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1. In this exercise, we will solve “numerically” (by hand actually), the one-dimensional (1D)
diffusion equation:

∂tY (x, t) = ν∂
2
xY (x, t),

for a quantity Y . We assume that the diffusion occurs in water (ν = 1 ⋅ 10−6 m2
/s). We

consider a pool of 0.1-m length. The initial distribution of the quantity Y (x, t) is given
by (see Fig. 1):

Y (x, t = 0) = {
1 x ≥ 0
0 x < 0
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Figure 1: Initial distribution of the quantity Y (x, t) in the pool.

We will consider 10 cells of the same size along the x-axis, between the points x = −0.05
and x = 0.05. The coordinates of the edge of the cells are:

xedge ∈ (−0.05,−0.04,−0.03,−0.02,−0.01,0,0.01,0.02,0.03,0.04,0.05)



(a) In the following, we will consider that the quantity Y is defined at the centre of each
cell. We have thus to know the coordinate of the centre of the 10 cells. Determine
these coordinates and draw these in Fig. 1.

(b) With this spatial discretisation, what is the maximal time-step ∆tmax that is allowed
by the CFL (in)stability condition? Obviously, this is the limit, above which we are
sure that the scheme is unstable. However, it does not tell us if a smaller time step
is stable. To be safe, we will use a time step ∆t = ∆tmax

10 . [∆tCFL
max =

∆x2

ν .]

(c) With the definition of the +-midpoint (right-hand-side) discretised derivative of the
quantity Y :

∇̂
+

xY =

Y (x +∆x) − Y (x)

∆x
,

write an expression for the discretised double derivative ∇̂2
x.

(d) Let us consider a given time-step tj . For this time step, and for a given cell xi, write

the discretised version of the diffusion equation (using the notation Y j
i to indicate

the value of Y (xi, t
j
) in the cell i (centred at the coordinate xi) at the time tj).

(e) Re-write the expression you just found to express Y j+1
i as a function of the quantities

at time-step j: Y j
i , Y j

i+1 and Y j
i−1.

(f) Starting from our initial conditions, compute ν∆t
∆x2
(Y 0

i+1 + Y
0
i−1 − 2Y 0

i ).

(g) Then compute the new values of Y at the next time step. Sketch the results in Fig. 1.

(h) Repeating this procedure, compute the evolution of the quantity Y over a few time-
steps, and plot the results.

2. A velocity-driven planar flow is governed by the following diffusion equation:

∂tvx = ν∂
2
yvx.

Consider a horizontal plate of infinite area in the x-z plane (y is the vertical axis), immersed
in an infinite sea. The plate oscillates in the x-direction at a frequency ω, with the following
velocity:

U(t) = U0 cos(ωt),

with a constant amplitude U0.

(a) Show that the velocity field given by:

vx(y, t) = U0 exp(−ky) cos (ωt − ky) ,

where k is the wave number, is a solution of the diffusion equation and obtain a
relation between k, ω and ν.

(b) As k appears in the exponential as well, d =
1
k is a characteristic decay length of

the wave. For kinematic viscosity, νwater = 1.0 ⋅ 10−6 m2s−1, and for a frequency of
fplate = 500 Hz, calculate d.


