LECTURE 2: NUCLEAR DEFORMATION

NUCLEAR STRUCTURE STUDIED WITH SPECTROSCOPY AND REACTIONS

A. Obertelli
CEA Saclay

TU Darmstadt, IKP, February 2017

cea
 Lecture 2: Nuclear Deformation

- Deformation \& nuclear shapes
- Symmetry breaking and nuclear shapes
- The deformed harmonic oscillator and Nilsson models
- Configuration mixing approaches
- Observables: rotational models and quadrupole moments
- Ground state deformation from hyperfine structure
- Low-energy Coulomb excitation
- First order calculation, second order and re-orientation effect
- Physics case: shape coexistence in light Kr isotopes
- Intermediate-energy Coulomb excitation
- Semi-classical description
- Physics case: island of inversion and ${ }^{32} \mathrm{Mg}$
- Extreme quadrupole deformations
- Superdeformation and hyperderformation
- higher order multipole moments
- Octahedral and thetrahedral shapes
- Physics case: octupole deformation in ${ }^{220} \mathrm{Ra}$

Symmetry breaking and deformation

- A symmetry is an invariance of H and observables under a given transformation Ex. spherical symmetry / rotation, isospin symmetry / proton-neutron exchange
- Nuclear deformation is a spontaneous symmetry breaking
i.e. the Hamiltonian is invariant but the physical states are not (different from «explicite» SB)
- Most nuclei are deformed: deformation = correlations = gain in energy
(electric) quadrupole (elongated) shape is the most encountered
Ellipsoide: $\left(\frac{x}{R_{\perp}}\right)^{2}+\left(\frac{y}{R_{\perp}}\right)^{2}+\left(\frac{z}{R_{z}}\right)^{2}=1$

The intrinsic quadrupole moment Q_{0} measures the deviation of an elliptical shape from a sphere

- Q moment of long-lived states can be measured from hyperfine spectroscopy

Q Q moment of long \& short-lived states can be measured from low-energy Coulomb excitation
\square A nucleus with intrinsic deformation can rotate
Its spectrocopy characterizes its collectivity and deformation

cea
 Parameterization of nuclear shapes

Generic nuclear shapes can be described

 by a development of spherical harmonics$$
R(\vartheta, \phi)=R_{0}\left[1+\sum_{\lambda} \sum_{\mu=-\lambda}^{+\lambda} a_{\lambda \mu} Y_{\lambda \mu}(\vartheta, \phi)\right]
$$

$\lambda=2$
octupole

hexadecapole

$$
a_{22}=a_{2-2}=\frac{1}{\sqrt{2}} \beta_{2} \sin \gamma
$$

$\mathbf{a}_{\lambda \mu}$: deformation parameters

Spectroscopic quadrupole moment

Experiments measure the maximum projection of the intrinsic electric quadrupole moment along the quantization axis, which is different from the intrinsic electric Qpole

$$
Q_{s}=Q_{0} P_{2}(\cos \theta)_{m=I}
$$

- By use of angular momentum algebra:

$$
Q_{s}=Q_{0} \frac{3 K^{2}-I(I+1)}{(I+1)(2 I+3)}
$$

- K is the projection along the symmetry axis of the nuclear spin I. For spin $\mathrm{I}=0$ and $\mathrm{I}=1 / 2$ Qs vanishes even if the intrinsic shape is deformed
\square The intrinsic moment Q_{0} can be related to the elongation parameter β_{2} :

$$
Q_{0} \approx \frac{3 Z r_{0}^{2}}{\sqrt{5 \pi}}\left\langle\beta^{2}\right\rangle\left(1+0.36\left\langle\beta^{2}\right\rangle\right)
$$

cea Quadrupole deformation

Deformed harmonic oscillator potential

- axial symmetry:
$\omega_{\perp}=\omega_{0} e^{\alpha}, \quad \omega_{z}=\omega_{0} e^{-2 \alpha}$
$h=-\frac{\hbar^{2}}{2 m} \Delta+\frac{m}{2} \omega_{\perp}^{2}\left(x^{2}+y^{2}\right)+\frac{m}{2} \omega_{z}^{2} z^{2}$
$\alpha>0$: prolate, $\alpha<0$:oblate
- Quantum numbers: $\left(n_{\perp}, n_{z}\right)$
- Degeneracy: $2\left(n_{\perp}+1\right)$
- Total energy of the system:

$$
E(\alpha)=\sum_{i=1}^{N_{F}} \varepsilon_{\Lambda}^{i}(\alpha)
$$

I. Hammamoto and B.R. Mottelson, PRC 79, 034317 (2009)
[Well bound nuclei, one type of fermions, no spin-orbit, no pairing]

For Harmonic Oscillator, as many oblate that prolate ground states

Nilsson Hamiltonian: anisotropic one-body potential

[Single-particle orbitals in an axially deformed potential (z symmetry axis)

$$
h=-\frac{\hbar^{2}}{2 m} \Delta+\frac{m}{2} \omega_{\perp}^{2}\left(x^{2}+y^{2}\right)+\frac{m}{2} \omega_{z}^{2} z^{2}+\overrightarrow{C \ell} \cdot \vec{s}+\overrightarrow{D \ell}^{2}
$$

- Energy depends on the orientation (projection of angular momentum) of the wavefunction

- At $\beta \neq 0$ total angular momentum is not a good quantum number, its projection Ω and parity π are.
- Orbitals are indexed by $\Omega \pi\left[\mathrm{Nn}_{\mathrm{z}} \mathrm{m}_{1}\right]$.
$\Omega=m_{1}+m_{s}=m_{1} \pm 1 / 2$
$\mathrm{N}, \mathrm{n}_{2}, \mathrm{~m}_{1}$: asymptotic quantum numbers of axially-deformed harmonic oscillator
- No crossing of two levels with same quantum numbers (mixing)

cea
 Prolate dominance

\square Prolate dominance due to sharp nuclear surface

- Prolate dominance may be questioned for drip line or very heavy nuclei with softer surface

EDF and configuration mixing approaches

- Variational approach based on an effective hamiltonian H
- Ansatz for the wavefunction, ex. Slater determinants or quasiparticle vacuum

$$
\varepsilon[\phi]=\frac{\langle\phi| H|\phi\rangle}{\langle\phi \mid \phi\rangle}-\lambda_{Q}\langle\phi| Q|\phi\rangle-\lambda_{N}\langle N\rangle-\lambda_{Z}\langle Z\rangle
$$

Minimization : $\delta \varepsilon[\phi]=0$

- Projection method, important quantum numbers: $\mathrm{N}, \mathrm{Z}, \mathrm{J}, \mathrm{P}$

$$
\text { Ex. } \quad P^{N}|\phi\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi e^{i \phi(\hat{N}-N)}|\phi\rangle
$$

- Configuration Mixing (multireference EDF)

$$
\begin{array}{ll}
\text { Set } \Omega_{I} \equiv\{|\phi(Q)\rangle\} & \text { e.g. Q= collective coordinates } \\
\left|\psi_{\varepsilon}^{J M N Z P}\right\rangle=\int d Q \sum_{K=-J}^{J} f_{\varepsilon}^{J M N Z P}(Q) P^{N} P^{Z} P_{M K}^{J}|\phi(Q)\rangle \\
\text { Minimization }: \delta \frac{\langle\psi| H|\psi\rangle}{\langle\psi \mid \psi\rangle}=0 & \text { Hill-Wheeler equations }
\end{array}
$$

cea Hill-Wheeler equations

\square The weight are determined by imposing $\frac{\delta E}{\delta f^{*}}=0$
[Hill-Wheeler equation

$$
\int d Q^{\prime} h\left(Q, Q^{\prime}\right) f_{\varepsilon}\left(Q^{\prime}\right)=E_{\varepsilon} \int d Q^{\prime} n\left(Q, Q^{\prime}\right) f\left(Q^{\prime}\right)
$$

with

$$
\begin{aligned}
& n\left(Q, Q^{\prime}\right)=\left\langle\phi(Q) \mid \phi\left(Q^{\prime}\right)\right\rangle \\
& h\left(Q, Q^{\prime}\right)=\langle\phi(Q)| H\left|\phi\left(Q^{\prime}\right)\right\rangle
\end{aligned}
$$

norm overlaps
and

The choice of the generating coordinates Q depends on the physics to be described

- Typically Q is a multipole moment of the mass distribution (quadrupole deformation $\mathrm{Q}_{2 \lambda}$)
- Resolution of HW equations by discretization of Q
- Approximation to HW equation: Bohr Hamiltonian and Gaussian Overlap Approximation

Ce2 Deformed mean-field

Calculations and figures by Tomàs R. Rodriguez
Example: ${ }^{32} \mathrm{Mg}$ triaxial+TRSC

cea Collective wavefunctions and levels

Calculations and figures by Tomàs R. Rodriguez
Example: ${ }^{32} \mathrm{Mg}$ triaxial+TRSC

- level scheme, collective wavefunctions accessible
\square further improvement: state-dependent moment of inertia (cranked states)

Cea Magnesium isotopes

Calculations and figures by Tomàs R. Rodriguez

Cea Dominance of prolate deformation over oblate

Mean-field calculations with the Gogny D1S effective interaction, M. Girod (CEA)

Hyperfine interaction in free atoms

- Hyperfine interaction = the interaction of nuclear magnetic and electric moments with electromagnetic fields

We will consider the fields created by an atomic orbit of spin J
electron spin J

The atomic and nuclear spins couple to form The total angular momentum F

$$
\vec{F}=\vec{I}+\vec{J}
$$

Each state J has several F substates

$$
|I-J| \leq F \leq I+J
$$

The energy shift caused by the interaction depends on the angle θ, thus for the same I and J , the different F states have slightly different energies
Magnetic dipole interaction $-\vec{\mu} \cdot \vec{B} \quad$ Electric quadrupole interaction $\quad \frac{e}{4} Q_{0} V_{J J} P_{2}(\cos \theta)$

- yesterday's lecture: fine structure of the nucleus and isotopic shifts
- The nucleus may have a non-zero spin I and therefore a magnetic moment μ. It results in a perturbation of the atomic levels due to spin - B field interaction

$$
-\vec{\mu} \cdot \vec{B}
$$

Energy shift of the atomic levels depend on the total spin F

$$
\begin{aligned}
& \vec{F}=\vec{I}+\vec{J} \\
& |I-J| \leq F \leq I+J
\end{aligned}
$$

- Energy shift

$$
\begin{aligned}
& \Delta E=\mu B_{0}\langle\vec{I} \cdot \vec{J}\rangle=\frac{A}{2} K \\
& A=\frac{\mu B_{0}}{I J}, \quad K=F(F+1)-I(I+1)-J(J+1)
\end{aligned}
$$

B_{0} magnetic field produced by the electron. Note that for $\mathrm{I}=0$, there is no hyperfine structure

Hyperfine structure: magnetic dipole moment

Typical value for the magnetic moment of a nucleus: nuclear magneton

$$
\mu_{N}=\frac{e \hbar}{2 m_{p}}=3.15 \times 10^{-8} e V . T^{-1}
$$

Typical B field created by an electron orbital:

$$
\begin{aligned}
& B=\frac{\mu_{0} I}{2 \pi R} \\
& I \approx \frac{e v}{2 \pi R}
\end{aligned}
$$

Inner orbital radius $\mathrm{R}_{\mathrm{n}} \approx \mathrm{a}_{0}=5.210^{-11} \mathrm{~m}$ Bohr velocity $\left(\mathrm{e}^{2} / \mathrm{hbar}=\mathrm{c} \alpha\right) \mathrm{v}=2.210^{6} \mathrm{~m} . \mathrm{s}^{-1}$
$B \approx 4 \pi 10^{-7} 1.610^{-19} 2.210^{6} /\left(16 \pi^{2} 25.10^{-22}\right)=1.1 \mathrm{~T}$
\square Estimate of hyperfine energy shift:

$$
\Delta E \approx \mu_{N} B=310^{-8} \mathrm{e} V \Rightarrow \omega=\frac{\Delta E}{\hbar} \approx 50 \mathrm{MHz}
$$

$V_{\text {Coulomb }}+V_{\text {Dipole }}$

Ce2 Hyperfine structure: magnetic dipole moment

$I=0$

CeZ Hyperfine structure: magnetic dipole moment

Cea Hyperfine structure: magnetic dipole moment

$$
I=2
$$

Electric quadrupole moment from hyperfine structure

In a uniform field, the energy of a quadrupole moment is independent of the orientation (angle). Therefore there is no quadrupole interaction.

Electric field

In an electric field gradient, there is an angle dependence of the energy. Therefore there is a quarupole interaction.

Higher energy state

Cea
 Electric quadrupole moment

Electric quadrupole interaction

$$
E=\frac{e}{4} Q_{0} V_{J J} P_{2}(\cos \theta)
$$

Electric field gradient along the J direction due to atomic electrons.
electron spin J

Energy shifts of the F states are then given by

$$
\begin{aligned}
& \Delta E=\frac{B}{4} \frac{\frac{3}{2} C(C+1)-2 I(I+1) J(J+1)}{I(2 I-1) J(2 J-1)} \\
& C=[F(F+1)-I(I+1)-J(J+1)] \\
& B=e Q_{s}\left\langle\frac{\partial^{2} V}{\partial z^{2}}\right\rangle=e Q_{s} V_{J J}
\end{aligned}
$$

Where \mathbf{B} is the hyperfine factor measured in the experiment. The electric field gradient \mathbf{V}_{JJ} may be obtained from an isotope with known $\mathbf{Q}_{\mathbf{s}}$

Summary: isotope shift and hyperfine structure

E Energy shifts of hyperfine structure can be few ppm of the optical atomic transition energy
A single optical transition is split into a number of hyperfine components

cea
 Quadrupole moment of Cu isotopes

- Spin, magnetic and Q moments of ${ }^{61-75} \mathrm{Cu}$ at CERN/ISOLDE
\square COLLAPS collinear laser spectroscopy setup
- Beams down to few $10^{4} \mathrm{pps}$
\square P. Vingerhoets et al., Phys. Rev. C 82, 064311 (2011)
- Fit of transition energies with an atomic level splitting given by:

$$
E_{F}=\frac{1}{2} A C+B \frac{\frac{3}{4} C(C+1)-I(I+1) J(J+1)}{2 I(2 I-1) J(2 J-1)}
$$

with A proportional to magnetic moment, B to quadrupole moment

cea
 Externally applied fields

- For light elements where both field gradients and Q moments are small, usually transitions cannot be resolved. Need for external field.

D Different techniques exist (ground state or isomer Q-moment)

Quadrupole splitting

[$\quad \beta$-NQR (beta Nuclear Quadrupole Resonance) method (ground state Q moment)

- Implentation of a spin-polarized projectile
- In a crystal where strong electric field gradient exist
- Beta-decay assymetry is measured
- Scan with a radiofrequency RF magnetic field
- When RF reaches the quadrupole splitting, energy transitions occur
- Asymmetry is cancelled at the resonance

Cea β-NQR with Lithium isotopes

[TRIUMF, A. Voss et al., J. Phys. G: Nucl. Part. Phys. 41, 015104 (2014)

- SrTiO3 crystal at 295 K
- High polarization of 60\%-70\%
- Transition frequencies proportional to V_{zz} :

$$
v_{9,11}=2 \frac{e V_{z z}}{4 h}\left|Q_{9,11}\right|
$$

- $\quad Q_{11} / Q_{9}=1.0775(12)$
Beam
direction

(a) ${ }^{8} \mathrm{Li}$

(b) ${ }^{11} \mathrm{Li}$

Spectroscopy of axially deformed nuclei

- Axial rotor in quantum mechanics: rotation around the symmetry axis does not result in a new state but changes only the phase of the wavefunction
- Any rotation excitation involves rotation around an axis perpendicular to the symmetry axis
- Rotation and classical mechanics:
$E=\frac{1}{2} \Im \Omega^{2} \quad \begin{array}{ll}\Im \text { moment of inertia } \\ \Omega \text { angular velocity }\end{array} \quad$ or $\quad E=\frac{1}{2} \frac{L^{2}}{\mathfrak{J}}$ with $\vec{L}=\mathfrak{J} \vec{\Omega} \quad \begin{aligned} & \text { kinetic angular } \\ & \text { momentum }\end{aligned}$

Continuus $\quad \mathfrak{J}=\int\|\vec{n} \wedge \overrightarrow{O M}\|^{2} \rho d^{3} r$
Discrete

$$
\mathfrak{J}=\sum m_{i} r_{i}^{2}
$$

cea
 Rotor model for axially deformed nuclei

Quantum mechanics:

$$
E=E_{0}+\frac{\hbar^{2}}{2 \mathfrak{J}} I(I+1)
$$

$$
L^{2}|\phi\rangle=\hbar^{2} I(I+1)|\phi\rangle
$$

- for even-even nuclei (0^{+}ground state) the collective wavefunction is given by rotational $D_{\text {IMK }}$ matrices
- by symmetry, only even spins with positive parity are allowed $\left(0^{+}, 2^{+}, 4^{+}, \ldots\right)$ for a 0^{+}ground state
- Decay dominated by γ emission following conservation laws:

I+2 \rightarrow I: E2 γ transitions

cea
 Rotor model for axially deformed nuclei

Quantum mechanics:

$$
E=E_{0}+\frac{\hbar^{2}}{2 \mathfrak{S}} I(I+1)
$$

$$
L^{2}|\phi\rangle=\hbar^{2} I(I+1)|\phi\rangle
$$

- Moments of inertia (from data):

Kinematic: $\quad \mathfrak{J}^{(1)}=\frac{\hbar^{2}(2 I+3)}{E_{\gamma}}$
Dynamical: $\mathfrak{J}^{(2)}=\left[\frac{1}{\hbar^{2}} \frac{d^{2} E(I)}{d I^{2}}\right]^{-1} \approx \frac{4 \hbar^{2}}{\Delta E_{\gamma}}$

- Spectroscopic quadrupole moment:

$$
Q_{s}(I)=-Q_{0} \frac{I}{2 I+3} \quad(\text { for } \mathrm{K}=0 \text { band })
$$

- Transition matrix elements B(E2):

$$
B(E 2 ; I \rightarrow I-2)=\frac{5}{16 \pi} Q_{0}^{2} \frac{3 I(I-1)}{2(2 I-1)(2 I+1)}
$$

cea
 Spectroscopy of axially deformed nuclei

Example: ${ }^{238} \mathrm{U}$ ground-state band

- At high spin, nucleon pairs may break through the Coriolis force
\rightarrow increase of moment of inertia (backbending)
- Very deformed bands are also observed (superdeformation, $R_{z} / R_{\text {ortho }} \approx 2$)
- Hyperdeformation ($\mathrm{R}_{z} / \mathrm{R}_{\text {ortho }} \approx 3$) predicted but still to be evidenced experimentally

Cea Transition matrix elements

Decay rate (s^{-1}):

$$
\begin{aligned}
& T\left(\sigma \lambda ; I_{f} \rightarrow I_{i}\right)=\frac{8 \pi(\lambda+1)}{\lambda[(2 \lambda+1)!!]^{2}} \frac{1}{\hbar}\left(\frac{E_{\gamma}}{\hbar c}\right)^{2 \lambda+1} B\left(\sigma \lambda ; I_{f} \rightarrow I_{i}\right) \\
& \frac{1}{\tau_{f}}=\sum_{\sigma \lambda I_{i}} T\left(\sigma \lambda ; I_{f} \rightarrow I_{i}\right)
\end{aligned}
$$

$\begin{aligned} & \begin{array}{l}2^{+} \rightarrow 0^{+} \text {decay } \\ \text { via E2 transition }\end{array}\end{aligned} \quad \tau(n s)=\frac{1}{1.22 E_{\gamma}^{5} B(E 2 ; \downarrow)} \quad \mathrm{E}_{\gamma}$ in $\mathrm{Mev}, \mathrm{B}(\mathrm{E} 2)$ in $\mathrm{e}^{2 \mathrm{fm}}{ }^{4}$

Three methods:

- Low-energy coulomb excitation (next slides)
- Lifetime measurement (see Damian Ralet's lecture)
$\gg 100 \mathrm{~ns}$: implantation and timing
$>10 \mathrm{ps}$ to few 100 ns : in flight (fast) timing
>1 ps to 100 ps: plunger, Recoil Distance Doppler Shift method (RDDS)
>0.01 ps to 1 ps: Doppler Shift Attenuation method (DSAM)
[. Intermediate-energy coulomb excitation (suited to low-RIB intensities)

Cea Coulomb excitation

target

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \quad \begin{aligned}
& a \propto \text { beam energy } \\
& b=\text { impact parameter }
\end{aligned}
$$

[. Elastic scattering of charged particles under the influence of the Coulomb field

$$
V_{\mathrm{int}}(t)=\frac{Z_{P} Z_{T} e^{2}}{r} \quad \text { with } \quad r(t)=\left|\vec{r}_{1}(t)-\overrightarrow{r_{2}}(t)\right|
$$

\rightarrow hyperbolic relative motion of the reaction partners

- Rutherford cross section

$$
\frac{d \sigma}{d \Omega}=\frac{Z_{1} Z_{2} e^{2}}{E_{c m}^{2}} \times \frac{1}{\sin ^{4}\left(\theta_{c m} / 2\right)}
$$

$$
\text { valid as long as } \mathrm{E}_{\mathrm{cm}}=\mathrm{m}_{0} \mathrm{v}^{2}=\frac{\mathrm{m}_{\mathrm{P}} \cdot \mathrm{~m}_{\mathrm{T}}}{\mathrm{~m}_{\mathrm{P}}+\mathrm{m}_{\mathrm{T}}} \mathrm{v}^{2} \ll \mathrm{~V}_{\mathrm{c}}=\mathrm{Z}_{\mathrm{l}} \mathrm{Z}_{2} \mathrm{e}^{2} / \mathrm{R}_{\mathrm{int}}
$$

\square Inelastic cross section $\left.\quad \frac{d \sigma}{d \Omega}\right|_{\text {Ruth }} \times P_{i \rightarrow f}$

cea
 Coulomb excitation: how to calculate P_{if} ?

1) Solving the time-dependent Schrödinger equation:

$$
i \hbar d \psi(t) / d t=\left[H_{P}+H_{T}+V(r(t))\right] \psi(t)
$$

$H_{P / T}$: free Hamiltonian of the projectile/target nucleus
$\mathrm{V}(\mathrm{t})$: the time-dependent electromagnetic interaction
2) Expanding $\psi(\mathbf{t})=\sum_{n} \mathbf{a}_{\mathbf{n}}(\mathbf{t}) \phi_{\mathrm{n}}$ with ϕ_{n} as the eigenstates of $\mathrm{H}_{\mathrm{P} / \mathrm{T}}$ leads to a set of coupled equations for the time-dependent excitation amplitudes $\mathrm{a}_{\mathrm{n}}(\mathrm{t})$

$$
i \hbar d a_{n}(t) / d t=\sum_{m}\left\langle\phi_{n}\right| V(t)\left|\phi_{m}\right\rangle \exp \left[i / \hbar\left(E_{n}-E_{m}\right) t\right] a_{m}(t)
$$

3) The transition amplitude $b_{n m}$ are calculated by the (action) integral

$$
b_{n m}=i \hbar^{-1} \int\left\langle a_{n} \phi_{n}\right| V(t)\left|a_{m} \phi_{m}\right\rangle \exp \left[i / \hbar\left(E_{n}-E_{m}\right) t\right] d t
$$

4) Finally leading to the excitation probability $P\left(I_{n} \rightarrow I_{m}\right)=\left(2 I_{n}+1\right)^{-1} \mathbf{b}_{n m}{ }^{2}$

Low-energy Coulomb excitation: first order

First order applicable if only one state is excited, e.g. $0^{+} \rightarrow 2^{+}$excitation, and for small excitation probability (e.g. semi-magic nuclei)

$1^{\text {st }}$ order transition probability for multipolarity λ :

$$
\mathrm{P}_{\mathrm{i} \rightarrow \mathrm{f}}^{(1)}(\vartheta, \xi)=\left(2 I_{i}+1\right)^{-1}\left|\mathrm{~b}_{\mathrm{i} \rightarrow \mathrm{f}}^{(1)}(\vartheta, \xi)\right|^{2}=\left(2 I_{i}+1\right)^{-1} \mid \chi_{\mathrm{i} \rightarrow \mathrm{f}}^{(\lambda)} \mathrm{I}^{2} \mathrm{R}_{\lambda}^{2}(\vartheta, \xi)
$$

with

$$
\begin{array}{cc}
\chi_{\mathrm{i} \rightarrow \mathrm{f}}^{\lambda}=\frac{\sqrt{16 \pi}(\lambda-1)!}{(2 \lambda+1)!!}\left(\frac{\mathrm{Z}_{\mathrm{T} / \mathrm{P}} \mathrm{e}}{\hbar \mathrm{v}_{\mathrm{i}}}\right) & \frac{\langle\mathrm{i}| \mathrm{M}(\mathrm{E} \lambda)|\mathrm{f}\rangle}{\mathrm{a}^{\lambda} \sqrt{2 \mathrm{I}_{\mathrm{i}}+1}} \\
\begin{array}{lc}
\text { Strength } \\
\text { parameter }
\end{array} \\
\mathrm{R}_{\lambda}^{2}(\vartheta, \xi)=\sum_{\mu}\left|\mathrm{R}_{\lambda \mu}(\vartheta, \xi)\right|^{2} & \text { Orbital integrals } \\
\xi=\xi_{\mathrm{if}}=\frac{\mathrm{Z}_{1} \mathrm{Z}_{2} \mathrm{e}^{2}}{\hbar}\left(\frac{1}{\mathrm{v}_{\mathrm{f}}}-\frac{1}{\mathrm{v}_{\mathrm{i}}}\right) & \text { Adiabacity parameter }
\end{array}
$$

cea
 Low-energy Coulex: second order

becomes necessary if several states can be excited from the ground state or when multiple excitations are possible, i.e. for larger excitation probabilities

$2^{\text {nd }}$ order transition probability:

$$
\mathrm{P}_{\mathrm{i} \rightarrow \mathrm{f}}^{(2)}(\vartheta, \xi)=\left(2 \mathrm{I}_{\mathrm{i}}+1\right)^{-1} \sum_{\mathrm{m}_{\mathrm{i}} \mathrm{~m}_{\mathrm{f}}}\left|\mathrm{~b}_{\mathrm{if}}^{(2)}\right|^{2} \text { with } \mathrm{b}_{\mathrm{if}}^{(2)}=\mathrm{b}_{\mathrm{if}}^{(1)}+\sum_{n} \mathrm{~b}_{\mathrm{inf}}
$$

Low-energy Coulex: second order and re-orientation

Specific case of second order perturbation theory

where the „intermediate" states are the m substates of the state of interest
$2^{\text {nd }}$ order excitation probability for 2^{+}state :

reorientation effect:

$$
b^{(2)} \propto\left\langle I_{f}\|\boldsymbol{M}(E 2)\| I_{f}\right\rangle\left\langle I_{f}\|\boldsymbol{M}(E 2)\| I_{i}\right\rangle
$$

$$
\mathbf{P}_{i \rightarrow f}^{(2)}(\boldsymbol{\vartheta}, \xi)=\left|\chi_{i \rightarrow f}^{(2)}\right|^{2} \mathbf{R}_{\lambda}^{2}(\boldsymbol{\vartheta}, \xi)\left[1+\chi_{f \rightarrow f}^{(2)} c(\boldsymbol{\vartheta}, \xi)\right]
$$

with $\chi_{f \rightarrow f}^{(2)}=\frac{1}{2} \sqrt{\frac{7}{10}} \frac{\mathrm{e}^{2}}{\hbar \mathrm{c}} \frac{\mathrm{Z}_{\mathrm{P} / \mathrm{T}} \sqrt{\mathrm{Q}_{f}}}{\mathrm{v}_{\infty} / \mathrm{c} \quad \mathrm{a}^{2}} \begin{aligned} & \text { Spectroscopic quadrupole moment } \\ & \text { (and its sign) } \\ & \rightarrow \text { Disentangle prolate and oblate shapes }\end{aligned}$

High-resolution gamma spectrometers

Scintillator array (ex. $\mathrm{BaF}_{2}, \mathrm{NaI}, \mathrm{Cs}(\mathrm{I}), \mathrm{LaBr}_{3}$)

 $\sigma_{\mathrm{E}} \approx 3-10 \%$ FWHM$\varepsilon_{\mathrm{ph}} \approx 50 \%$ - poor energy resolution
$\Omega \approx 80 \%$

- poor opening angle
$\Delta \theta \approx 5^{\circ}-15^{\circ}$

DALI2, RIKEN

Compton Shielded Ge

$\sigma_{\mathrm{E}} \approx 0.2 \% \mathrm{FWHM}$

- scattered γ-rays lost
poor definition of incident angle
- solid angle coverage limited by compton shields

$\varepsilon_{\text {ph }}$ for $M_{\gamma}=30: 7 \%$

Cea Physics case: shape coexistence in light Kr isotopes

Energy

deformation (axial β_{2})

Cea Shape coexistence and low-lying 0^{+}states

2-level mixing model

$$
\begin{aligned}
& \left|0_{1}^{+}\right\rangle=\cos \theta_{0}\left|0_{D}^{+}\right\rangle+\sin \theta_{0}\left|0_{S}^{+}\right\rangle \\
& \left|0_{2}^{+}\right\rangle=-\sin \theta_{0}\left|0_{D}^{+}\right\rangle+\cos \theta_{0}\left|0_{S}^{+}\right\rangle
\end{aligned} \quad \cos _{0}+\sin ^{2} \theta_{0}=1
$$

Before mixing
\qquad $0^{+}+\square$
Maximum mixing

$$
\cos ^{2} \theta=\sin ^{2} \theta=0.5
$$

Weak mixing

$$
\cos ^{2} \theta \rightarrow 1 \quad \sin ^{2} \theta \rightarrow 0
$$

$$
\begin{aligned}
& \left|2_{1}^{+}\right\rangle=\cos \theta_{2}\left|2_{D}^{+}\right\rangle+\sin \theta_{2}\left|2_{S}^{+}\right\rangle \\
& \left|2_{2}^{+}\right\rangle=-\sin \theta_{2}\left|2_{D}^{+}\right\rangle+\cos \theta_{2}\left|2_{S}^{+}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \left.B\left(E 2 ; 0_{1}^{+} \rightarrow 2_{1}^{+}\right)=\left|\cos \theta_{0} \cos \theta_{2}\left\langle 0_{D}^{+}\right| M(E 2)\right| 2_{D}^{+}\right\rangle+\left.\sin \theta_{0} \sin \theta_{2}\left\langle 0_{S}^{+}\right| M(E 2)\left|2_{S}^{+}\right\rangle\right|^{2} \\
& \left.B\left(E 2 ; 0_{2}^{+} \rightarrow 2_{1}^{+}\right)=\left|-\sin \theta_{0} \cos \theta_{2}\left\langle 0_{D}^{+}\right| M(E 2)\right| 2_{D}^{+}\right\rangle+\left.\cos \theta_{0} \sin \theta_{2}\left\langle 0_{S}^{+}\right| M(E 2)\left|2_{S}^{+}\right\rangle\right|^{2}
\end{aligned}
$$

Cea Physics case: shape coexistence in light K r isotopes

\square energy of excited 0^{+}by conversion electron
E0 strengths ρ^{2} (E0)
Shape coexistence and transition suspected
\square Inversion of ground-state shape in 72 Kr
\square Need for Coulomb excitation to verify this scenario

E. Bouchez et al., Phys. Rev. Lett. 90, 082502 (2003).

Mixing of the ground state (two-level mixing extrapolated from distortion of rotational bands)

Cea setup for RIB coulomb excitation at SPIRAL, GANIL

COZ Physics case: shape coexistence in light Kr isotopes

Cea Physics case: shape coexistence in light Kr isotopes

Low-energy Coulomb excitation of $74,76 \mathrm{Kr}$, SPIRAL (GANIL)

M. Bender et al. PRC 74, 024312 (2006)

Reduced transition matrix element and deformation

- $\quad 2^{+}$energies and $B\left(E 2 ; 2^{+} \rightarrow 0^{+}\right)$are often the first obervables to characterize shell closures or deformation
- They often mirror each other
- In the rotational model, $B(E 2)$ can be used to extract a deformation amplitude β

$$
\beta=\frac{4 \pi}{3 Z R^{2}} \sqrt{B\left(E 2 ; 0^{+} \rightarrow 2^{+}\right) / e^{2}}, \quad R=1.2 A^{1 / 3} \mathrm{fm}
$$

- Similarly, the ratio of 4^{+}to 2^{+}excitation energies can be used to infer deformation by comparison to the rotor limit:

$$
\frac{E\left(4^{+}\right)}{E\left(2^{+}\right)}=\frac{4(4+1)}{2(2+1)}=\frac{20}{6}=3.33
$$

- Deformation \& nuclear shapes
- Symmetry breaking and nuclear shapes
- The deformed harmonic oscillator and Nilsson models
- Configuration mixing approaches
- Observables: rotational models and quadrupole moments
- Ground state deformation from hyperfine structure
- Low-energy Coulomb excitation
- First order calculation, second order and re-orientation effect
- Physics case: shape coexistence in light Kr isotopes
- Intermediate-energy Coulomb excitation
- Semi-classical description
- Physics case: island of inversion and ${ }^{32} \mathrm{Mg}$
- Extreme quadrupole deformations
- superdeformation and hyperderformation
higher order multipole moments
- Octahedral and thetrahedral shapes
- Physics case: octupole deformation in ${ }^{220}$ Ra

cea
 Intermediate-energy Coulomb excitation

Advantage: thick target can be used, measurement at >10 pps possible
. Single-step excitation is a valid assumption (excitation time >> collision time)
Maximum excitation energy: $\quad \Delta \mathrm{E}_{\max }=\frac{\hbar c}{\mathrm{a}} \beta \gamma \quad(e x .10 \mathrm{MeV}$ for $\mathrm{Mg}+\mathrm{Pb}$ at $50 \mathrm{MeV} / \mathrm{u}$)

- Intermediate energy (above Coulomb barrier): both Coulomb and nuclear excitations Method: classical equivalence between scattering angle and impact parameter

Cea
 Intermediate-energy Coulomb excitation

target

Coulomb excitation for $\mathrm{b}>\mathrm{b}_{\min }$ (cutoff impact parameter to prevent nuclear contributions):

$$
\begin{aligned}
& b_{\min }=\left[C_{1}+C_{2}+2\right] \mathrm{fm} \\
& C_{i}=R_{i}\left(1-\frac{1}{R_{i}^{2}}\right) \quad \text { with } \quad R=1.28 A^{1 / 3}-0.76+0.8 A^{-1 / 3}
\end{aligned}
$$

\square Relation between $\mathrm{b}_{\text {min }}$ and maximum scattering angle $\theta^{\max }$ (center of mass):

$$
b_{\min }=\frac{a}{\gamma} \cot \left(\frac{\theta_{C M}^{\max }}{2}\right) \quad \text { where } \quad a=\frac{Z_{P} Z_{T} e^{2}}{m_{0} c^{2} \beta^{2}}, \quad \gamma=\frac{1}{\sqrt{1-\beta^{2}}}
$$

- Relation between θ_{cm} and $\theta_{\text {lab }}$:

$$
\tan \left(\theta_{l a b}\right)=\frac{\sin \left(\theta_{C M}\right)}{\gamma\left[\cos \left(\theta_{C M}\right)+\frac{\beta_{C M}}{\beta_{\text {proj }}}\right]}
$$

cea
 Physics case: ${ }^{32 \mathrm{Mg}}$ and the island of inversion

T. Motobayashi et al., PLB 346, 9 (1995)

Pb

- inclusive cross section measurement

$$
N_{\gamma}=\sigma_{i \rightarrow f} N_{T} N_{B} \epsilon,
$$

- Angular cut from ${ }^{32} \mathrm{Mg}$ recoil detection to remove nuclear contributions
- Unobserved feeding corrections (20\%) leading to « some » uncertainties

$$
\sigma_{\pi \lambda} \approx\left(\frac{Z_{p r o} e^{2}}{\hbar c}\right)^{2} \frac{\pi}{e^{2} b_{\min }^{2 \lambda-2}} B(\pi \lambda, 0 \rightarrow \lambda)
$$

cea Physics case: ${ }^{32} \mathrm{Mg}$ and the island of inversion

T. Motobayashi et al., PLB 346, 9 (1995)

Pb

[inclusive cross section measurement

$$
N_{\gamma}=\sigma_{i \rightarrow f} N_{T} N_{B} \epsilon,
$$

- Angular cut from ${ }^{32} \mathrm{Mg}$ recoil detection to remove nuclear contributions
] Unobserved feeding corrections (20\%) leading to « some » uncertainties

$$
\sigma_{\pi \lambda} \approx\left(\frac{Z_{p r o} e^{2}}{\hbar c}\right)^{2} \frac{\pi}{e^{2} b_{\min }^{2 \lambda-2}} B(\pi \lambda, 0 \rightarrow \lambda)
$$

- Deformation \& nuclear shapes
- Symmetry breaking and nuclear shapes
- The deformed harmonic oscillator and Nilsson models
- Configuration mixing approaches
- Observables: rotational models and quadrupole moments
- Ground state deformation from hyperfine structure
- Low-energy Coulomb excitation
- First order calculation, second order and re-orientation effect
- Physics case: shape coexistence in light Kr isotopes
- Intermediate-energy Coulomb excitation
- Semi-classical description
- Physics case: island of inversion and ${ }^{32} \mathrm{Mg}$
- Extreme quadrupole deformations
- superdeformation and hyperderformation
- higher order multipole moments
- Octahedral and thetrahedral shapes
- Physics case: octupole deformation in ${ }^{220} \mathrm{Ra}$

Extreme deformations

Cea γ-ray spectrum from a fusion-evaporation reaction

Many superimposed gamma cascades, complicated singles spectra

cea
 Resolving Power

Cascade of interest Populated with relative intensity α

. Mesure high-fold coincidences F

- Apply ($\mathrm{F}-1$) gates on energies $\mathrm{E}_{1} \ldots \mathrm{E}_{\mathrm{F}-1}$
\square Resolution and efficiency are very important

- How do efficiency and resolution impact the sensitivity of the measurement?
- How the gating improves the peak-over-Total ratio (P/T)?
- What is the best fold F to consider?

 cea
 Resolving Power

«Background »: Compton scattering, Bremsthtralung,...

level
scheme

Two-dimensional plot (Fold = 2) gamma-gamma coincidences

Cea Resolving Power

$S(E)$: average energy spacing

E
level
scheme

cea
 Resolving Power

- P/T: probability to get a gamma in the photopeak and not in the Compton plateau
- Example: $\mathrm{P} / \mathrm{T}=0.2$, 2 gammas, 100 detected events
- Both detected in photopeaks: $\mathrm{P} \times \mathrm{P}=4 \%$
- 1 Peak, 1 Compton: $\mathrm{P} \times \mathrm{C}=32 \%$
- Both detected as Compton: $\mathrm{C} \times \mathrm{C}=64 \%$

Fold=1: 10 events in photopeaks
Fold=1

Counts

Fold=2: $2(10 \times P / T)$ events in photopeaks after cut

Each time the fold is increased by 1, the statistics is lowered by a factor P/T

- Background reduction factor is $\mathrm{R}=\mathrm{P} / \mathrm{T} \times \mathrm{S}(\mathrm{E}) / \delta(\mathrm{E}) \times 0.76$

F For fold $F=1$ the Peak-to-Background ratio for a branch with intensity $\boldsymbol{\alpha}$ is $\boldsymbol{\alpha} \mathbf{R}$.

- For a higher fold F the Peak-to-Background ratio changes to $\boldsymbol{\alpha} \mathbf{R}^{\mathbf{F}}$.

If N_{0} is the total number of events, the amount of detected counts N in the peak is

$$
N=\alpha N_{0} \varepsilon^{F}
$$

ε : full-energy-peak efficiency of spectrometer
A minimum intensity α_{0} is resolvable if $\quad \alpha_{0} R^{F}=1$

The RESOLVING POWER (RP) is defined as $R P=1 / \alpha_{0}$

- The above gives

$$
R P=\exp \left[\ln \left(\frac{N_{0}}{N}\right) \frac{1}{1-\ln (\varepsilon) / \ln (R)}\right]
$$

cea Resolving Power of gamma-ray detectors

cea
 Band termination at high spin

cea
 Shapes and intruder orbitals

cea
 Superdeformation: history

B.M. Nyako et al., PRL 52, 507 (1984)
P.J. Twin et al., PRL 57, 811 (1986)

- 1984: unresolved gamma band in ${ }^{152}$ Dy due to too low statistics, but « ridge » observed
- Ridge is the sign of the spacing between two transitions of the same band
[1986: observation of the first rotational superdeformed band in ${ }^{152} \mathrm{Dy}$
․ Extracted moment of inertia is: $\mathfrak{J}^{(2)}=85 \hbar^{2} \mathrm{MeV}^{-1}$

Superdeformation: state of the art

cea
 RIBs and hyperdeformation

Theoretical prediction for extreme deformation (hyperdeformation) with 3:1 ratio
] Hyperdeformation favored at high-spin \Rightarrow Competes with fission
intense neutron-rich beams would:

- increase the fission barrier
- favor Yrast hyperdeformed structures at high spin

Fission barrier vs. High spin

cea
 First hints of hyperdeformation

- ${ }^{64} \mathrm{Ni}+{ }^{64} \mathrm{Ni} @ 255,261 \mathrm{MeV}$
- 4 weeks beam time
- Euroball IV, Strasbourg
\square spins above 70 ћ populated

\square Ridges observed, corresponding to large $\mathrm{J}^{(2)}=110-120 \hbar^{2} \mathrm{MeV}^{-1}$, but no discrete bands D. R. Lafosse et al., Phys. Rev. Lett. 71, 231 (1995).

Other claims from resonances produced in (d,p)-followed-by-fission measurements interpreted as rotational bands in hyperdeformed potential well
A. Krasznahorkay et al., Phys. Rev. Lett. 80, 2073 (1998)

cea
 Higher multipole moments: octupole deformation

$$
R(\vartheta, \phi)=R_{0}\left[1+\sum_{\lambda} \sum_{\mu=-\lambda}^{+\lambda} a_{\lambda \mu} Y_{\lambda \mu}(\vartheta, \phi)\right]
$$

- Octupole deformation: axial symmetry and $\alpha_{30} \neq 0$
\square In regions of the nuclear chart with $\Delta l=3$ and parity change at the Fermi surface Ex. Xe region, close to the $\mathrm{N}=\mathrm{Z}$ line
- Characterized by:
- Strong static octupole moment Q_{30}
- low-lying 3- excitations (even-even nuclei)
- strong $B(E 3)$ strength

Predictions for ground-state octupole deformation

P. Möller et al./Atomic Data and Nuclear Data Tables 94 (2008) 758-780

Higher multipole moments: octupolar deformation

ARTICLE

Studies of pear-shaped nuclei using accelerated radioactive beams

L Low-energy Coulomb excitation of ${ }^{220} \mathrm{Rn}$ and ${ }^{224} \mathrm{Ra}$ at REX-Isolde, CERN
[Incident energy of $2.8 \mathrm{MeV} /$ nucleon, Ni and Sn secondary targets

- Quadrupole Q_{2} and octupole Q_{3} moments measured
- ${ }^{224} \mathrm{Ra}$ shows a strong octupole deformation

cea Octahedral and Tetrahedral Symmetries

Spontaneous symmetry breaking may lead to high level degeneracies in deformed nuclei
\square Group theory gives such high symmetry configurations

$$
R(\vartheta, \phi)=R_{0}\left[1+\sum_{\lambda} \sum_{\mu=-\lambda}^{+\lambda} a_{\lambda \mu} Y_{\lambda \mu}(\vartheta, \phi)\right]
$$

Two symmetries lead to 4-fold degeneracies in nucleonic levels

Octahedral symmetry

Lowest order: $\quad \alpha_{40} \neq 0$

$$
\alpha_{4, \pm 4}= \pm \sqrt{\frac{5}{14}} \times \alpha_{40}
$$

Figure from J.Dudek

Tetrahedral symmetry

Lowest order:

$$
\alpha_{32} \neq 0
$$

Cea Tetrahedral Signatures

Tetrahedral magic numbers: $32,40,56,64,70,90,132-136$ Predicted tetrahedral nuclei: ${ }^{64,72,88} \mathrm{Ge},{ }^{80,110 \mathrm{Zr},,^{112,126,146} \mathrm{Ba} \text {, }}$ ${ }^{134,154} \mathrm{Gd},{ }^{160} \mathrm{Yb},{ }^{222}$ Th

Signatures:

- level ordering: $3^{-}, 4^{+}, 6^{+}, 6^{-}, 8^{+} \ldots$

D Decay pattern of specific groups of states

- Never evidenced experimentally

Cea Spectroscopy of 110 Zr

$\square 40$ protons 70 neutrons: tetrahedral magic numbers
\square Some calculations predict tetrahedral minimum preferred over spherical or deformed minima
\square Most calculations predict prolate deformed minimum
$\square{ }^{110} \mathrm{Zr}$ was claimed of astrophysical interest (r process)

Tetrahedral minimum

Figure from N. Schunck et al, PRC 69 (2004)

In-beam gamma Spectroscopy, RIKEN (2015)

N. Paul et al., PRL 118, 032501 (2017)

cea
 Experimental vs theory level scheme comparison

- Low-lying spectroscopy in agreement with prolate predictions
- Rejection of a static tetrahedral deformation

Cea 2^{+}and R_{42} systematics along the $\mathrm{N}=70$ isotonic chain

- NNDC-evaluated data
- This work

O D1S-5DCH
∇ D1S-PCM
\triangle SLyMRO-PCM

D1S: Gogny D1S effective interaction SlyMR0: Skyrme effective interaction

PCM: Projected Coordinate Method (configuration mixing)

5DCH: Bohr Hamiltonian approximation

