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Lecture 2: Nuclear Deformation 

•  Deformation & nuclear shapes 
 - Symmetry breaking and nuclear shapes 
 - The deformed harmonic oscillator and Nilsson models 
 - Configuration mixing approaches 
 - Observables: rotational models and quadrupole moments 

 
•   Ground state deformation from hyperfine structure 

  
•  Low-energy Coulomb excitation 

 - First order calculation, second order and re-orientation effect 
 - Physics case: shape coexistence in light Kr isotopes 

 
•  Intermediate-energy Coulomb excitation 

 - Semi-classical description 
 - Physics case: island of inversion and 32Mg 

 
•   Extreme quadrupole deformations 

 - Superdeformation and hyperderformation 
  

•   higher order multipole moments 
 - Octahedral and thetrahedral shapes 
 - Physics case: octupole deformation in 220Ra 
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Symmetry breaking and deformation 

q  A symmetry is an invariance of H and observables under a given transformation 
      Ex. spherical symmetry / rotation, isospin symmetry / proton-neutron exchange  
 
q   Nuclear deformation is a spontaneous symmetry breaking 
       i.e. the Hamiltonian is invariant but the physical states are not (different from « explicite » SB) 
       
q   Most nuclei are deformed: deformation = correlations = gain in energy 
 
q  (electric) quadrupole (elongated) shape is the most encountered  
 
     
     Ellipsoide:  
 
 
 
The intrinsic quadrupole moment Q0 measures the deviation of an elliptical shape from a sphere 
 
q   Q moment of long-lived states can be measured from hyperfine spectroscopy 
q   Q moment of long & short-lived states can be measured from low-energy Coulomb excitation 
 
q   A nucleus with intrinsic deformation can rotate 
         Its spectrocopy characterizes its collectivity and deformation 
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Parameterization of nuclear shapes 

R(ϑ ,φ) = R0 1+ aλµ Yλµ (ϑ ,φ)
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Generic nuclear shapes can be described 
by a development of spherical harmonics 
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Spectroscopic quadrupole moment 
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Experiments measure the maximum projection of the intrinsic 
electric quadrupole moment along the quantization axis, which 
is different from the intrinsic electric Qpole 
 
 
 

Qs =Q0P2 (cosθ )m=I

q  By use of angular momentum algebra:  

q  K is the projection along the symmetry axis of the nuclear spin I.    
     For spin I=0 and I=1/2 Qs vanishes even if the intrinsic shape is deformed 
 
 
q   The intrinsic moment Q0 can be related to the elongation parameter β2 : 

Q0 ≈
3Z r0

2

5π
β 2 (1+ 0.36 β 2 )

Qs =Q0
3K 2 − I(I +1)
(I +1)(2I +3)
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Quadrupole deformation 

Macroscopic-microscopic model by P. Möller 



Deformed harmonic oscillator potential 
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ω⊥ =ω0e
α , ωz =ω0e

−2α

h = − !
2

2m
Δ+

m
2
ω⊥
2 (x2 + y2 )+ m

2
ωz
2z2

•   axial symmetry: 

 
α>0: prolate, α<0:oblate 
 
•  Quantum numbers: 

•  Degeneracy: 

•  Total energy of the system: 
 

n⊥,nz( )

2 n⊥ +1( )

E(α) = εΛ
i (α)

i=1

NF

∑

For Harmonic Oscillator, as many oblate that prolate ground states 

I. Hammamoto and B.R. Mottelson, PRC 79, 034317 (2009) 
[Well bound nuclei, one type of fermions, no spin-orbit, no pairing] 
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Nilsson Hamiltonian: anisotropic one-body potential 

β	

q   Single-particle orbitals in an axially deformed potential (z symmetry axis)  

 
q   Energy depends on the orientation (projection of angular momentum) of the wavefunction 

q     At β≠0 total angular momentum is not a good quantum  
       number, its projection Ω and parity π are. 
 
q   Orbitals are indexed by Ωπ [Nnzml].  
      Ω=ml+ms = ml ± 1/2 
      N,nz,ml: asymptotic quantum numbers of axially-deformed harmonic oscillator 
 
q   No crossing of two levels with same quantum numbers (mixing) 

h = − !
2

2m
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Prolate dominance 
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q  Prolate dominance due to sharp nuclear surface  

q  Prolate dominance may be questioned for drip line or very heavy nuclei with softer surface 



EDF and configuration mixing approaches 

•   Variational approach based on an effective hamiltonian H 
•   Ansatz for the wavefunction, ex. Slater determinants or quasiparticle vacuum 

 
 
 
 
 
•   Projection method, important quantum numbers: N,Z,J,P 
 
               Ex. 

•  Configuration Mixing (multireference EDF) 

Set ΩI ≡ φ(Q){ }

ψε
JMNZP = dQ fε

JMNZP (Q)PNPZPMK
J

K=−J

J

∑ φ(Q)∫

Minimization :δ
ψ H ψ

ψ ψ
= 0 Hill-Wheeler equations 

PN φ =
1
2π

dφ
0

2π

∫ eiφ ( N̂−N ) φ

ε φ[ ] =
φ H φ

φ φ
−λQ φ Q φ −λN N −λZ Z

Minimization : δε φ[ ] = 0

e.g. Q= collective coordinates 



Hill-Wheeler equations 

q  The weight are determined by imposing 
 

q  Hill-Wheeler equation 

 
with  
 
and 
 
 
q   The choice of the generating coordinates Q depends on the physics to be described 
q   Typically Q is a multipole moment of the mass distribution (quadrupole deformation Q2λ) 
q   Resolution of HW equations by discretization of Q 

q   Approximation to HW equation: Bohr Hamiltonian and Gaussian Overlap Approximation 

δE
δ f *

= 0

dQ 'h(Q,Q ') fε (Q ')∫ = Eε dQ 'n(Q,Q ') f (Q ')∫

n(Q,Q ') = φ(Q) φ(Q ')

h(Q,Q ') = φ(Q) H φ(Q ')

norm overlaps 
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Deformed mean-field 
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Calculations and figures by Tomàs R. Rodriguez 

Potential energy surface 



Collective wavefunctions and levels 
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Calculations and figures by Tomàs R. Rodriguez 

q   level scheme, collective wavefunctions accessible 
q   further improvement: state-dependent moment of inertia (cranked states) 



Magnesium isotopes 

14 

Calculations and figures by Tomàs R. Rodriguez 
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Dominance of prolate deformation over oblate 

N=Z 

Mean-field calculations with the Gogny D1S effective interaction, M. Girod (CEA) 



Hyperfine interaction in free atoms 
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q   Hyperfine interaction = the interaction of nuclear magnetic and electric moments 
              with electromagnetic fields 

 
We will consider the fields created by an atomic orbit of spin J  

e- 

electron spin J 

nuclear spin I 

θ	The atomic and nuclear spins couple to form  
The total angular momentum  F 
 
 
 
Each state J has several F substates 
 
 
 

I − J ≤ F ≤ I + J

F
!"
= I
"
+ J
!"

F 
I 

J 

The energy shift caused by the interaction depends on the angle θ, thus for the same I and J,  
the different F states have slightly different energies   
 
Magnetic dipole interaction     Electric quadrupole interaction 
 

−µ
!"
.B
!" e

4
Q0VJJP2 (cosθ )



Hyperfine structure: magnetic dipole moment 
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q  yesterday’s lecture: fine structure of the nucleus and isotopic shifts 

q   The nucleus may have a non-zero spin I and therefore a magnetic moment µ.	
    It results in a perturbation of the atomic levels due to spin – B field interaction 

q  Energy shift of the atomic levels depend on the total spin F 

 
 
 
q  Energy shift 

B0 magnetic field produced by the electron. Note that for I=0, there is no hyperfine structure 

 

−µ
!"
.B
!"

F
!"
= I
"
+ J
!"

I − J ≤ F ≤ I + J

ΔE = µB0 I
!
. J
"!

=
A
2
K

A = µB0
IJ
, K = F(F +1)− I(I +1)− J(J +1)



Hyperfine structure: magnetic dipole moment 
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q  Typical value for the magnetic moment of a nucleus: nuclear magneton 

 

q  Typical B field created by an electron orbital: 

 
       Inner orbital radius Rn≈ a0= 5.2 10-11 m 
       Bohr velocity (e2/hbar=cα) v=2.2 106 m.s-1 

 
       B≈4π 10-7 1.6 10-19 2.2 106 /(16π2 25. 10-22) = 1.1 T 
 
q  Estimate of hyperfine energy shift: 
     	

e- B 
B = µ0I

2πR

I ≈ ev
2πR

µN =
e!
2mp

= 3.15×10−8 eV.T −1

ΔE ≈ µNB = 310
−8eV ⇒ω =

ΔE
!
≈ 50MHz



Hyperfine structure: magnetic dipole moment 

19 From T.E. Cocolios, Joliot-Curie school 2015 



Hyperfine structure: magnetic dipole moment 

20 From T.E. Cocolios, Joliot-Curie school 2015 



Hyperfine structure: magnetic dipole moment 

21 From T.E. Cocolios, Joliot-Curie school 2015 



Electric quadrupole moment from hyperfine structure 
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In a uniform field, the energy of a quadrupole moment is independent of the orientation (angle).  
Therefore there is no quadrupole interaction. 

In an electric field gradient, there is an angle dependence of the energy. 
Therefore there is a quarupole interaction. 

Electric field 

Same electrostatic energy 

Higher energy  
state 

Lower energy 
state 

q=-e 
q=-e 

+Ze +Ze 

+Ze +Ze 

Slide concept from J. Billowes, Balkan school (2004)  



Electric quadrupole interaction 
 
 
 
 
Electric field gradient along the J direction 
due to atomic electrons. 

Electric quadrupole moment 
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e- 

electron spin J 

nuclear spin I 

θ	E = e
4
Q0VJJP2 (cosθ )

Energy shifts of the F states are then given by 
 
 
 
 
 
 
 
Where B is the hyperfine factor measured in the experiment. 
The electric field gradient VJJ may be obtained from an isotope with known Qs 

ΔE = B
4

3
2
C(C +1)− 2I(I +1)J(J +1)

I(2I −1)J(2J −1)
C = F(F +1)− I(I +1)− J(J +1)[ ]

B = eQs
∂2V
∂z2

= eQsVJJ



Summary: isotope shift and hyperfine structure 

Point nucleus        + Finite size +     magnetic  +     electric        +     higher 
  nucleus           dipole             quadrupole         multipoles 

atomic state 

Isotope (A-1) 

Isotope A 

Isotope A 

Isotope (A-1) 

F=5/2 

F=3/2 
F=1/2  

q    Energy shifts of hyperfine structure can be few ppm of the optical atomic transition energy 
q   A single optical transition is split into a number of hyperfine components 

E = e
4
Q0VJJP2 (cosθ )

ΔE = µB0 I
!
. J
"!

=
A
2
K

EFNS =
Ze2

6ε0
rc
2 ψ(0) 2

≈100 MHz 

≈10 MHz 



Quadrupole moment of Cu isotopes 
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q   Spin, magnetic and Q moments of 61-75Cu at CERN/ISOLDE 
q  COLLAPS collinear laser spectroscopy setup 
q   Beams down to few 104 pps 
q   P. Vingerhoets et al., Phys. Rev.  C 82, 064311 (2011) 

q  Fit of transition energies with an atomic level  
splitting given by: 
 
 
 
with A proportional to magnetic moment, B to quadrupole moment 



Externally applied fields 
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q   For light elements where both field gradients and Q moments are small, usually 
transitions cannot be resolved. Need for external field. 

q  Different techniques exist (ground state or isomer Q-moment) 

 
q   β-NQR (beta Nuclear Quadrupole Resonance) method (ground state Q moment) 

§  Implentation of a spin-polarized projectile 
§  In a crystal where strong electric field gradient exist  
§  Beta-decay assymetry is measured 
§  Scan with a radiofrequency RF magnetic field 
§  When RF reaches the quadrupole splitting,  
     energy transitions occur 
§  Asymmetry is cancelled at the resonance 



β-NQR with Lithium isotopes 
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q   TRIUMF, A. Voss et al., J. Phys. G: Nucl. Part. Phys. 41, 015104 (2014) 
q   SrTiO3 crystal at 295 K 
q   High polarization of 60%-70% 
q  Transition frequencies proportional to Vzz: 
 

q   Q11/Q9=1.0775(12) 

ν9,11 = 2
eVzz
4h

Q9,11
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Spectroscopy of axially deformed nuclei 

 
•  Rotation and classical mechanics: 
 
 
 

 

 
 

E = 1
2
ℑΩ2 ℑ

Ω

moment of inertia 

angular velocity 
L
!"
=ℑΩ
!"

E = 1
2
L2

ℑ
or with kinetic angular  

momentum 

ℑ = n
!
∧OM
" !""" 2

∫ ρ d3r

ℑ = mi r∑ i

2

O 

M ri Continuus 

Discrete 

n
!

•   Axial rotor in quantum mechanics:  rotation around the symmetry axis  
      does not result in a new state but changes only the phase of the wavefunction 
 
•    Any rotation excitation involves rotation around an axis perpendicular to the symmetry axis 
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Rotor model for axially deformed nuclei 

Quantum mechanics: E = E0 +
!2

2ℑ
I(I +1) L2 φ = !2I(I +1) φ

γ	

γ	

γ	

γ	

72 

42 

20 

6 
0 

I(I+1) 

0+ 

2+ 

4+ 

6+ 

8+ •   for even-even nuclei (0+ ground state) the collective  
wavefunction is given by rotational DIMK matrices 
 
•   by symmetry, only even spins with positive parity 
 are allowed (0+,2+,4+,…) for a 0+ ground state 
 
•   Decay dominated by γ emission following conservation laws: 

Eγ, L 

Ei 

Ef 

Iiπ	

Ifπ	

Eγ = Ei −Ef

Ii − I f ≤ L ≤ Ii + I f
Δπ (EL) = (−1)L

Δπ (ML) = (−1)L+1
I+2 èI: E2 γ transitions 
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Rotor model for axially deformed nuclei 

Quantum mechanics: E = E0 +
!2

2ℑ
I(I +1) L2 φ = !2I(I +1) φ

Qs (I ) = −Q0
I

2I +3

B(E2; I→ I − 2) = 5
16π

Q0
2 3I(I −1)
2(2I −1)(2I +1)

•  Spectroscopic quadrupole moment: 

•  Transition matrix elements B(E2): 

•  Moments of inertia (from data): 
     
     
    Kinematic:  
 
 
    Dynamical: ℑ(2) =

1
!2
d 2E(I )
dI 2

"

#
$

%

&
'

−1

≈
4!2

ΔEγ

ℑ(1) =
!2 2I +3( )

Eγγ	

γ	

γ	

γ	

72 

42 

20 

6 
0 

I(I+1) 

0+ 

2+ 

4+ 

6+ 

8+ 

Qs=-0.29 Q0 

Qs=-0.36 Q0 

Qs=-0.40 Q0 

Qs=-0.42 Q0 

B 

1.4 B 

1.6 B 

1.7 B 

Qs=0 

(for K=0 band) 
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Spectroscopy of axially deformed nuclei 

Example: 238U ground-state band 

•   At high spin, nucleon pairs may break through the Coriolis force 
       è increase of moment of inertia (backbending) 
 
•   Very deformed bands are also observed (superdeformation, Rz/Rortho≈2) 
•   Hyperdeformation (Rz/Rortho≈3) predicted but still to be evidenced experimentally 
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Transition matrix elements 

Decay rate (s-1): 
 
 
 
 
 
 
 
 
 
 
 
Three methods: 
q   Low-energy coulomb excitation (next slides) 

q   Lifetime measurement (see Damian Ralet’s lecture) 
Ø  > 100 ns : implantation and timing 
Ø   10 ps to few 100 ns : in flight (fast) timing 
Ø   1 ps to 100 ps: plunger, Recoil Distance Doppler Shift method (RDDS) 
Ø  0.01 ps to 1 ps: Doppler Shift Attenuation method (DSAM) 

q   Intermediate-energy coulomb excitation (suited to low-RIB intensities) 
   

2+  

0+ 

B(E2)∝ If M(E2) Ii
2T (σλ; I f → Ii ) =

8π (λ +1)
λ (2λ +1)!![ ]2

1
!
Eγ
!c
"

#
$

%

&
'

2λ+1

B(σλ; I f → Ii )

1
τ f

= T (
σλIi

∑ σλ; I f → Ii )

τ ns( ) = 1
1.22Eγ

5 B(E2;↓)
Eγ in Mev, B(E2) in e2fm4 2+è0+ decay 

via E2 transition 
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Coulomb excitation 

q   Elastic scattering of charged particles under the influence of the Coulomb field 
 
 
 
è hyperbolic relative motion of the reaction partners  

 
q   Rutherford cross section 

 
 

 
 
q   Inelastic cross section 

 	

int
2

21c
2

TP

TP2
0cm /ReZZVv

mm
mmvm  Eas long as valid =<<
+
⋅

==

a ∝ beam energy 
b = impact parameter 

dσ
dΩ

=
Z1Z2e

2

Ecm
2 ×

1
sin4(θcm / 2)

dσ
dΩ Ruth

×Pi→ f

Vint (t) =
ZPZTe

2

r
with r(t) = r

!
1(t)− r2

"!
(t)

b 

projectile 

target 
r(t) 

12

2

2

2

=−
b
y

a
x

a 
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1) Solving the time-dependent Schrödinger equation: 
  
 iħ dψ(t)/dt = [HP + HT + V (r(t))] ψ(t) 

 
HP/T : free Hamiltonian of the projectile/target nucleus  
V(t) : the time-dependent electromagnetic interaction 
 
2) Expanding ψ(t) = ∑n an(t) φn with  φn as the eigenstates of HP/T leads to a set of 
coupled equations for the time-dependent excitation amplitudes an(t) 
 

 iħ dan(t)/dt = ∑m〈φn|V(t)| φm〉 exp[i/ħ (En-Em) t] am(t) 
  

3) The transition amplitude bnm are calculated by the (action) integral 
  
 bnm= iħ-1 ∫ 〈anφn|V(t)| amφm〉 exp[i/ħ (En-Em) t] dt  

 
4) Finally leading to the excitation probability  P(In→Im) = (2In+1)-1bnm

2 

Coulomb excitation: how to calculate Pif? 
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Low-energy Coulomb excitation: first order 

First order applicable if only one state is excited, e.g. 0+→2+ excitation, 
and for small excitation probability (e.g. semi-magic nuclei) 
 
 
 
 
1st order transition probability for multipolarity λ : 	

	
 
 
with 

		

12Ia
f|)M(E|i

 v
eZ

!1)!(2λ
1)!(λ16πχ

i
λ

i

T/Pλ
fi

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−

=→

λ
!

Pi→f
(1) (ϑ ,ξ ) = (2Ii +1)−1| bi→f

(1) (ϑ ,ξ ) |2= (2Ii +1)−1| χ i→f
(λ ) |2Rλ

2 (ϑ ,ξ )

22 |),(R|  ),(R ∑=
µ

λµλ ξϑξϑ Orbital integrals 

   
v
1

v
1eZZξξ

if

2
21

if ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−==

!
Adiabacity parameter 

Strength 
parameter 

If  

Ii 

b(1) 

if
(1) IM(E2)Ib ∝
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Low-energy Coulex: second order 

becomes necessary if several states can be excited from the ground state  
or when multiple excitations are possible, i.e. for larger excitation probabilities 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2nd order transition probability:	

If 

Ii 

b(1) b(2) b(2) 

2nd order: 
b(2) ∝ If M(E2) In In M(E2) Ii

n
∑

In 

In 

If  

Ii 

b(1) 

1st order: 
if

(1) IM(E2)Ib ∝

∑∑ +=+= −
→

n
inf

(1)
if

mm

(2)
if

2(2)
if

1
i

(2)
fi bbb   with|b|1)(2I),(P

fi

ξϑ
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Low-energy Coulex: second order and re-orientation 

Specific case of second order perturbation theory  
where the „intermediate“ states are the m substates of the state of interest  
 
2nd order excitation probability for 2+ state :	
	

 	

reorientation effect: 
b(2) ∝ I f M(E2) I f I f M(E2) Ii

If  

Ii 

b(2) 

Mf  

Pi→ f
(2) (ϑ ,ξ ) = |χ i→ f

(2) |2Rλ
2 (ϑ ,ξ ) 1+ χ f→ f

(2) c(ϑ ,ξ )"# $%

with χ f→ f
(2) =  1

2
7

10
e2

!c
 ZP/T

v∞ /c
Q f

a2

Spectroscopic quadrupole moment 
(and its sign) 
è Disentangle prolate and oblate shapes 

If  

Ii 

b(1) 

1st order: 
if

(1) IM(E2)Ib ∝
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High-resolution gamma spectrometers 

Resolving Power 
(relative intensity limit) Scintillator array (ex. BaF2, NaI, Cs(I), LaBr3) 

σE ≈ 3-10% FWHM 
εph  ≈ 50% 
Ω  ≈ 80% 
Δθ ≈ 5o-15o 

Compton Shielded Ge 
σE ≈  0.2% FWHM 
εph  ≈ 10% 
Ω  ≈ 40% 
Δθ ≈ 8o 

εph for Mγ=30 :7% 

Ge Tracking Array 
σE ≈  0.2% FWHM 
εph  ≈ 50% 
Ω  ≈ 80% 
Δθ ≈ 1o 

εph for Mγ=30 : 40% 

•   poor energy resolution 
•   poor opening angle 

•  scattered γ-rays lost 
•  poor definition of incident 
     angle 
•  solid angle coverage  
     limited by compton shields 

Combination of: 
•  segmented detectors 
•  pulse shape analysis 
•  γ-tracking 

DALI2, RIKEN 

Gammasphere, ANL, USA 

AGATA demonstrator, EU 

1 

104 

107 
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Physics case: shape coexistence in light Kr isotopes 

deformation (axial β2) 

Energy 

Potential energy surface Axial symmetry Potential energy surface 
Triaxial symmetry 
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Shape coexistence and low-lying 0+ states 

+++

+++

+−=

+=

SD

SD

0cos0sin0

0sin0cos0

002

001

θθ

θθ

+++

+++

+−=

+=

SD

SD

2cos2sin2

2sin2cos2

222

221

θθ

θθ

1sincos 0
2

0
2 =+ θθ

2

202011 2)2(0sinsin2)2(0coscos)20;2( ++++++ +=→ SSDD EMEMEB θθθθ

2

202012 2)2(0sincos2)2(0cossin)20;2( ++++++ +−=→ SSDD EMEMEB θθθθ

0+
2 

0+
1 0 

After mixing 

0+
D 

0+
S 

Before mixing 

Maximum mixing 5.0sincos 22 == θθ
Weak mixing 0sin1cos 22 →→ θθ

2-level mixing model 



Physics case: shape coexistence in light Kr isotopes 

E. Bouchez et al., Phys. Rev. Lett. 90, 082502 (2003).  

Mixing of the ground state (two-level mixing 
extrapolated from distortion of rotational bands) 

q  energy of excited 0+ by conversion electron  
q  E0 strengths ρ2(E0) 
 
q  Shape coexistence and transition suspected 
q  Inversion of ground-state shape in 72Kr 

q  Need for Coulomb excitation to verify 
      this scenario  
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EUROSCHOOL LEUVEN – SEPTEMBERI 2009 

Double-sided Si detector 
48 rings × 16 sectors 

16 large Ge Clover detectors 
4 × 4 segmented 
photopeak efficiency ε = 20%  

Setup for RIB coulomb excitation at SPIRAL, GANIL 
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Physics case: shape coexistence in light Kr isotopes 

76Kr on 208Pb  
at 4.4 MeV/nucleon 

SPIRAL beams  
76Kr  5×105 pps 
74Kr  104 pps 
   

4.5 MeV/u 

EXOGAM 

Pb 

[24°, 55°] [55°, 74°] [67°, 97°] [97°, 145°] 

74Kr 

0+ 

8+ 

6+ 

4+ 

2+ 
0+ 

2+ 

4+ 

0+ 

2+ 

τ 

τ 

τ 
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Physics case: shape coexistence in light Kr isotopes 

Low-energy Coulomb excitation of 74,76Kr, SPIRAL (GANIL) 
E. Clément et al., Phys. Rev. C 75, 054313 (2007). 
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•   2+ energies and B(E2;2+è0+) are often 
       the first obervables to characterize shell  
       closures or deformation  
 
•   They often mirror each other 

•  In the rotational model, B(E2) can be used to 
     extract a deformation amplitude β	
	
	
	
	
 	
•  Similarly, the ratio of 4+ to 2+ excitation  
     energies can be used to infer deformation by  
     comparison to the rotor limit: 
 
 
 

β =
4π
3ZR2

B(E2;0+ → 2+ ) / e2 , R =1.2A1/3 fm

E(4+ )
E(2+ )

=
4(4+1)
2(2+1)

=
20
6
= 3.33

Reduced transition matrix element and deformation 

About 620 nuclei so far 

About 560 nuclei so far 

        Neutron number N            

   
   

 P
ro

to
n 

nu
m

be
r Z

   
   

   
   

   
   

  
P
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n 
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m
be

r Z
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•  Deformation & nuclear shapes 
 - Symmetry breaking and nuclear shapes 
 - The deformed harmonic oscillator and Nilsson models 
 - Configuration mixing approaches 
 - Observables: rotational models and quadrupole moments 

 
•   Ground state deformation from hyperfine structure 

  
•  Low-energy Coulomb excitation 

 - First order calculation, second order and re-orientation effect 
 - Physics case: shape coexistence in light Kr isotopes 

 
•  Intermediate-energy Coulomb excitation 

 - Semi-classical description 
 - Physics case: island of inversion and 32Mg 

 
•   Extreme quadrupole deformations 

 - superdeformation and hyperderformation 
  

•   higher order multipole moments 
 - Octahedral and thetrahedral shapes 
 - Physics case: octupole deformation in 220Ra 
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Intermediate-energy Coulomb excitation 

q  Advantage: thick target can be used, measurement at >10 pps possible  

q   Single-step excitation is a valid assumption (excitation time >> collision time) 

q   Maximum excitation energy:  
 
q  Intermediate energy (above Coulomb barrier): both Coulomb and nuclear excitations 
     Method: classical equivalence between scattering angle and impact parameter 

32Mg+208Pb, 49 MeV/nucleon 
2+

1 inelastic excitation 

Nuclear only 

Coulomb 
+ nuclear 

ΔEmax =
!c 
a

 βγ  (ex. 10 MeV for Mg+Pb at 50 MeV/u) 
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Intermediate-energy Coulomb excitation 

b 

projectile 
r(t) 

target 

θcm 

q  Coulomb excitation for b>bmin (cutoff impact parameter to prevent nuclear contributions): 
 
 
 
 

 
q  Relation between bmin and maximum scattering angle θmax (center of mass):  

 

q  Relation between θcm and θlab:  
 
 

2a 

bmin = [C1 +C2 + 2] fm

Ci = Ri (1−
1
Ri
2 ) with R =1.28A1/3 − 0.76+ 0.8A−1/3

bmin =
a
γ
cot(θCM

max

2
) where a = ZPZTe

2

m0c
2β 2

, γ =
1
1−β 2

tan(θlab ) =
sin(θCM )

γ[cos(θCM )+
βCM
βproj

]

At small impact parameters 
(nuclear radius distance), 
nuclear excitations occur. 
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Physics case: 32Mg and the island of inversion 
T. Motobayashi et al., PLB 346, 9 (1995)  

Pb 

32Mg 
300 pps 

Si detector 

q   inclusive cross section measurement 
 
 
 
q   Angular cut from 32Mg recoil detection 
      to remove nuclear contributions 
 
q   Unobserved feeding corrections (20%) 
      leading to « some » uncertainties 
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Physics case: 32Mg and the island of inversion 
T. Motobayashi et al., PLB 346, 9 (1995)  

Pb 

32Mg 
300 pps 

Si detector 

q   inclusive cross section measurement 
 
 
 
q   Angular cut from 32Mg recoil detection 
      to remove nuclear contributions 
 
q   Unobserved feeding corrections (20%) 
      leading to « some » uncertainties 
 
 

Large B(E2) 
è  deformed 
     (intruder) 
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•  Deformation & nuclear shapes 
 - Symmetry breaking and nuclear shapes 
 - The deformed harmonic oscillator and Nilsson models 
 - Configuration mixing approaches 
 - Observables: rotational models and quadrupole moments 

 
•   Ground state deformation from hyperfine structure 

  
•  Low-energy Coulomb excitation 

 - First order calculation, second order and re-orientation effect 
 - Physics case: shape coexistence in light Kr isotopes 

 
•  Intermediate-energy Coulomb excitation 

 - Semi-classical description 
 - Physics case: island of inversion and 32Mg 

 
•   Extreme quadrupole deformations 

 - superdeformation and hyperderformation 
  

•   higher order multipole moments 
 - Octahedral and thetrahedral shapes 
 - Physics case: octupole deformation in 220Ra 
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Extreme deformations  

Cooling 

Angular momentum 

E
ne

rg
y 

no states 

Eexc 

5n 
4n 

3n 

neutron  
evaporation 

statistical 
γ rays 

rotational 
bands 

q  large cross section (∼1 barn) 
q  predominantly proton-rich nuclei 
    (no Coulomb barrier for neutrons) 
q  large angular momentum transfer      
     → many γ rays 

gamma-ray spectrometer with 
q  high resolution (keV) 
q  large efficiency (∼10% at 1 MeV) 
q  high granularity (NDet>>Mγ) 
q  good Photopeak-to-Compton ratio 

Fusion-evaporation reaction 
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Many superimposed gamma cascades, complicated singles spectra 

γ-ray spectrum from a fusion-evaporation reaction 
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Resolving Power 

A. Ataç et al., Nucl. Phys. A 557, 109 (1993) 

q  Mesure high-fold coincidences F 
q  Apply (F-1) gates on energies E1…EF-1 
 
q  Resolution and efficiency are very important 
 
§  How do efficiency and resolution impact the sensitivity of the measurement? 
§  How the gating improves the peak-over-Total ratio (P/T)? 
§   What is the best fold F to consider? 

E1 

E2 

E3 

E4 

Cascade 
of interest 
Populated  
with relative  
intensity α  

Other 
transitions 

Single gate 
Fold = 2 

Double gate 
Fold = 3 

Triple gate 
Fold = 4 
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Resolving Power 

E1 

E2 

E3 

E4 

« Background »: Compton scattering, Bremsthtralung,…  

Photopeak 

E1 E2 E3 E4 

E 

E 

level  
scheme 

Two-dimensional plot (Fold = 2)  
gamma-gamma coincidences 

Projected gamma spectrum 

Counts 

Slide inspired by D. Weisshar, NSCL 
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Resolving Power 

E1 

E2 

E3 

E4 

E1 E2 E3 E4 

E 

E 

level  
scheme 

Two-dimensional plot (Fold = 2)  
gamma-gamma coincidences 

Projected gamma spectrum 

S(E): average energy spacing  

Projection 

Peak: ×1/3 

Bckgd: ×1/3  

S(E) 

Counts 

Slide inspired by D. Weisshar, NSCL 
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Resolving Power 

E1 

E2 

E3 

E4 

E1 E2 E3 E4 

E 

E 

level  
scheme 

Two-dimensional plot (Fold = 2)  
gamma-gamma coincidences 

Projected gamma spectrum 

S(E): average energy spacing 
δ(E): energy resolution  

Projection 

Peak: ×1/3 

Bckgd: ×1/3×δ(E)/S(E)  

S(E) 

δ(E) 

Counts 

Slide inspired by D. Weisshar, NSCL 
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Peak-over-Total (P/T) 

25/03/2017 Slide inspired by D. Weisshar, NSCL 

q   P/T: probability to get a gamma in the photopeak and not in the Compton plateau 

q  Example: P/T=0.2, 2 gammas, 100 detected events  
§   Both detected in photopeaks: P×P=4% 
§   1 Peak, 1 Compton:   P×C=32% 
§   Both detected as Compton: C×C=64% 
 

P 

C 

Counts Fold=1 

E 2 

2 

C×C=64 

P×P 
 P×C 

8 8 

8 

8 

Fold=1: 10 events in photopeaks Fold=2: 2 (10×P/T) events in photopeaks after cut 

Each time the fold is increased by 1, the statistics is lowered by a factor P/T 
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Resolving Power 

q  Background reduction factor is R=P/T×S(E)/δ(E)×0.76 

q  For fold F=1 the Peak-to-Background ratio for a branch with intensity α is αR. 
 
q  For a higher fold F the Peak-to-Background ratio changes to αRF. 

q  If N0 is the total number of events, the amount of detected counts N in the peak is 
 
 
 
     ε: full-energy-peak efficiency of spectrometer 
 
q  A minimum intensity α0 is resolvable if 
 
 
q  The RESOLVING POWER (RP) is defined as  
 
q  The above gives 

N =α N0 ε
F

α0R
F =1

RP = 1α0

RP = exp ln(N0

N
) 1
1− ln(ε) ln(R)

⎡

⎣
⎢

⎤

⎦
⎥
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Resolving Power of gamma-ray detectors 

AGATA 
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Band termination at high spin 
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quadrupole deformation 

ND 

235U 

SD 

152Dy 

Z=48 

HD 

108Cd π i13/2 

q  (N+1) intruder  
    ⇒ normal deformed, e.g. 235U 
q  (N+2) super-intruder 

 ⇒ Superdeformation, e.g. 152Dy, 80Zr 
      ⇒ Fission isomers in actinides, e.g. 235U 
q  (N+3) hyper-intruder 

 ⇒ Hyperdeformation, e.g. in 108Cd ? 
     ⇒ Fission resonances in actinides 

N+2 shell 

N+3 shell 

N shell 

N+1 shell 

Fermi level 

E
ne

rg
y 

Deformation 

Shapes and intruder orbitals 
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Superdeformation: history 

P.J. Twin et al., PRL 57, 811 (1986)  B.M. Nyako et al., PRL 52, 507 (1984) 

q  1984: unresolved gamma band in 152Dy due to too low statistics, but « ridge » observed 
q  Ridge is the sign of the spacing between two transitions of the same band 
q  1986: observation of the first rotational superdeformed band in 152Dy 

q   Extracted moment of inertia is:   ℑ(2) = 85!2MeV −1
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Superdeformation: state of the art 

Prepint - Submitted July 15, 2002 for publication in Nuclear Data Sheets

1

and the Natural Sciences and Engineering Research Council (NSERC) of Canada.
*This work was supported by Division of Nuclear Physics, U.S. Department of Energy;

Most data presented here were extracted from the ENSDF (Evaluated Nuclear Structure Data File) database at Brookhaven.

Table of Superdeformed Nuclear Bands
and Fission Isomers*  Third Edition (July 2002)

Balraj Singh†, Roy Zywina†, and Richard B. Firestone‡
† McMaster University, Hamilton, Ontario L8S 4M1, Canada (hispin@mcmaster.ca)
‡ Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA (rbf@lbl.gov)

Superdeformed Bands

Fission Isomers

 56 Ba
 57 La
 58 Ce
 59 Pr

 60 Nd
 61 Pm
 62 Sm
 63 Eu

 64 Gd
 65 Tb

 66 Dy
 67 Ho

 68 Er
 69 Tm

 70 Yb
 71 Lu

 72 Hf
 73 Ta

 74 W 
 75 Re

 76 Os
 77 Ir

 78 Pt
 79 Au

 80 Hg
 81 Tl

 82 Pb
 83 Bi

 84 Po

 70  74  78  82  86  90  94
 98

102

106

110

114

118
122

Deformation
2:1
1.7:1
1.5:1
Naturally Abundant

 90 Th
 91 Pa
 92 U 

 93 Np
 94 Pu

 95 Am
 96 Cm
 97 Bk
 98 Cf

 99 Es
100 Fm

140 144 148

152

156

 15 P 
 16 S 
 17 Cl
 18 Ar

 19 K 
 20 Ca

 21 Sc
 22 Ti

 23 V 
 24 Cr

 25 Mn
 26 Fe

 27 Co
 28 Ni

 29 Cu
 30 Zn

 31 Ga
 32 Ge

 33 As
 34 Se

 35 Br
 36 Kr

 37 Rb
 38 Sr

 39 Y 
 40 Zr

 41 Nb
 42 Mo

 43 Tc
 44 Ru

 45 Rh
 46 Pd

 47 Ag
 48 Cd

 12  16  20  24  28
 32

 36

 40

 44
 48

 52

 56

 60

  0  n
  1 H 

  2 He
  3 Li
  4 Be

  5 B 
  6 C 

  7 N 
  8 O 

  9 F 
 10 Ne

 11 Na
 12 Mg
 13 Al
 14 Si

  4
  8

 12

E* and I known 

192,194,196Pb 
190,191,194Hg 
193Tl 

163,164,165,167Lu 

149Gd, 151Tb,152Dy 

139Gd, 135,137Sm 
133Pm, 131-137Nd, 
130,131Pr 

60,61Zn 
58,59Cu 
58Ni, 57Co 

40Ca 
36Ar  

20Ne 
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RIBs and hyperdeformation 

q  Theoretical prediction for extreme deformation (hyperdeformation) with 3:1 ratio 

q  Hyperdeformation favored at high-spin ⇒ Competes with fission 

q  intense neutron-rich beams would: 
§  increase the fission barrier 
§  favor Yrast hyperdeformed structures at high spin 

Fission barrier vs. High spin 

stable  
beams 

neutron-rich beams 
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First hints of hyperdeformation 

q  64Ni+64Ni @ 255, 261 MeV 
q  4 weeks beam time  
q  Euroball IV, Strasbourg 
q  spins above 70 ħ populated 

q  Ridges observed, corresponding to large J (2) = 110 -120 ħ2MeV-1, but no discrete bands 
     D. R. Lafosse et al., Phys. Rev. Lett. 71, 231 (1995). 

q  Other claims from resonances produced in (d,p)-followed-by-fission measurements 
     interpreted as rotational bands in hyperdeformed potential well 
     A. Krasznahorkay et al., Phys. Rev. Lett. 80, 2073 (1998) 
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Higher multipole moments: octupole deformation 

q   Octupole deformation: axial symmetry and α30≠0 
q   In regions of the nuclear chart with Δl=3 and parity change at the Fermi surface 
      Ex. Xe region, close to the N=Z line  
 
q   Characterized by: 
§  Strong static octupole moment Q30 
§  low-lying 3- excitations (even-even nuclei) 
§  strong B(E3) strength 

R(ϑ ,φ) = R0 1+ aλµ Yλµ (ϑ ,φ)
µ=−λ

+λ

∑
λ

∑
#

$
%
%

&

'
(
(
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Predictions for ground-state octupole deformation 

Xe region 

Ra region 



25/03/2017 69 

Higher multipole moments: octupolar deformation 

q   Low-energy Coulomb excitation of 220Rn and 224Ra at REX-Isolde, CERN 
q   Incident energy of 2.8 MeV/nucleon, Ni and Sn secondary targets  
q   Quadrupole Q2 and octupole Q3 moments measured 
q   224Ra shows a strong octupole deformation 

224Ra 

L. P. Gaffney et al., Nature 497, 204 (2013)  



Octahedral and Tetrahedral Symmetries 

70 

q  Spontaneous	symmetry	breaking	may	lead	to	high	level	
degeneracies	in	deformed	nuclei	

q  Group	theory	gives	such	high	symmetry	configura:ons	
	
q  Two	symmetries	lead	to	4-fold	degeneracies	in	nucleonic	levels	

R(ϑ ,φ) = R0 1+ aλµ Yλµ (ϑ ,φ)
µ=−λ

+λ

∑
λ

∑
#

$
%
%

&

'
(
(

Figure	from	J.Dudek	

Octahedral symmetry 

Lowest order:  

α40 = 0.1 α40 = 0.2 α40 = 0.3

α40 ≠ 0

α4,±4 = ±
5
14

×α40

Tetrahedral symmetry 

Lowest order:  α32 ≠ 0



Tetrahedral Signatures 

Tetrahedral	magic	numbers:	32,	40,	56,	64,	70,90,132-136	
Predicted	tetrahedral	nuclei:	64,72,88Ge,	80,110Zr,	112,126,146Ba,		

	 															134,154Gd,	160Yb,	222Th	
	
Signatures:	
q  level	ordering:	3-,4+,6+,6-,8+…	
q  Decay	paRern	of	specific	groups	of	states	

q  Never	evidenced	experimentally	

P.	Schunck	et	al.,	PRC	69	(2004)	

110Zr 



Spectroscopy of 110Zr 

q  40	protons	70	neutrons:	tetrahedral	magic	numbers	
	
q  Some	calcula:ons	predict	tetrahedral	minimum	

preferred	over	spherical	or	deformed	minima		
	
q  Most	calcula:ons	predict	prolate	deformed	minimum	

q  110Zr	was	claimed	of	astrophysical	interest	(r	process)	

Figure	from	N.	Schunck	et	al,	PRC	69	(2004)	

Tetrahedral	minimum	

Spherical		
minimum	
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In-beam gamma Spectroscopy, RIKEN (2015) 

N. Paul et al., PRL 118, 032501 (2017)   
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Experimental vs theory level scheme comparison 

Tetrahedral predictions 
Tagami et al, PRC 87 (2013) 

110Zr 

E
 (k

eV
) 

q   Low-lying spectroscopy in agreement with prolate predictions 
q   Rejection of a static tetrahedral deformation 
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Z
30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

42R

2

3

 (k
eV

)
1+

En
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 2

200

400

600

800

1000

1200

NNDC-evaluated data 

This work 
D1S-5DCH 
D1S-PCM 

SLyMR0-PCM 

D1S: Gogny D1S effective interaction 
SlyMR0: Skyrme effective interaction 
 
PCM: Projected Coordinate Method 
          (configuration mixing) 
 
5DCH: Bohr Hamiltonian approximation 

2+ and R42 systematics along the N=70 isotonic chain 

74 


