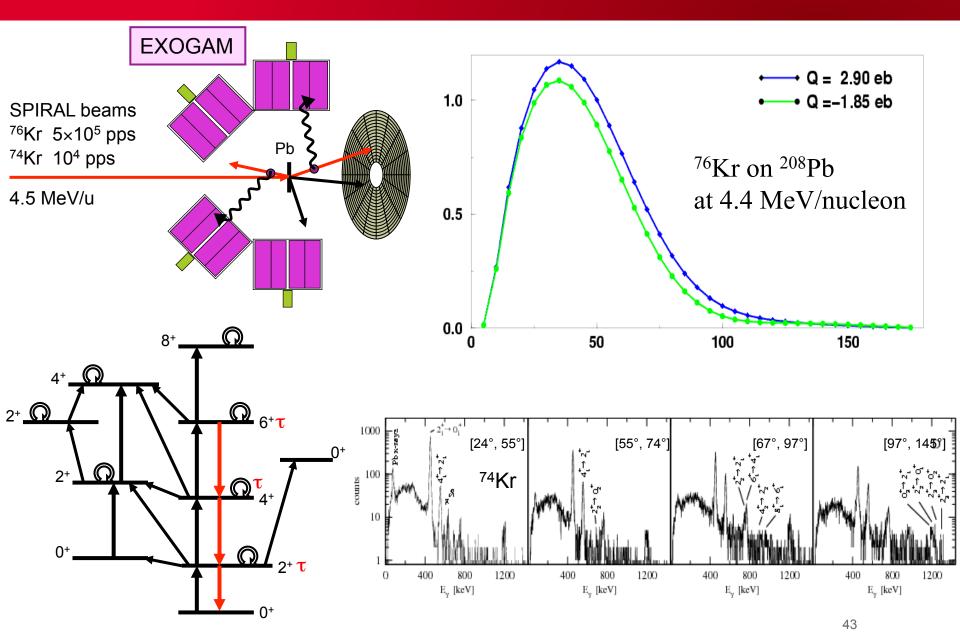
Mixing of the ground state (**two-level mixing** extrapolated from distortion of rotational bands)



Cea Setup for RIB coulomb excitation at SPIRAL, GANIL

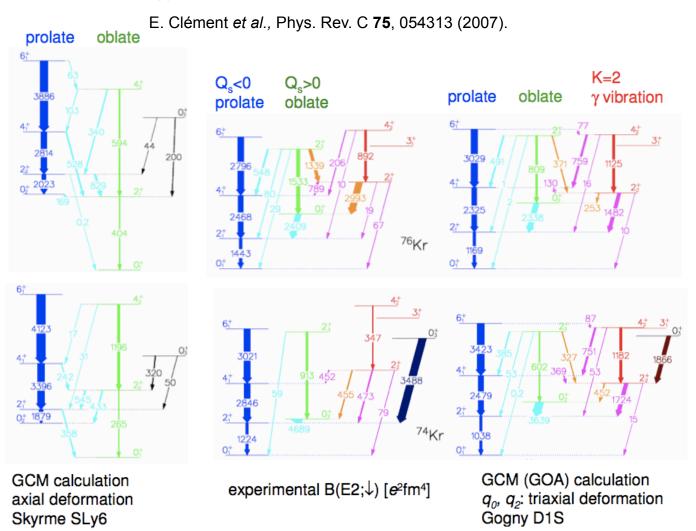


Cea Physics case: shape coexistence in light Kr isotopes



Cea Physics case: shape coexistence in light Kr isotopes

Low-energy Coulomb excitation of ^{74,76}Kr, SPIRAL (GANIL)



M. Bender et al. PRC 74, 024312 (2006)

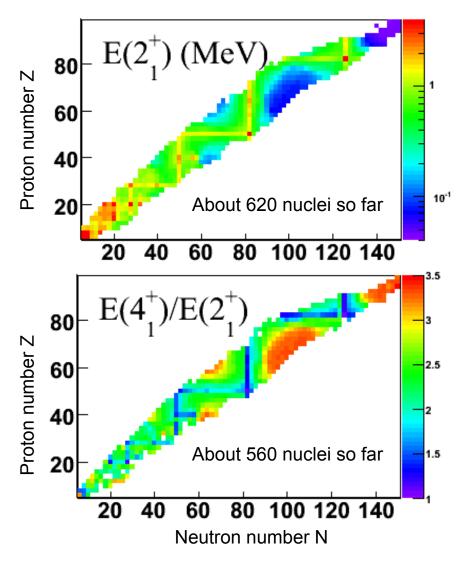
Reduced transition matrix element and deformation

- 2⁺ energies and B(E2;2⁺→0⁺) are often the first obervables to characterize shell closures or deformation
- They often mirror each other
- In the rotational model, B(E2) can be used to extract a deformation amplitude β

$$\beta = \frac{4\pi}{3ZR^2} \sqrt{B(E2;0^+ \to 2^+)/e^2}, \quad R = 1.2A^{1/3} \, fm$$

 Similarly, the ratio of 4⁺ to 2⁺ excitation energies can be used to infer deformation by comparison to the rotor limit:

$$\frac{E(4^+)}{E(2^+)} = \frac{4(4+1)}{2(2+1)} = \frac{20}{6} = 3.33$$



Deformation & nuclear shapes

- Symmetry breaking and nuclear shapes
- The deformed harmonic oscillator and Nilsson models
- Configuration mixing approaches
- Observables: rotational models and quadrupole moments
- Ground state deformation from hyperfine structure

Low-energy Coulomb excitation

- First order calculation, second order and re-orientation effect
- Physics case: shape coexistence in light Kr isotopes

Intermediate-energy Coulomb excitation

- Semi-classical description
- Physics case: island of inversion and ³²Mg

Extreme quadrupole deformations

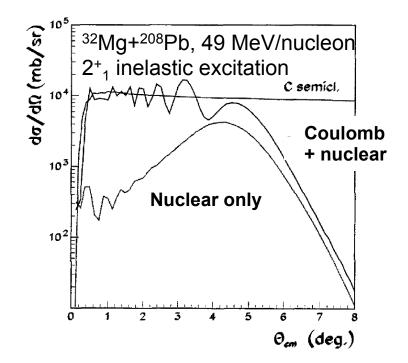
- superdeformation and hyperderformation

higher order multipole moments

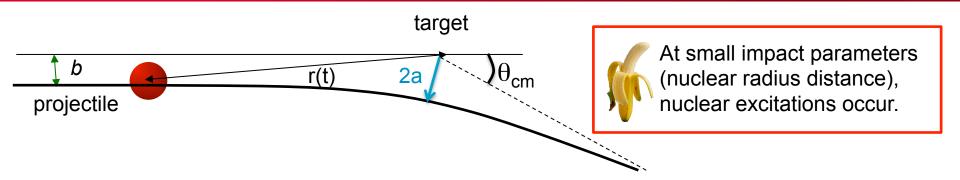
- Octahedral and thetrahedral shapes
- Physics case: octupole deformation in ²²⁰Ra

Intermediate-energy Coulomb excitation

- □ Advantage: thick target can be used, measurement at >10 pps possible
- Single-step excitation is a valid assumption (excitation time >> collision time)
- **Aximum excitation energy**: $\Delta E_{\text{max}} = \frac{\hbar c}{a} \beta \gamma$ (ex. 10 MeV for Mg+Pb at 50 MeV/u)
- Intermediate energy (above Coulomb barrier): both Coulomb and nuclear excitations Method: classical equivalence between scattering angle and impact parameter



Intermediate-energy Coulomb excitation



□ Coulomb excitation for b>b_{min} (cutoff impact parameter to prevent nuclear contributions):

$$b_{\min} = [C_1 + C_2 + 2] fm$$

$$C_i = R_i (1 - \frac{1}{R_i^2}) \quad with \quad R = 1.28A^{1/3} - 0.76 + 0.8A^{-1/3}$$

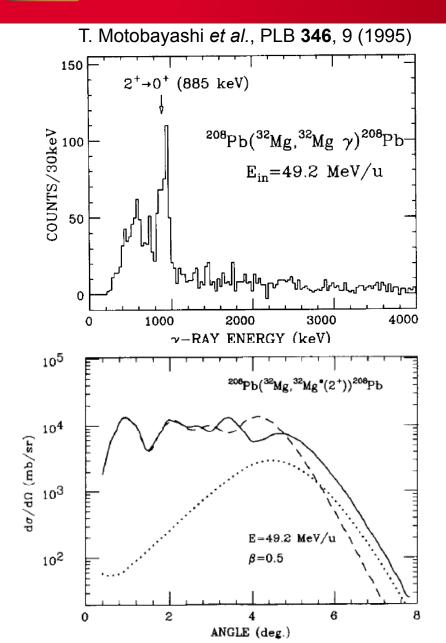
Q Relation between b_{min} and maximum scattering angle θ^{max} (center of mass):

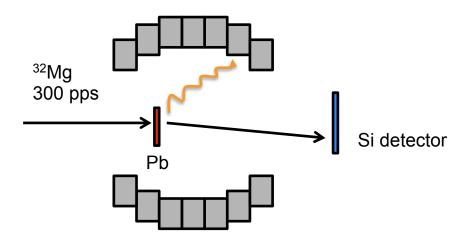
$$b_{\min} = \frac{a}{\gamma} \cot(\frac{\theta_{CM}^{\max}}{2}) \quad where \quad a = \frac{Z_P Z_T e^2}{m_0 c^2 \beta^2}, \quad \gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

Q Relation between θ_{cm} and θ_{lab} :

$$\tan(\theta_{lab}) = \frac{\sin(\theta_{CM})}{\gamma[\cos(\theta_{CM}) + \frac{\beta_{CM}}{\beta_{proj}}]}$$

Cera Physics case: ³²Mg and the island of inversion





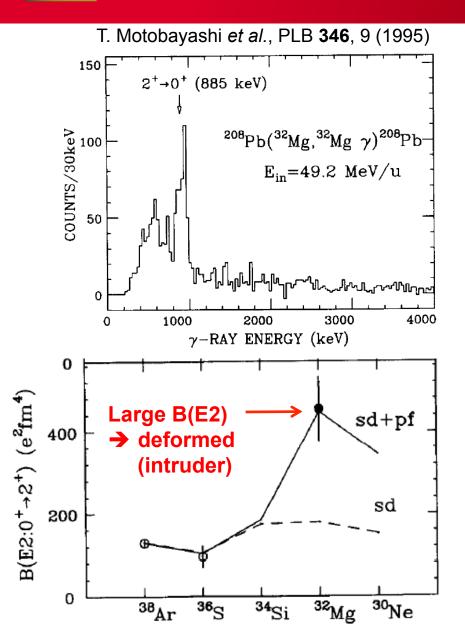
inclusive cross section measurement

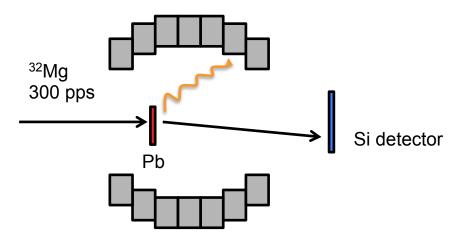
 $N_{\gamma} = \sigma_{i \to f} N_T N_B \epsilon,$

- Angular cut from ³²Mg recoil detection to remove nuclear contributions
- Unobserved feeding corrections (20%) leading to « some » uncertainties

$$\sigma_{\pi\lambda} \approx \left(\frac{Z_{pro}e^2}{\hbar c}\right)^2 \frac{\pi}{e^2 b_{min}^{2\lambda-2}} B(\pi\lambda, 0 \to \lambda)$$

CEA Physics case: ³²Mg and the island of inversion





inclusive cross section measurement

 $N_{\gamma} = \sigma_{i \to f} N_T N_B \epsilon,$

- Angular cut from ³²Mg recoil detection to remove nuclear contributions
- Unobserved feeding corrections (20%) leading to « some » uncertainties

$$\sigma_{\pi\lambda} \approx \left(\frac{Z_{pro}e^2}{\hbar c}\right)^2 \frac{\pi}{e^2 b_{min}^{2\lambda-2}} B(\pi\lambda, 0 \to \lambda)$$

Deformation & nuclear shapes

- Symmetry breaking and nuclear shapes
- The deformed harmonic oscillator and Nilsson models
- Configuration mixing approaches
- Observables: rotational models and quadrupole moments
- Ground state deformation from hyperfine structure
- Low-energy Coulomb excitation
 - First order calculation, second order and re-orientation effect
 - Physics case: shape coexistence in light Kr isotopes

Intermediate-energy Coulomb excitation

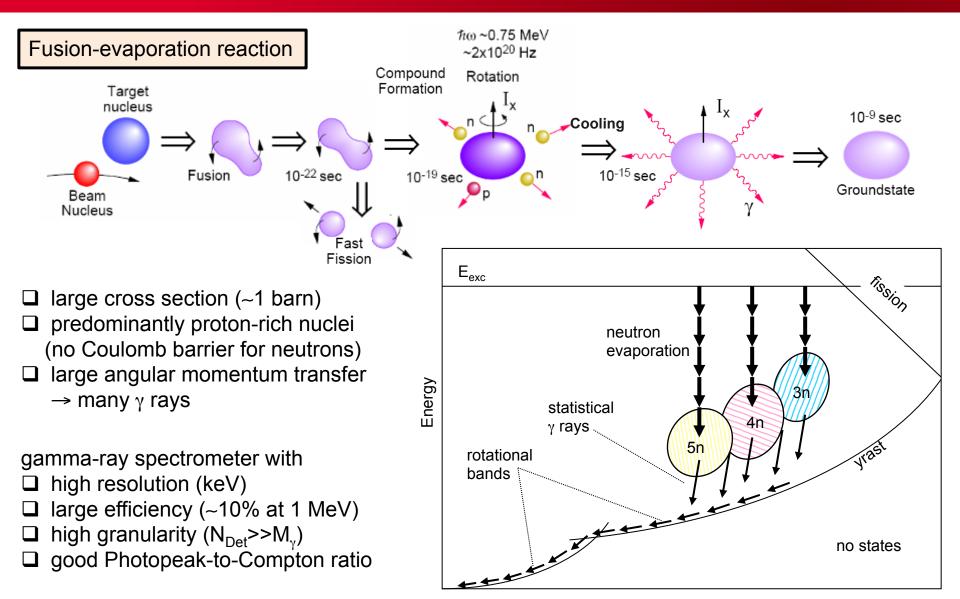
- Semi-classical description
- Physics case: island of inversion and ³²Mg

Extreme quadrupole deformations

- superdeformation and hyperderformation
- higher order multipole moments
 - Octahedral and thetrahedral shapes
 - Physics case: octupole deformation in ²²⁰Ra

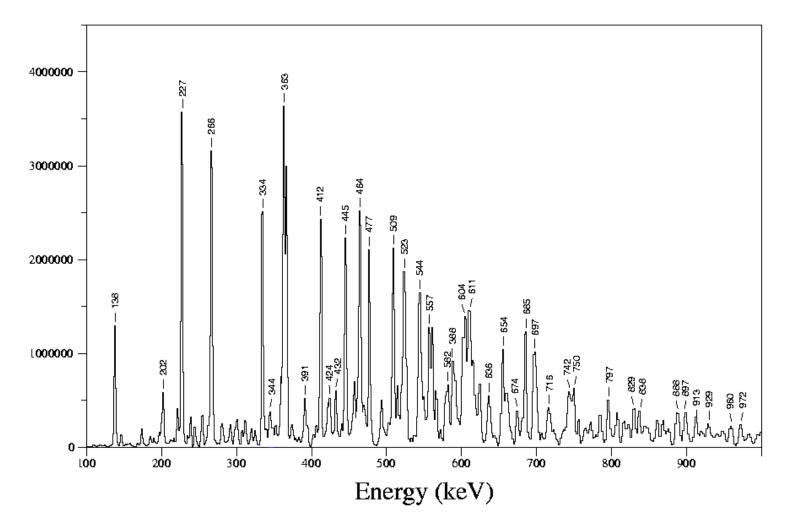
OF LA RECHERCHE À L'INDUSTRI

CE2 Extreme deformations



Ce2 γ-ray spectrum from a fusion-evaporation reaction

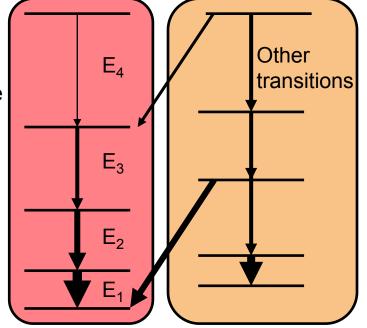
Many superimposed gamma cascades, complicated singles spectra



DE LA RECHERCHE À L'INDUSTRI

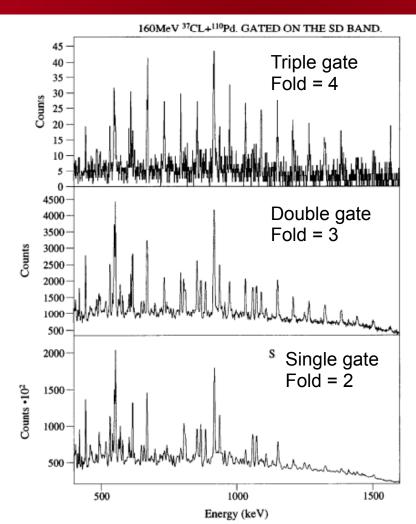
CEA Resolving Power

Cascade of interest Populated with relative intensity α



Mesure high-fold coincidences F
 Apply (F-1) gates on energies E₁...E_{F-1}

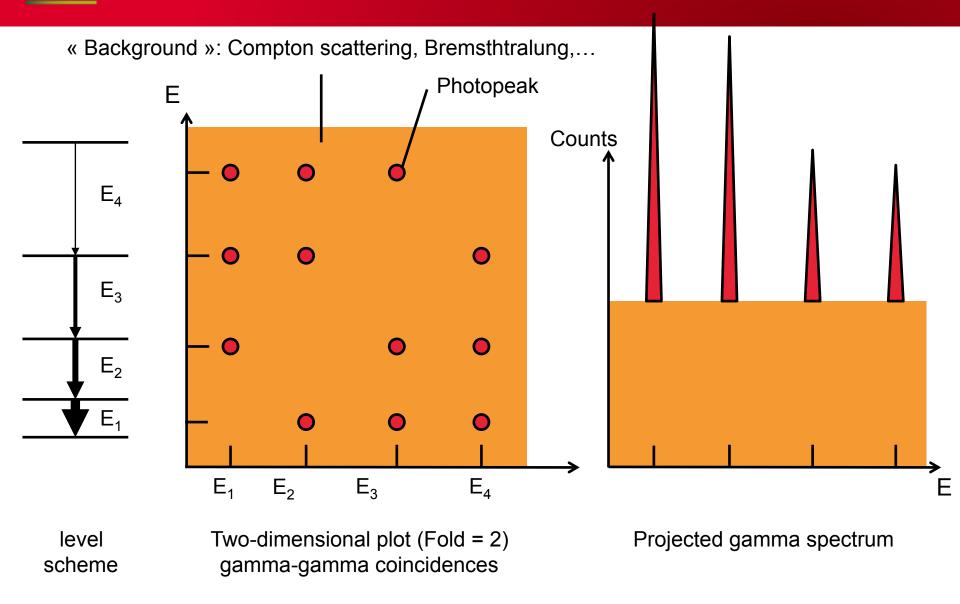
□ **Resolution** and **efficiency** are very important



- How do efficiency and resolution impact the sensitivity of the measurement?
- How the gating improves the peak-over-Total ratio (P/T)?
- What is the best fold F to consider?

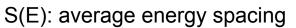
A. Ataç *et al.*, Nucl. Phys. A 557, 109 (1993)

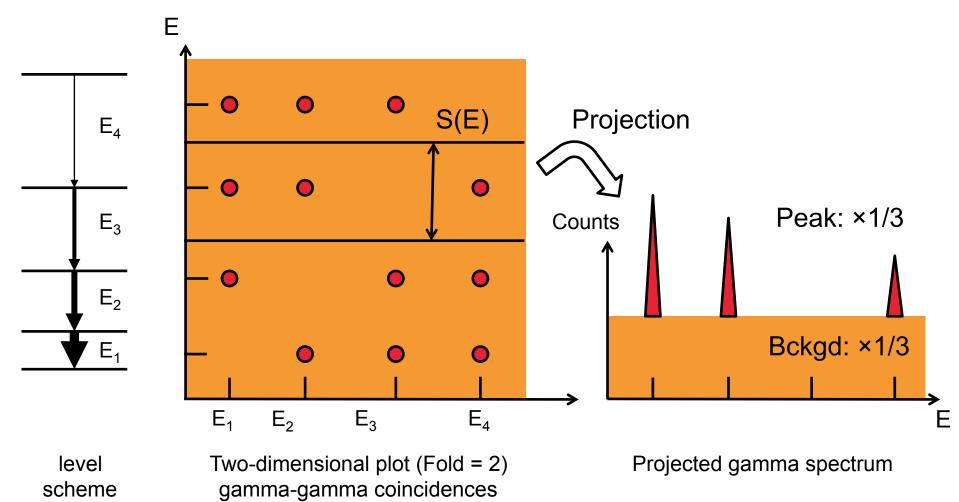
Resolving Power



OF LA RECHERCHE À L'INDUSTRI

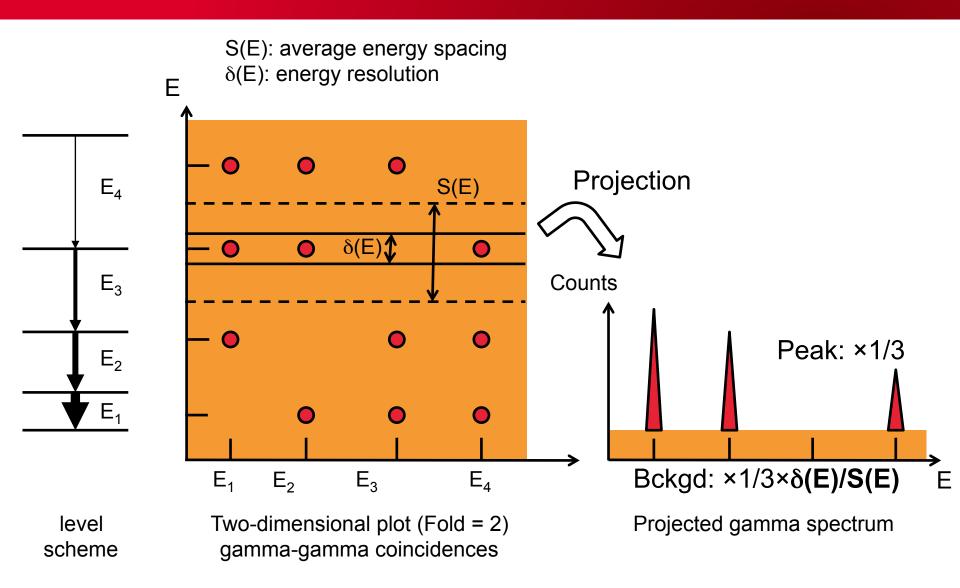
CE2 Resolving Power



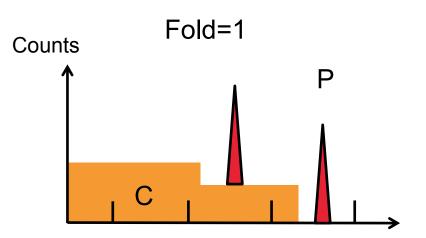


DE LA RECHERCHE À L'INDUSTRI

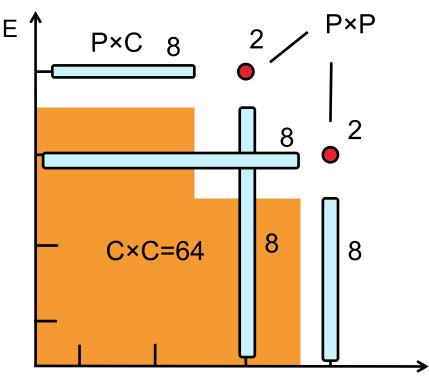
CEA Resolving Power



- P/T: probability to get a gamma in the photopeak and not in the Compton plateau
- Example: P/T=0.2, 2 gammas, 100 detected events
 - Both detected in photopeaks: P×P=4%
 - 1 Peak, 1 Compton: P×C=32%
 - Both detected as Compton: C×C=64%



Fold=1: 10 events in photopeaks



Fold=2: 2 (10×P/T) events in photopeaks after cut

Each time the fold is increased by 1, the statistics is lowered by a factor P/T

Slide inspired by D. Weisshar, NSCL

CEA Resolving Power

- Background reduction factor is R=P/T×S(E)/δ(E)×0.76
- **\Box** For fold F=1 the **Peak-to-Background ratio** for a branch with intensity α is α **R**.
- **D** For a higher fold **F** the Peak-to-Background ratio changes to αR^F .
- \Box If N₀ is the total number of events, the amount of detected counts N in the peak is

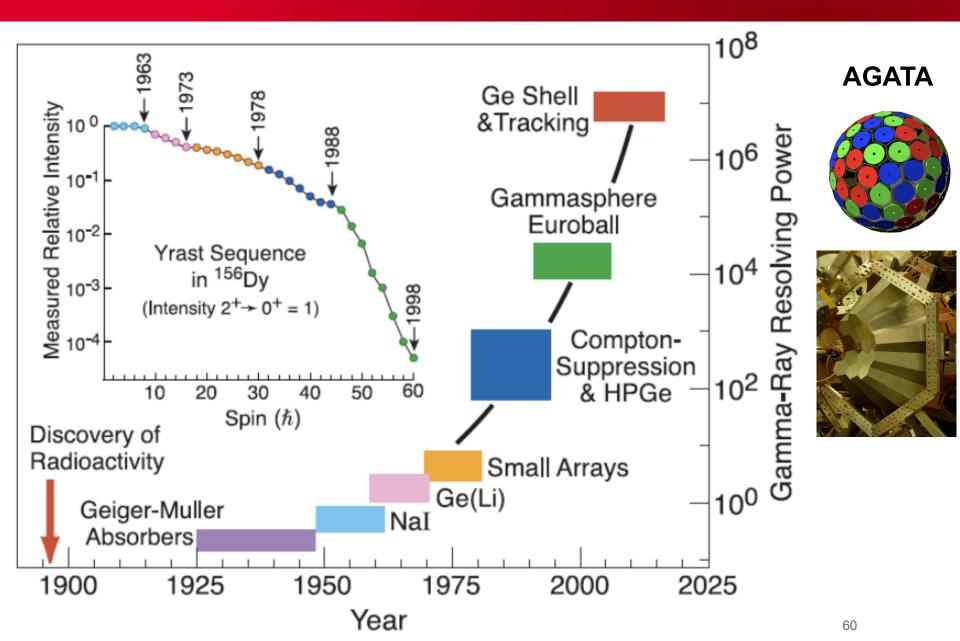
$$N = \alpha N_0 \varepsilon^F$$

- ε: full-energy-peak efficiency of spectrometer
- □ A minimum intensity α_0 is resolvable if $\alpha_0 R^F = 1$
- \Box The **RESOLVING POWER** (RP) is defined as $RP = \frac{1}{\alpha_0}$

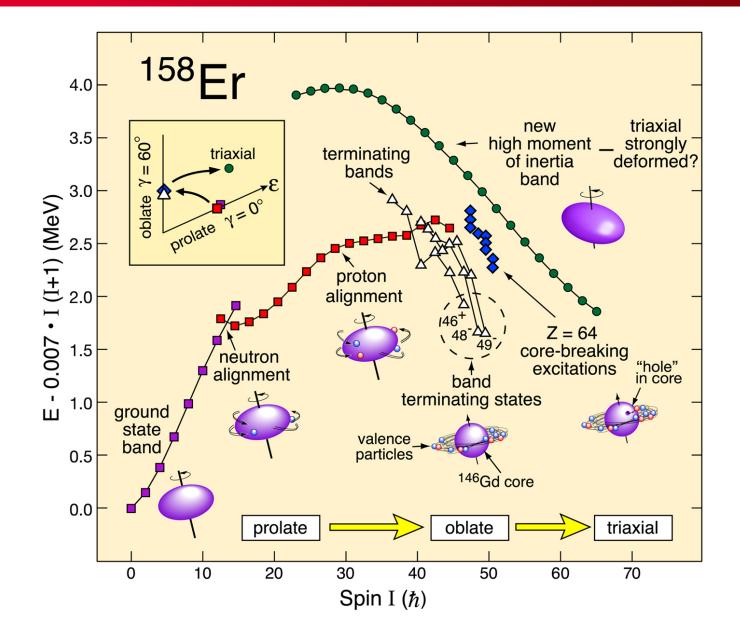
□ The above gives

$$RP = \exp\left[\ln(\frac{N_0}{N})\frac{1}{1 - \ln(\varepsilon)/\ln(R)}\right]$$

Resolving Power of gamma-ray detectors

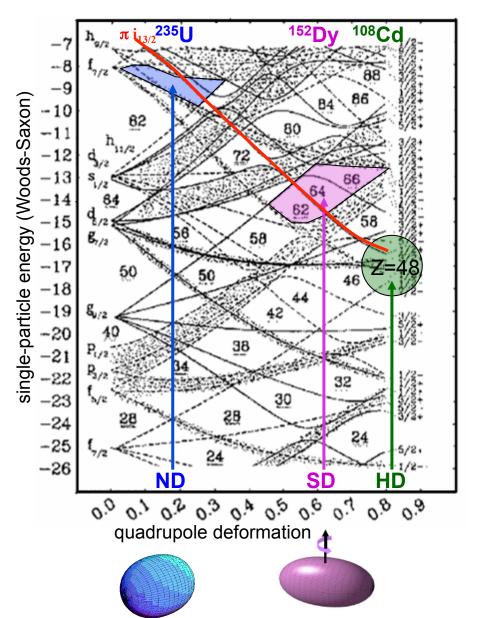


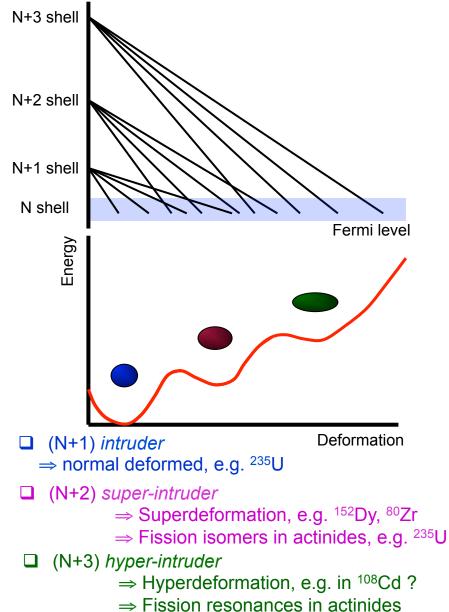
Band termination at high spin



OF LA RECHERCHE À L'INDUSTRI

Cea Shapes and intruder orbitals



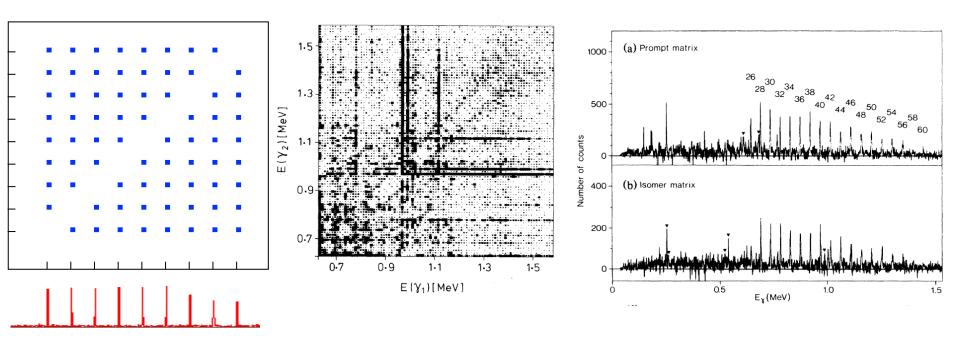


OF LA RECHERCHE À L'INDUSTRI

Output Superdeformation: history

B.M. Nyako *et al.*, PRL **52**, 507 (1984)

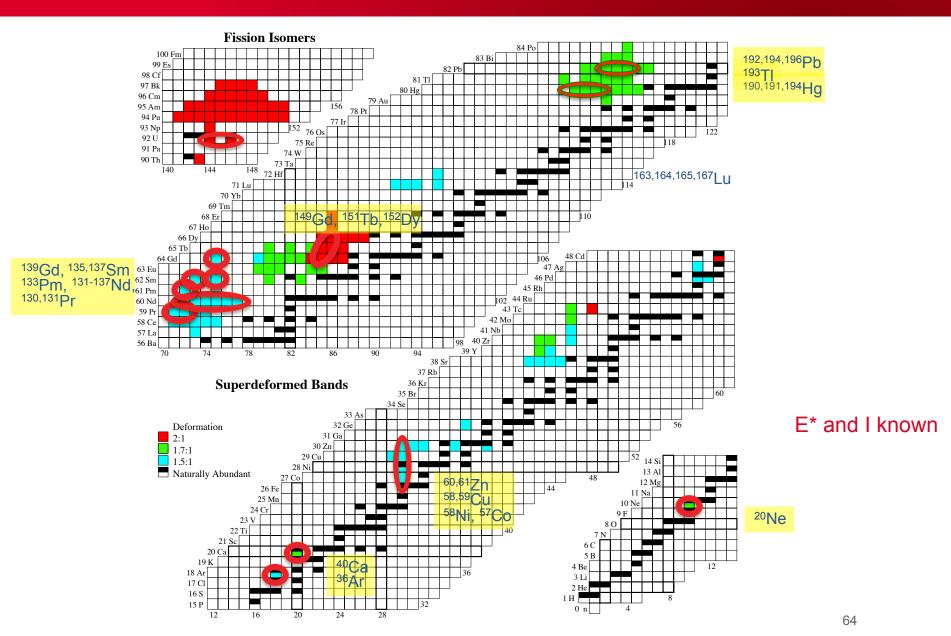
P.J. Twin et al., PRL 57, 811 (1986)



- **1984**: unresolved gamma band in ¹⁵²Dy due to too low statistics, but « ridge » observed
- □ Ridge is the sign of the spacing between two transitions of the same band
- **1986**: observation of the first rotational superdeformed band in ¹⁵²Dy
- **D** Extracted moment of inertia is: $\Im^{(2)} = 85\hbar^2 MeV^{-1}$

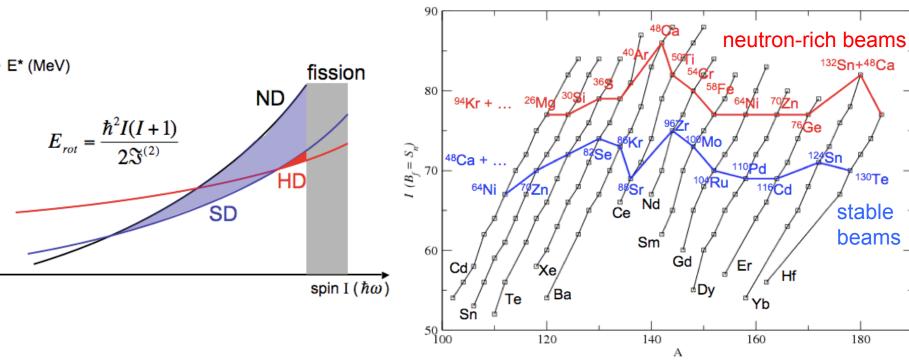
Superdeformation: state of the art

DE LA RECHERCHE À L'INDUSTRIE



CE2 RIBs and hyperdeformation

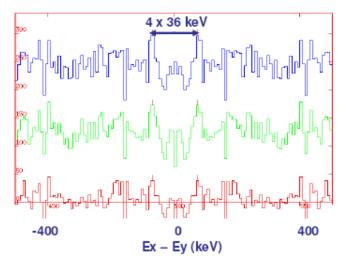
- □ Theoretical prediction for extreme deformation (hyperdeformation) with 3:1 ratio
- $\Box Hyperdeformation favored at high-spin \Rightarrow Competes with fission$
- □ intense neutron-rich beams would:
 - increase the fission barrier
 - favor Yrast hyperdeformed structures at high spin

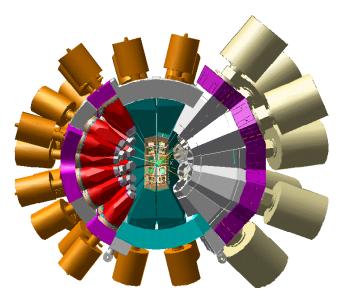


Fission barrier vs. High spin

Cea First hints of hyperdeformation

- □ ⁶⁴Ni+⁶⁴Ni @ 255, 261 MeV
- 4 weeks beam time
- □ Euroball IV, Strasbourg
- □ spins above 70 ħ populated





- □ Ridges observed, corresponding to large J ⁽²⁾ = 110 -120 ħ²MeV⁻¹, but no discrete bands D. R. Lafosse *et al.*, Phys. Rev. Lett. **71**, 231 (1995).
- Other claims from resonances produced in (d,p)-followed-by-fission measurements interpreted as rotational bands in hyperdeformed potential well

A. Krasznahorkay et al., Phys. Rev. Lett. 80, 2073 (1998)

Cea Higher multipole moments: octupole deformation

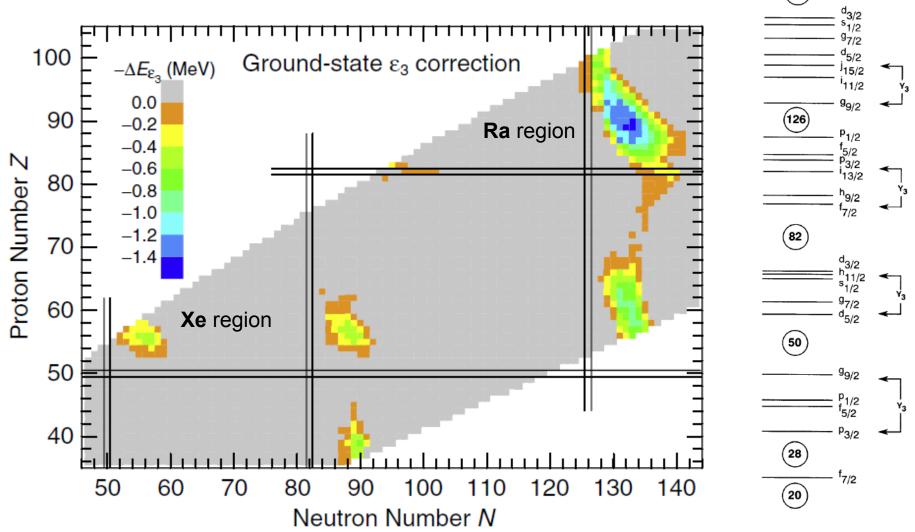
				2	$56^{\frac{28}{18}}_{\frac{8}{2}}$	Ba ^{727°} ⁺² 137.327 1.46×10 ⁻⁸ % Cs112	Ba114 0.43 s 0+ EC,α Cs113	Ba115 0.4 s EC Cs114	Ba116 0.3 s 0+ EC Cs115	Ba117 1.75 s (3/2) ECp,ECα, Cs116	Ba118 5.5 s 0+ EC Cs117
			2	$55^{\frac{18}{18}}_{\frac{18}{1}}$ Xe $\frac{-111.75^{\circ}}{-108.04^{\circ}}$	+1 132.90545 1.21×10 ⁻⁹ % Xe110	500 Us	17 Us p Xe112	0.57 s (1+) α,ECp, Xe113	1.4 s ECp Xe114	3.84 s >4+ * ECp,ECα, Xe115	8.4 s (9/2+) *
			54 ¹⁸ / ₁₈	16.58° 0 131.29 1.5×10 ⁻⁸ %	0.2 s 0+ EC,α	0.74 s EC,α	2.7 s 0+ ΕC,α	2.74 s α,ECp,	10.0 s 0+ EC	18 s (5/2+) ECp,ECα,	59 s 0+ EC
		53 ¹⁸ / ₁₈	I 113.7 546° +1+5+7-1 126.90447 2.9×10 ⁻⁹ %	I108 36 ms	I109 100 Us	I110 0.65 s α,ECp,	I111 2.5 s (5/2+) EC,α	I112 3.42 s EC,α	I113 6.6 s α,ΕCα,	I114 2.1 s 1+ ECp	I115 1.3 m (5/2+) EC
	52 ² ⁸ 18 18	Te 449.51° 988° +4+6-2 127.60 1.57×10 ⁻⁸ %	Te106 60 Us 0+ α	Te107 3.1 ms	Te108 2.1 s 0+ EC,α	Те109 4.6 s α,ЕСр,	Te110 18.6 s 0+ EC,α	Te111 19.3 s ECp	Te112 2.0 m 0+ EC	Te113 1.7 m (7/2+) EC	Te114 15.2 m 0+ EC
Sb ^{630.63°} 1587° +3+5-3 121.760 1.01×10 ⁻⁹ %	Sb103	Sb104 0.44 s	Sb105 1.12 s	Sb106 (4+)	Sb107 (5/2+)	Sb108 7.0 s (4+) ECp	Sb109 17.0 s (5/2+)	Sb110 23.0 s 3+ EC	Sb111 75 s (5/2+) EC	Sb112 51.4 s 3+ EC	Sb113 6.67 m 5/2+ EC
Sn101 3 s	Sn102 4.5 s 0+	Sn103 7 s	Sn104 20.8 s 0+	Sn105 31 s	Sn106 115 s 0+	Sn107 2.90 m (5/2+)	Sn108 10.30 m 0+	Sn109 18.0 m 5/2(+)	Sn110 4.11 h 0+	Sn111 35.3 m 7/2+	Sn112 0+
ЕСр	EC	EC	EC	ЕСр	EC	EC	EC	EC	EC	EC	0.97

$$R(\vartheta,\phi) = R_0 \left[1 + \sum_{\lambda} \sum_{\mu=-\lambda}^{+\lambda} a_{\lambda\mu} Y_{\lambda\mu}(\vartheta,\phi) \right]$$

- □ Octupole deformation: **axial symmetry** and $\alpha_{30} \neq 0$
- □ In regions of the nuclear chart with $\Delta I=3$ and parity change at the Fermi surface *Ex.* Xe region, close to the N=Z line
- □ Characterized by:
- Strong static octupole moment Q₃₀
- low-lying 3⁻ excitations (even-even nuclei)
- strong B(E3) strength

Predictions for ground-state octupole deformation

P. Möller et al./Atomic Data and Nuclear Data Tables 94 (2008) 758-780



184

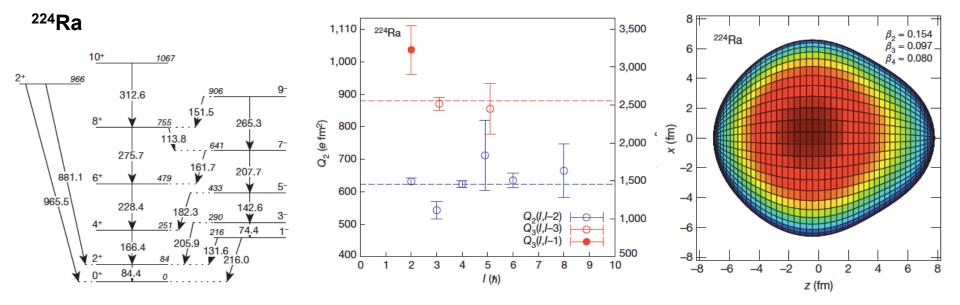
Higher multipole moments: octupolar deformation

ARTICLE

doi:10.1038/nature12073

L. P. Gaffney et al., Nature 497, 204 (2013)

Studies of pear-shaped nuclei using accelerated radioactive beams



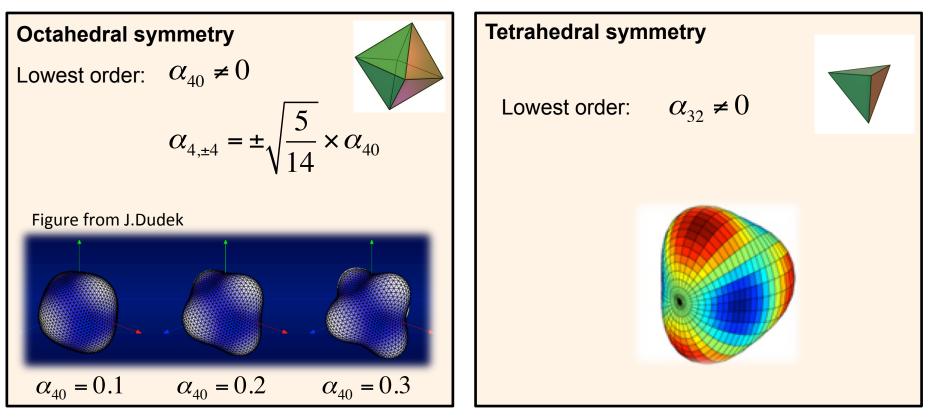
- □ Low-energy Coulomb excitation of ²²⁰Rn and ²²⁴Ra at REX-Isolde, CERN
- □ Incident energy of 2.8 MeV/nucleon, Ni and Sn secondary targets
- \Box Quadrupole Q₂ and octupole Q₃ moments measured
- □ ²²⁴Ra shows a strong octupole deformation

Octahedral and Tetrahedral Symmetries

- Spontaneous symmetry breaking may lead to high level degeneracies in deformed nuclei
- Group theory gives such high symmetry configurations

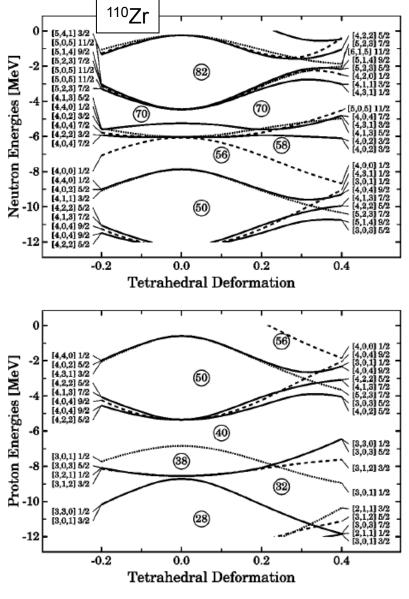
$$R(\vartheta,\phi) = R_0 \left[1 + \sum_{\lambda} \sum_{\mu=-\lambda}^{+\lambda} a_{\lambda\mu} Y_{\lambda\mu}(\vartheta,\phi) \right]$$

Two symmetries lead to **4-fold degeneracies in nucleonic levels**



DE LA RECHERCHE À L'INDUSTR

CE2 Tetrahedral Signatures



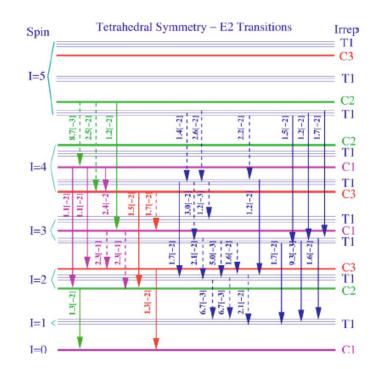
P. Schunck *et al.,* PRC 69 (2004)

Tetrahedral magic numbers: 32, 40, 56, 64, 70,90,132-136 **Predicted tetrahedral nuclei:** ^{64,72,88}Ge, ^{80,110}Zr, ^{112,126,146}Ba, ^{134,154}Gd, ¹⁶⁰Yb, ²²²Th

Signatures:

- **level ordering:** 3⁻,4⁺,6⁺,6⁻,8⁺...
- Decay pattern of specific groups of states

Never evidenced experimentally



Cea Spectroscopy of ¹¹⁰Zr

- ❑ 40 protons 70 neutrons: tetrahedral magic numbers
- Some calculations predict tetrahedral minimum preferred over spherical or deformed minima
- Most calculations predict prolate deformed minimum
- ¹¹⁰Zr was claimed of astrophysical interest (r process)

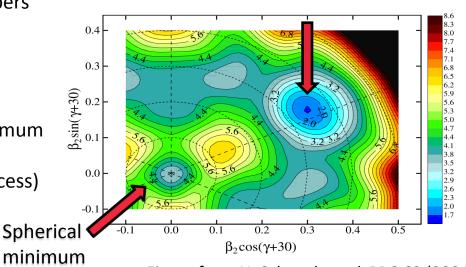
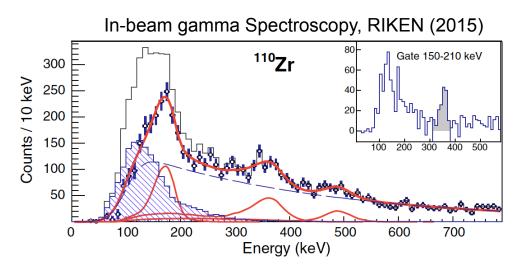
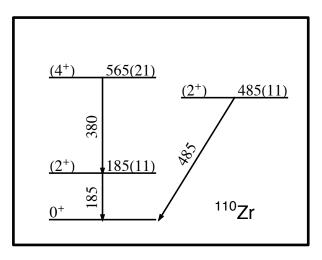


Figure from N. Schunck et al, PRC 69 (2004)



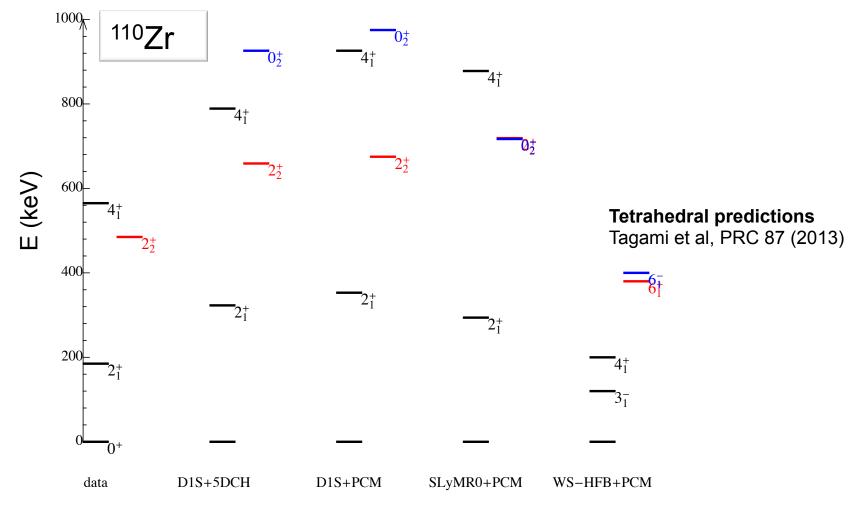


N. Paul et al., PRL 118, 032501 (2017)

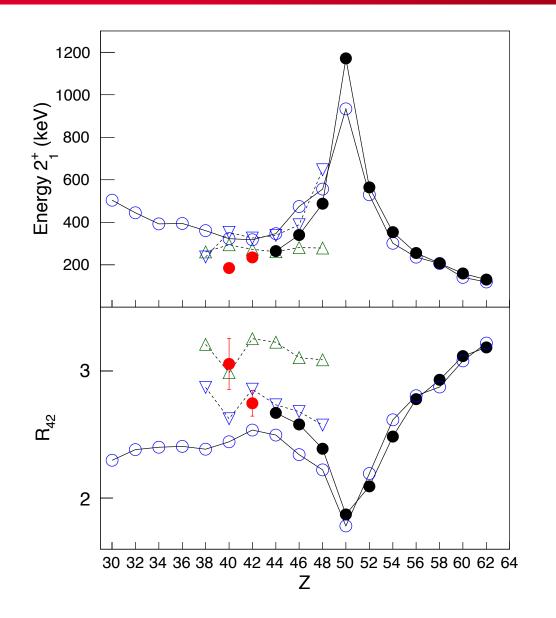
Tetrahedral minimum

Experimental vs theory level scheme comparison

- □ Low-lying spectroscopy in agreement with prolate predictions
- □ Rejection of a static tetrahedral deformation



Ce2 2⁺ and R₄₂ systematics along the N=70 isotonic chain



- NNDC-evaluated data
- This work
- O D1S-5DCH
- ▼ D1S-PCM
- △ SLyMR0-PCM

D1S: Gogny D1S effective interaction SlyMR0: Skyrme effective interaction

PCM: Projected Coordinate Method (configuration mixing)

5DCH: Bohr Hamiltonian approximation